
Information Retrieval

Implementing and Evaluating

Search Engines

Stefan Büttcher

Charles L. A. Clarke

Gordon V. Cormack

The MIT Press

Cambridge, Massachusetts

London, England

� 2010 Massachusetts Institute of Technology.

Typeset by the authors using LATEX.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Büttcher, Stefan.

Information retrieval : implementing and evaluating search engines / Stefan Büttcher, Charles

L.A. Clarke, and Gordon V. Cormack.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-262-02651-2 (hardcover : alk. paper)

1. Search engines—Programming. 2. Information retrieval. I. Clarke, Charles L. A., 1964–. II.

Cormack, Gordon V. III. Title.

TK5105.884.B98 2010

025.5�24—dc22 2009048455

Contents

Foreword xix

Preface xxi

Notation xxv

I Foundations 1

1 Introduction 2

1.1 What Is Information Retrieval? 2

1.1.1 Web Search 2

1.1.2 Other Search Applications 3

1.1.3 Other IR Applications 4

1.2 Information Retrieval Systems 5

1.2.1 Basic IR System Architecture 5

1.2.2 Documents and Update 7

1.2.3 Performance Evaluation 8

1.3 Working with Electronic Text 9

1.3.1 Text Formats 9

1.3.2 A Simple Tokenization of English Text 13

1.3.3 Term Distributions 15

1.3.4 Language Modeling 17

1.4 Test Collections 23

1.4.1 TREC Tasks 24

1.5 Open-Source IR Systems 27

1.5.1 Lucene 27

1.5.2 Indri 27

1.5.3 Wumpus 28

1.6 Further Reading 28

1.7 Exercises 30

1.8 Bibliography 32

2 Basic Techniques 33

2.1 Inverted Indices 33

2.1.1 Extended Example: Phrase Search 35

2.1.2 Implementing Inverted Indices 39

2.1.3 Documents and Other Elements 45

2.2 Retrieval and Ranking 51

2.2.1 The Vector Space Model 54

2.2.2 Proximity Ranking 60

2.2.3 Boolean Retrieval 63

2.3 Evaluation 66

2.3.1 Recall and Precision 67

2.3.2 Effectiveness Measures for Ranked Retrieval 68

2.3.3 Building a Test Collection 73

2.3.4 Efficiency Measures 75

2.4 Summary 76

2.5 Further Reading 77

2.6 Exercises 79

2.7 Bibliography 82

3 Tokens and Terms 84

3.1 English 85

3.1.1 Punctuation and Capitalization 85

3.1.2 Stemming 86

3.1.3 Stopping 89

3.2 Characters 91

3.3 Character N-Grams 92

3.4 European Languages 94

3.5 CJK Languages 95

3.6 Further Reading 97

3.7 Exercises 99

3.8 Bibliography 100

II Indexing 103

4 Static Inverted Indices 104

4.1 Index Components and Index Life Cycle 104

4.2 The Dictionary 106

4.3 Postings Lists 110

4.4 Interleaving Dictionary and Postings Lists 114

4.5 Index Construction 118

4.5.1 In-Memory Index Construction 119

4.5.2 Sort-Based Index Construction 125

4.5.3 Merge-Based Index Construction 127

4.6 Other Types of Indices 131

4.7 Summary 132

4.8 Further Reading 132

4.9 Exercises 133

4.10 Bibliography 135

5 Query Processing 137

5.1 Query Processing for Ranked Retrieval 137

5.1.1 Document-at-a-Time Query Processing 139

5.1.2 Term-at-a-Time Query Processing 145

5.1.3 Precomputing Score Contributions 151

5.1.4 Impact Ordering 153

5.1.5 Static Index Pruning 153

5.2 Lightweight Structure 160

5.2.1 Generalized Concordance Lists 160

5.2.2 Operators 162

5.2.3 Examples 163

5.2.4 Implementation 165

5.3 Further Reading 169

5.4 Exercises 170

5.5 Bibliography 171

6 Index Compression 174

6.1 General-Purpose Data Compression 175

6.2 Symbolwise Data Compression 176

6.2.1 Modeling and Coding 177

6.2.2 Huffman Coding 181

6.2.3 Arithmetic Coding 186

6.2.4 Symbolwise Text Compression 189

6.3 Compressing Postings Lists 191

6.3.1 Nonparametric Gap Compression 192

6.3.2 Parametric Gap Compression 195

6.3.3 Context-Aware Compression Methods 201

6.3.4 Index Compression for High Query Performance 204

6.3.5 Compression Effectiveness 209

6.3.6 Decoding Performance 212

6.3.7 Document Reordering 214

6.4 Compressing the Dictionary 216

6.5 Summary 222

6.6 Further Reading 223

6.7 Exercises 224

6.8 Bibliography 225

7 Dynamic Inverted Indices 228

7.1 Batch Updates 229

7.2 Incremental Index Updates 231

7.2.1 Contiguous Inverted Lists 233

7.2.2 Noncontiguous Inverted Lists 239

7.3 Document Deletions 243

7.3.1 Invalidation List 243

7.3.2 Garbage Collection 245

7.4 Document Modifications 250

7.5 Discussion and Further Reading 251

7.6 Exercises 253

7.7 Bibliography 254

III Retrieval and Ranking 257

8 Probabilistic Retrieval 258

8.1 Modeling Relevance 259

8.2 The Binary Independence Model 261

8.3 The Robertson/Spärck Jones Weighting Formula 264

8.4 Term Frequency 266

8.4.1 Bookstein’s Two-Poisson Model 267

8.4.2 Approximating the Two-Poisson Model 270

8.4.3 Query Term Frequency 271

8.5 Document Length: BM25 271

8.6 Relevance Feedback 273

8.6.1 Term Selection 274

8.6.2 Pseudo-Relevance Feedback 275

8.7 Field Weights: BM25F 277

8.8 Experimental Comparison 279

8.9 Further Reading 280

8.10 Exercises 281

8.11 Bibliography 282

9 Language Modeling and Related Methods 286

9.1 Generating Queries from Documents 287

9.2 Language Models and Smoothing 289

9.3 Ranking with Language Models 292

9.4 Kullback-Leibler Divergence 296

9.5 Divergence from Randomness 298

9.5.1 A Model of Randomness 299

9.5.2 Eliteness 301

9.5.3 Document Length Normalization 301

9.6 Passage Retrieval and Ranking 302

9.6.1 Passage Scoring 304

9.6.2 Implementation 304

9.7 Experimental Comparison 306

9.8 Further Reading 306

9.9 Exercises 307

9.10 Bibliography 307

10 Categorization and Filtering 310

10.1 Detailed Examples 313

10.1.1 Topic-Oriented Batch Filtering 313

10.1.2 On-Line Filtering 317

10.1.3 Learning from Historical Examples 318

10.1.4 Language Categorization 320

10.1.5 On-Line Adaptive Spam Filtering 325

10.1.6 Threshold Choice for Binary Categorization 329

10.2 Classification 331

10.2.1 Odds and Odds Ratios 333

10.2.2 Building Classifiers 334

10.2.3 Learning Modes 336

10.2.4 Feature Engineering 338

10.3 Probabilistic Classifiers 339

10.3.1 Probability Estimates 340

10.3.2 Combining Probability Estimates 343

10.3.3 Practical Considerations 347

10.4 Linear Classifiers 349

10.4.1 Perceptron Algorithm 352

10.4.2 Support Vector Machines 353

10.5 Similarity-Based Classifiers 354

10.5.1 Rocchio’s Method 354

10.5.2 Memory-Based Methods 355

10.6 Generalized Linear Models 355

10.6.1 Kernel Methods 357

10.7 Information-Theoretic Models 359

10.7.1 Comparing Models 360

10.7.2 Sequential Compression Models 361

10.7.3 Decision Trees and Stumps 364

10.8 Experimental Comparison 366

10.8.1 Topic-Oriented On-Line Filtering 367

10.8.2 On-Line Adaptive Spam Filtering 369

10.9 Further Reading 371

10.10 Exercises 372

10.11 Bibliography 373

11 Fusion and Metalearning 376

11.1 Search-Result Fusion 377

11.1.1 Fixed-Cutoff Aggregation 379

11.1.2 Rank and Score Aggregation 380

11.2 Stacking Adaptive Filters 381

11.3 Stacking Batch Classifiers 383

11.3.1 Holdout Validation 383

11.3.2 Cross-Validation 384

11.4 Bagging 385

11.5 Boosting 387

11.6 Multicategory Ranking and Classification 388

11.6.1 Document Versus Category Scores 389

11.6.2 Document Versus Category Rank Fusion 390

11.6.3 Multicategory Methods 391

11.7 Learning to Rank 394

11.7.1 What Is Learning to Rank? 395

11.7.2 Learning-to-Rank Methods 396

11.7.3 What to Optimize? 396

11.7.4 Learning to Rank for Categorization 397

11.7.5 Learning for Ranked IR 398

11.7.6 The LETOR Data Set 399

11.8 Further Reading 400

11.9 Exercises 401

11.10 Bibliography 401

IV Evaluation 405

12 Measuring Effectiveness 406

12.1 Traditional Effectiveness Measures 407

12.1.1 Recall and Precision 407

12.1.2 Precision at k Documents (P@k) 408

12.1.3 Average Precision (AP) 408

12.1.4 Reciprocal Rank (RR) 409

12.1.5 Arithmetic Mean Versus Geometric Mean 409

12.1.6 User Satisfaction 410

12.2 The Text REtrieval Conference (TREC) 410

12.3 Using Statistics in Evaluation 412

12.3.1 Foundations and Terminology 413

12.3.2 Confidence Intervals 416

12.3.3 Comparative Evaluation 424

12.3.4 Hypothesis Tests Considered Harmful 427

12.3.5 Paired and Unpaired Differences 429

12.3.6 Significance Tests 430

12.3.7 Validity and Power of Statistical Tests 434

12.3.8 Reporting the Precision of Measurement 438

12.3.9 Meta-Analysis 439

12.4 Minimizing Adjudication Effort 441

12.4.1 Selecting Documents for Adjudication 443

12.4.2 Sampling the Pool 449

12.5 Nontraditional Effectiveness Measures 451

12.5.1 Graded Relevance 451

12.5.2 Incomplete and Biased Judgments 453

12.5.3 Novelty and Diversity 455

12.6 Further Reading 460

12.7 Exercises 462

12.8 Bibliography 463

13 Measuring Efficiency 468

13.1 Efficiency Criteria 468

13.1.1 Throughput and Latency 469

13.1.2 Aggregate Statistics and User Satisfaction 472

13.2 Queueing Theory 472

13.2.1 Kendall’s Notation 474

13.2.2 The M/M/1 Queueing Model 475

13.2.3 Latency Quantiles and Average Utilization 477

13.3 Query Scheduling 478

13.4 Caching 479

13.4.1 Three-Level Caching 480

13.4.2 Cache Policies 482

13.4.3 Prefetching Search Results 483

13.5 Further Reading 484

13.6 Exercises 484

13.7 Bibliography 485

V Applications and Extensions 487

14 Parallel Information Retrieval 488

14.1 Parallel Query Processing 488

14.1.1 Document Partitioning 490

14.1.2 Term Partitioning 493

14.1.3 Hybrid Schemes 495

14.1.4 Redundancy and Fault Tolerance 496

14.2 MapReduce 498

14.2.1 The Basic Framework 498

14.2.2 Combiners 500

14.2.3 Secondary Keys 502

14.2.4 Machine Failures 502

14.3 Further Reading 503

14.4 Exercises 504

14.5 Bibliography 505

15 Web Search 507

15.1 The Structure of the Web 508

15.1.1 The Web Graph 508

15.1.2 Static and Dynamic Pages 510

15.1.3 The Hidden Web 511

15.1.4 The Size of the Web 511

15.2 Queries and Users 513

15.2.1 User Intent 513

15.2.2 Clickthrough Curves 516

15.3 Static Ranking 517

15.3.1 Basic PageRank 517

15.3.2 Extended PageRank 522

15.3.3 Properties of PageRank 528

15.3.4 Other Link Analysis Methods: HITS and SALSA 532

15.3.5 Other Static Ranking Methods 535

15.4 Dynamic Ranking 535

15.4.1 Anchor Text 536

15.4.2 Novelty 537

15.5 Evaluating Web Search 538

15.5.1 Named Page Finding 538

15.5.2 Implicit User Feedback 540

15.6 Web Crawlers 541

15.6.1 Components of a Crawler 542

15.6.2 Crawl Order 547

15.6.3 Duplicates and Near-Duplicates 549

15.7 Summary 553

15.8 Further Reading 553

15.8.1 Link Analysis 554

15.8.2 Anchor Text 555

15.8.3 Implicit Feedback 555

15.8.4 Web Crawlers 556

15.9 Exercises 556

15.10 Bibliography 558

16 XML Retrieval 564

16.1 The Essence of XML 565

16.1.1 Document Type Definitions 568

16.1.2 XML Schema 570

16.2 Paths, Trees, and FLWORs 571

16.2.1 XPath 571

16.2.2 NEXI 572

16.2.3 XQuery 574

16.3 Indexing and Query Processing 576

16.4 Ranked Retrieval 579

16.4.1 Ranking Elements 580

16.4.2 Overlapping Elements 582

16.4.3 Retrievable Elements 583

16.5 Evaluation 583

16.5.1 Test Collections 583

16.5.2 Effectiveness Measures 584

16.6 Further Reading 585

16.7 Exercises 587

16.8 Bibliography 587

VI Appendix 591

A Computer Performance 592

A.1 Sequential Versus Random Access on Disk 592

A.2 Sequential Versus Random Access in RAM 593

A.3 Pipelined Execution and Branch Prediction 594

Index 597

Foreword

An academic dynasty has come together to write an excellent textbook on information retrieval.

Stefan Büttcher, Charles Clarke, and Gordon Cormack make up three generations of stellar

information retrieval researchers with over fifty years of combined experience. Büttcher was

Clarke’s doctoral student, and Clarke was Cormack’s doctoral student. All three are known for

their deep research insights and their passion for building real search systems, a rare combination

in a field rich with world-class researchers.

The book covers the major components of a search engine, from crawling to indexing to query

processing. Major sections are devoted to the core topics of indexing, retrieval methods, and

evaluation. Emphasis is put on implementation and experimentation, allowing the reader to

learn about the low-level details of information retrieval systems, including index compression

and index update strategies, and to understand which methods work well in practice. Two

chapters on evaluation provide the methodological and the statistical foundations for evaluating

search engines, enabling the reader to decide, for instance, whether a change to the search

engine’s ranking formula has a positive effect on the quality of the search results. A chapter

on classification provides an introduction to machine learning techniques that are useful for

advanced search operations, such as limiting one’s query to documents in a specific language,

or filtering offensive material from the search results. Chapters on parallel information retrieval

and on Web search describe the changes necessary to transform a basic IR system into a large-

scale search service covering billions of documents and serving hundreds or thousands of users

at the same time.

The authors provide a tutorial overview of current information retrieval research, with hun-

dreds of references into the research literature, but they go well beyond the typical survey.

Using a running set of examples and a common framework, they describe in concrete terms

the important methods underlying each component — why they work, how they may be imple-

mented, and how they may be shown to work. For the purpose of this book, the authors have

implemented and tested nearly every important method, conducting hundreds of experiments

whose results augment the exposition. Exercises at the end of each chapter encourage you to

build and explore on your own.

This book is a must-read for all search academics and practitioners!

Amit Singhal, Google Fellow

Preface

Information retrieval forms the foundation for modern search engines. In this textbook we

provide an introduction to information retrieval targeted at graduate students and working

professionals in computer science, computer engineering, and software engineering. The selection

of topics was chosen to appeal to a wide audience by providing a broad foundation for future

studies, with coverage of core topics in algorithms, data structures, indexing, retrieval, and

evaluation. Consideration is given to the special characteristics of established and emerging

application environments, including Web search engines, parallel systems, and XML retrieval.

We aim for a balance between theory and practice that leans slightly toward the side of

practice, emphasizing implementation and experimentation. Whenever possible, the methods

presented in the book are compared and validated experimentally. Each chapter includes exer-

cises and student projects. Wumpus, a multi-user open-source information retrieval system

written by one of the co-authors, provides model implementations and a basis for student work.

Wumpus is available at www.wumpus-search.org.

Organization of the Book

The book is organized into five parts, with a modular structure. Part I provides introductory

material. Parts II to IV each focus on one of our major topic areas: indexing, retrieval, and

evaluation. After reading Part I, each of these parts may be read independently of the others.

The material in Part V is devoted to specific application areas, building on material in the

previous parts.

Part I covers the basics of information retrieval. Chapter 1 discusses foundational concepts

including IR system architecture, terminology, characteristics of text, document formats, term

distributions, language models, and test collections. Chapter 2 covers the fundamentals of our

three major topics: indexing, retrieval, and evaluation. Each of these three topics is expanded

upon in its own separate part of the book (Parts II to IV). The chapter provides a foundation

that allows each topic to be treated more or less independently. The final chapter of Part I,

Chapter 3, continues some of the topics introduced in Chapter 1, bookending Chapter 2. It covers

problems associated with specific natural (i.e., human) languages, particularly tokenization —

the process of converting a document into a sequence of terms for indexing and retrieval. An IR

system must be able to handle documents written in a mixture of natural languages, and the

chapter discusses the important characteristics of several major languages from this perspective.

Prefacexxii

Part II is devoted to the creation, access, and maintenance of inverted indices. Chapter 4

examines algorithms for building and accessing static indices, which are appropriate for doc-

ument collections that change infrequently, where time is available to rebuild the index from

scratch when changes do occur. Index access and query processing are discussed in Chapter 5.

The chapter introduces a lightweight approach to handling document structure and applies

this approach to support Boolean constraints. Chapter 6 covers index compression. Chapter 7

presents algorithms for maintaining dynamic collections, in which updates are frequent relative

to the number of queries and updates must be applied quickly.

Part III covers retrieval methods and algorithms. Chapters 8 and 9 introduce and compare

two major approaches to ranked retrieval based on document content: the probabilistic and

language modeling approaches. The effectiveness of these approaches may be improved upon

by considering explicit relevance information, by exploiting document structure, and through

feedback and query expansion. We discuss the details with respect to each approach. Chapter 10

introduces techniques for document categorization and filtering, including basic machine learn-

ing algorithms for classification. Chapter 11 introduces techniques for combining evidence and

parameter tuning, along with metalearning algorithms and their application to ranking.

IR evaluation forms the topic of Part IV, with separate chapters devoted to effectiveness

and efficiency. Chapter 12 presents basic effectiveness measures, explores the statistical founda-

tions for evaluating effectiveness, and discusses some recent measures, proposed over the past

decade, that extend beyond the traditional IR evaluation methodology. Chapter 13 develops

a methodology for the evaluation of IR system performance in terms of response time and

throughput.

The chapters in Part V, the final part of the book, cover a small number of specific applica-

tion areas, drawing upon and extending the more general material in one or more of the first

four parts. The architecture and operation of parallel search engines is covered in Chapter 14.

Chapter 15 discusses topics specific to Web search engines, including link analysis, crawling, and

duplicate detection. Chapter 16 covers information retrieval over collections of XML documents.

Each chapter of the book concludes with a section providing references for further reading

and with a small set of exercises. The exercises are generally intended to test and extend the

concepts introduced in the chapter. Some require only a few minutes with pencil and paper;

others represent substantial programming projects. These references and exercises also provide

us with an opportunity to mention important concepts and topics that could not covered in the

main body of the chapter.

The diagram on the next page shows the relationships between the parts and chapters of this

book. Arrows indicate dependencies between chapters. The organization of the book allows its

readers to focus on different aspects of the subject. A course taught from a database systems

implementation perspective might cover Chapters 1–2, 4–7, 13, and 14. A more traditional

information retrieval course, with a focus on IR theory, might cover Chapters 1–3, 8–12, and

16. A course on the basics of Web retrieval might cover Chapters 1–2, 4–5, 8, and 13–15. Each

of these sequences represents one-half to two-thirds of the book, and could be completed in a

single three-to-four month graduate course.

Preface xxiii

������

�����

����� �����

����	

����

����� ������ ������

������

����

�����

�����

�� ��� ��

�

�����	

�����

������

�

Organization of the book. Arrows between the individual chapters indicate dependencies.

Prefacexxiv

Background

We assume that the reader possesses basic background knowledge consistent with an under-

graduate degree in computer science, computer engineering, software engineering, or a related

discipline. This background should include familiarity with: (1) basic data structuring concepts,

such as linked data structures, B-trees, and hash functions; (2) analysis of algorithms and time

complexity; (3) operating systems, disk devices, memory management, and file systems. In

addition, we assume some fluency with elementary probability theory and statistics, including

such concepts as random variables, distributions, and probability mass functions.

Acknowledgments

A number of our colleagues took the time to review drafts of individual chapters related to

their areas of expertise. We particularly thank Eugene Agichtein, Alina Alt, Lauren Griffith,

Don Metzler, Tor Myklebust, Fabrizio Silvestri, Mark Smucker, Torsten Suel, Andrew Trotman,

Olga Vechtomova, William Webber, and Justin Zobel for their many valuable comments. We

also thank our anonymous referees for their positive reviews and feedback.

Several classes of graduate students were subjected to early drafts of this material. We

thank them for their patience and tolerance. Four students — Mohamad Hasan Ahmadi, John

Akinyemi, Chandra Prakash Jethani, and Andrew Kane — read drafts with great care, helping

to identify and fix many problems. Three other students — Azin Ashkan, Maheedhar Kolla, and

Ian MacKinnon — volunteered to run our first attempt at an in-class evaluation effort in the fall

of 2007, thus contributing to many of the exercises in Part I. Jack Wang proofread the material

on CJK languages in Chapter 3. Kelly Itakura provided input on the Japanese language.

Web site

The authors maintain a Web site of material related to the book, including errata and links to

cited papers, at ir.uwaterloo.ca/book.

Notation

For convenient reference, the list below summarizes notation that occurs frequently in the book.

Additional notation is introduced as needed.

C a text collection

d a document

E[X] the expected value of the random variable X

ft,d the number of occurrences of the term t within the document d

lavg the average length of all documents in the collection

lC the size of the collection C, measured in tokens

ld the length of the document d, measured in tokens

lt the length of t’s postings list (i.e., number of occurrences)

M a probability distribution; usually a language model or a compression model

N the number of documents in the collection

Nt the number of documents that contain the term t

nr the number of relevant documents

nt,r the number of relevant documents that contain the term t

Pr[x] the probability of the event x

Pr[x |y] the conditional probability of x, given y

q a query

qt the number of times term t appears in the query q

t a term

V the vocabulary of a text collection

�x a vector

|�x| the length of the vector �x

|X | the cardinality of the set X

I Foundations

1 Introduction

1.1 What Is Information Retrieval?

Information retrieval (IR) is concerned with representing, searching, and manipulating large

collections of electronic text and other human-language data. IR systems and services are now

widespread, with millions of people depending on them daily to facilitate business, education,

and entertainment. Web search engines — Google, Bing, and others — are by far the most

popular and heavily used IR services, providing access to up-to-date technical information,

locating people and organizations, summarizing news and events, and simplifying comparison

shopping. Digital library systems help medical and academic researchers learn about new journal

articles and conference presentations related to their areas of research. Consumers turn to local

search services to find retailers providing desired products and services. Within large companies,

enterprise search systems act as repositories for e-mail, memos, technical reports, and other

business documents, providing corporate memory by preserving these documents and enabling

access to the knowledge contained within them. Desktop search systems permit users to search

their personal e-mail, documents, and files.

1.1.1 Web Search

Regular users of Web search engines casually expect to receive accurate and near-instantaneous

answers to questions and requests merely by entering a short query — a few words — into a text

box and clicking on a search button. Underlying this simple and intuitive interface are clusters

of computers, comprising thousands of machines, working cooperatively to generate a ranked

list of those Web pages that are likely to satisfy the information need embodied in the query.

These machines identify a set of Web pages containing the terms in the query, compute a score

for each page, eliminate duplicate and redundant pages, generate summaries of the remaining

pages, and finally return the summaries and links back to the user for browsing.

In order to achieve the subsecond response times expected from Web search engines, they

incorporate layers of caching and replication, taking advantage of commonly occurring queries

and exploiting parallel processing, allowing them to scale as the number of Web pages and

users increases. In order to produce accurate results, they store a “snapshot” of the Web. This

snapshot must be gathered and refreshed constantly by a Web crawler, also running on a cluster

1.1 What Is Information Retrieval? 3

of hundreds or thousands of machines, and downloading periodically — perhaps once a week —

a fresh copy of each page. Pages that contain rapidly changing information of high quality, such

as news services, may be refreshed daily or hourly.

Consider a simple example. If you have a computer connected to the Internet nearby, pause

for a minute to launch a browser and try the query “information retrieval” on one of the major

commercial Web search engines. It is likely that the search engine responded in well under a

second. Take some time to review the top ten results. Each result lists the URL for a Web page

and usually provides a title and a short snippet of text extracted from the body of the page.

Overall, the results are drawn from a variety of different Web sites and include sites associated

with leading textbooks, journals, conferences, and researchers. As is common for informational

queries such as this one, the Wikipedia article1 may be present. Do the top ten results contain

anything inappropriate? Could their order be improved? Have a look through the next ten

results and decide whether any one of them could better replace one of the top ten results.

Now, consider the millions of Web pages that contain the words “information” and “retrieval”.

This set of pages includes many that are relevant to the subject of information retrieval but are

much less general in scope than those that appear in the top ten, such as student Web pages and

individual research papers. In addition, the set includes many pages that just happen to contain

these two words, without having any direct relationship to the subject. From these millions of

possible pages, a search engine’s ranking algorithm selects the top-ranked pages based on a

variety of features, including the content and structure of the pages (e.g., their titles), their

relationship to other pages (e.g., the hyperlinks between them), and the content and structure

of the Web as a whole. For some queries, characteristics of the user such as her geographic

location or past searching behavior may also play a role. Balancing these features against each

other in order to rank pages by their expected relevance to a query is an example of relevance

ranking. The efficient implementation and evaluation of relevance ranking algorithms under a

variety of contexts and requirements represents a core problem in information retrieval, and

forms the central topic of this book.

1.1.2 Other Search Applications

Desktop and file system search provides another example of a widely used IR application. A

desktop search engine provides search and browsing facilities for files stored on a local hard disk

and possibly on disks connected over a local network. In contrast to Web search engines, these

systems require greater awareness of file formats and creation times. For example, a user may

wish to search only within their e-mail or may know the general time frame in which a file was

created or downloaded. Since files may change rapidly, these systems must interface directly

with the file system layer of the operating system and must be engineered to handle a heavy

update load.

1 en.wikipedia.org/wiki/Information retrieval

Chapter 1 Introduction4

Lying between the desktop and the general Web, enterprise-level IR systems provide document

management and search services across businesses and other organizations. The details of these

systems vary widely. Some are essentially Web search engines applied to the corporate intranet,

crawling Web pages visible only within the organization and providing a search interface similar

to that of a standard Web search engine. Others provide more general document- and content-

management services, with facilities for explicit update, versioning, and access control. In many

industries, these systems help satisfy regulatory requirements regarding the retention of e-mail

and other business communications.

Digital libraries and other specialized IR systems support access to collections of high-quality

material, often of a proprietary nature. This material may consist of newspaper articles, med-

ical journals, maps, or books that cannot be placed on a generally available Web site due to

copyright restrictions. Given the editorial quality and limited scope of these collections, it is

often possible to take advantage of structural features — authors, titles, dates, and other publi-

cation data — to narrow search requests and improve retrieval effectiveness. In addition, digital

libraries may contain electronic text generated by optical character recognition (OCR) systems

from printed material; character recognition errors associated with the OCR output create yet

another complication for the retrieval process.

1.1.3 Other IR Applications

While search is the central task within the area of information retrieval, the field covers a

wide variety of interrelated problems associated with the storage, manipulation, and retrieval

of human-language data:

• Document routing, filtering, and selective dissemination reverse the typical IR process.

Whereas a typical search application evaluates incoming queries against a given docu-

ment collection, a routing, filtering, or dissemination system compares newly created or

discovered documents to a fixed set of queries supplied in advance by users, identifying

those that match a given query closely enough to be of possible interest to the users. A

news aggregator, for example, might use a routing system to separate the day’s news into

sections such as “business,” “politics,” and “lifestyle,” or to send headlines of interest

to particular subscribers. An e-mail system might use a spam filter to block unwanted

messages. As we shall see, these two problems are essentially the same, although differing

in application-specific and implementation details.

• Text clustering and categorization systems group documents according to shared prop-

erties. The difference between clustering and categorization stems from the information

provided to the system. Categorization systems are provided with training data illus-

trating the various classes. Examples of “business,” “politics,” and “lifestyle” articles

might be provided to a categorization system, which would then sort unlabeled articles

into the same categories. A clustering system, in contrast, is not provided with training

examples. Instead, it sorts documents into groups based on patterns it discovers itself.

1.2 Information Retrieval Systems 5

• Summarization systems reduce documents to a few key paragraphs, sentences, or phrases

describing their content. The snippets of text displayed with Web search results represent

one example.

• Information extraction systems identify named entities, such as places and dates, and

combine this information into structured records that describe relationships between

these entities — for example, creating lists of books and their authors from Web data.

• Topic detection and tracking systems identify events in streams of news articles and

similar information sources, tracking these events as they evolve.

• Expert search systems identify members of organizations who are experts in a specified

area.

• Question answering systems integrate information from multiple sources to provide

concise answers to specific questions. They often incorporate and extend other IR

technologies, including search, summarization, and information extraction.

• Multimedia information retrieval systems extend relevance ranking and other IR

techniques to images, video, music, and speech.

Many IR problems overlap with the fields of library and information science, as well as with

other major subject areas of computer science such as natural language processing, databases,

and machine learning.

Of the topics listed above, techniques for categorization and filtering have the widest applica-

bility, and we provide an introduction to these areas. The scope of this book does not allow us

to devote substantial space to the other topics. However, all of them depend upon and extend

the basic technologies we cover.

1.2 Information Retrieval Systems

Most IR systems share a basic architecture and organization that is adapted to the requirements

of specific applications. Most of the concepts discussed in this book are presented in the context

of this architecture. In addition, like any technical field, information retrieval has its own jargon.

Words are sometimes used in a narrow technical sense that differs from their ordinary English

meanings. In order to avoid confusion and to provide context for the remainder of the book, we

briefly outline the fundamental terminology and technology of the subject.

1.2.1 Basic IR System Architecture

Figure 1.1 illustrates the major components in an IR system. Before conducting a search, a user

has an information need, which underlies and drives the search process. We sometimes refer

to this information need as a topic, particularly when it is presented in written form as part

Chapter 1 Introduction6

Information Need

Index

User

Query

Result

Documents

AdditionsDeletions Search Engine

Figure 1.1 Components of an IR system.

of a test collection for IR evaluation. As a result of her information need, the user constructs

and issues a query to the IR system. Typically, this query consists of a small number of terms,

with two to three terms being typical for a Web search. We use “term” instead of “word”,

because a query term may in fact not be a word at all. Depending on the information need,

a query term may be a date, a number, a musical note, or a phrase. Wildcard operators and

other partial-match operators may also be permitted in query terms. For example, the term

“inform*” might match any word starting with that prefix (“inform”, “informs”, “informal”,

“informant”, “informative”, etc.).

1.2 Information Retrieval Systems 7

Although users typically issue simple keyword queries, IR systems often support a richer

query syntax, frequently with complex Boolean and pattern matching operators (Chapter 5).

These facilities may be used to limit a search to a particular Web site, to specify constraints

on fields such as author and title, or to apply other filters, restricting the search to a subset of

the collection. A user interface mediates between the user and the IR system, simplifying the

query-creation process when these richer query facilities are required.

The user’s query is processed by a search engine, which may be running on the user’s local

machine, on a large cluster of machines in a remote geographic location, or anywhere in between.

A major task of a search engine is to maintain and manipulate an inverted index for a document

collection. This index forms the principal data structure used by the engine for searching and

relevance ranking. As its basic function, an inverted index provides a mapping between terms

and the locations in the collection in which they occur. Because the size of an inverted list is on

the same order of magnitude as the document collection itself, care must be taken that index

access and update operations are performed efficiently.

To support relevance ranking algorithms, the search engine maintains collection statistics

associated with the index, such as the number of documents containing each term and the

length of each document. In addition, the search engine usually has access to the original

content of the documents, in order to report meaningful results back to the user.

Using the inverted index, collection statistics, and other data, the search engine accepts

queries from its users, processes these queries, and returns ranked lists of results. To perform

relevance ranking, the search engine computes a score, sometimes called a retrieval status value

(RSV), for each document. After sorting documents according to their scores, the result list

may be subjected to further processing, such as the removal of duplicate or redundant results.

For example, a Web search engine might report only one or two results from a single host or

domain, eliminating the others in favor of pages from different sources. The problem of scoring

documents with respect to a user’s query is one of the most fundamental in the field.

1.2.2 Documents and Update

Throughout this book we use “document” as a generic term to refer to any self-contained unit

that can be returned to the user as a search result. In practice, a particular document might be

an e-mail message, a Web page, a news article, or even a video. When predefined components of

a larger object may be returned as individual search results, such as pages or paragraphs from a

book, we refer to these components as elements. When arbitrary text passages, video segments,

or similar material may be returned from larger objects, we refer to them as snippets.

For most applications, the update model is relatively simple. Documents may be added or

deleted in their entirety. Once a document has been added to the search engine, its contents

are not modified. This update model is sufficient for most IR applications. For example, when

a Web crawler discovers that a page has been modified, the update may be viewed as a deletion

of the old page and an addition of the new page. Even in the context of file system search,

in which individual blocks of a file may be arbitrarily modified, most word processors and

Chapter 1 Introduction8

other applications dealing with textual data rewrite entire files when a user saves changes. One

important exception is e-mail applications, which often append new messages to the ends of

mail folders. Because mail folders can be large in size and can grow quickly, it may be important

to support append operations.

1.2.3 Performance Evaluation

There are two principal aspects to measuring IR system performance: efficiency and effective-

ness. Efficiency may be measured in terms of time (e.g., seconds per query) and space (e.g.,

bytes per document). The most visible aspect of efficiency is the response time (also known as

latency) experienced by a user between issuing a query and receiving the results. When many

simultaneous users must be supported, the query throughput, measured in queries per second,

becomes an important factor in system performance. For a general-purpose Web search engine,

the required throughput may range well beyond tens of thousands of queries per second. Effi-

ciency may also be considered in terms of storage space, measured by the bytes of disk and

memory required to store the index and other data structures. In addition, when thousands of

machines are working cooperatively to generate a search result, their power consumption and

carbon footprint become important considerations.

Effectiveness is more difficult to measure than efficiency, since it depends entirely on human

judgment. The key idea behind measuring effectiveness is the notion of relevance: A document

is considered relevant to a given query if its contents (completely or partially) satisfy the infor-

mation need represented by the query. To determine relevance, a human assessor reviews a

document/topic pair and assigns a relevance value. The relevance value may be binary (“rel-

evant” or “not relevant”) or graded (e.g., “perfect”, “excellent”, “good”, “fair”, “acceptable”,

“not relevant”, “harmful”).

The fundamental goal of relevance ranking is frequently expressed in terms of the Probability

Ranking Principle (PRP), which we phrase as follows:

If an IR system’s response to each query is a ranking of the documents in the collection in

order of decreasing probability of relevance, then the overall effectiveness of the system

to its users will be maximized.

This assumption is well established in the field of IR and forms the basis of the standard IR

evaluation methodology. Nonetheless, it overlooks important aspects of relevance that must be

considered in practice. In particular, the basic notion of relevance may be extended to consider

the size and scope of the documents returned. The specificity of a document reflects the degree

to which its contents are focused on the information need. A highly specific document consists

primarily of material related to the information need. In a marginally specific document, most

of the material is not related to the topic. The exhaustivity of a document reflects the degree

to which it covers the information related to the need. A highly exhaustive document provides

full coverage; a marginally exhaustive document may cover only limited aspects. Specificity

1.3 Working with Electronic Text 9

and exhaustivity are independent dimensions. A large document may provide full coverage but

contain enough extraneous material that it is only marginally specific.

When relevance is viewed in the context of a complete ranked document list, the notion of

novelty comes to light. Once the user examines the top-ranked document and learns its relevant

content, her information need may shift. If the second document contains little or no novel

information, it may not be relevant with respect to this revised information need.

1.3 Working with Electronic Text

Human-language data in the form of electronic text represents the raw material of information

retrieval. Building an IR system requires an understanding of both electronic text formats and

the characteristics of the text they encode.

1.3.1 Text Formats

The works of William Shakespeare provide a ready example of a large body of English-language

text with many electronic versions freely available on the Web. Shakespeare’s canonical works

include 37 plays and more than a hundred sonnets and poems. Figure 1.2 shows the start of the

first act of one play, Macbeth.

This figure presents the play as it might appear on a printed page. From the perspective of an

IR system, there are two aspects of this page that must be considered when it is represented in

electronic form, and ultimately when it is indexed by the system. The first aspect, the content

of the page, is the sequence of words in the order they might normally be read: “Thunder and

lightning. Enter three Witches First Witch When shall we...” The second aspect is the structure

of the page: the breaks between lines and pages, the labeling of speeches with speakers, the

stage directions, the act and scene numbers, and even the page number.

The content and structure of electronic text may be encoded in myriad document formats

supported by various word processing programs and desktop publishing systems. These formats

include Microsoft Word, HTML, XML, XHTML, LATEX, MIF, RTF, PDF, PostScript, SGML,

and others. In some environments, such as file system search, e-mail formats and even program

source code formats would be added to this list. Although a detailed description of these formats

is beyond our scope, a basic understanding of their impact on indexing and retrieval is important.

Two formats are of special interest to us. The first, HTML (HyperText Markup Language), is

the fundamental format for Web pages. Of particular note is its inherent support for hyperlinks,

which explicitly represent relationships between Web pages and permit these relationships to

be exploited by Web search systems. Anchor text often accompanies a hyperlink, partially

describing the content of the linked page.

Chapter 1 Introduction10

Thunder and lightning. Enter three Witches I.1

first witch

When shall we three meet again

In thunder, lightning, or in rain?

second witch

When the hurlyburly’s done,

When the battle’s lost and won.

third witch

That will be ere the set of sun.

first witch

Where the place?

Upon the heath.second witch

third witch

There to meet with Macbeth.

first witch

I come Grey-Malkin!

Padock calls.

Anon!

second witch

third witch

all

Fair is foul, and foul is fair.

Hover through the fog and filthy air. Exeunt 10

Alarum within I.2

Enter King Duncan, Malcolm, Donalbain, Lennox,

with Attendants, meeting a bleeding Captain

king

What bloody man is that? He can report,

53

Figure 1.2 The beginning of the first act of Shakespeare’s Macbeth.

1.3 Working with Electronic Text 11

The second format, XML (eXtensible Markup Language), is not strictly a document format

but rather a metalanguage for defining document formats. Although we leave a detailed dis-

cussion of XML to later in the book (Chapter 16), we can begin using it immediately. XML

possesses the convenient attribute that it is possible to construct human-readable encodings

that are reasonably self-explanatory. As a result, it serves as a format for examples through-

out the remainder of the book, particularly when aspects of document structure are discussed.

HTML and XML share a common ancestry in the Standard Generalized Markup Language

(SGML) developed in the 1980s and resemble each other in their approach to tagging document

structure.

Figure 1.3 presents an XML encoding of the start of Macbeth taken from a version of Shake-

speare’s plays. The encoding was constructed by Jon Bosak, one of the principal creators of the

XML standard. Tags of the form <name> represent the start of a structural element and tags

of the form </name> represent the end of a structural element. Tags may take other forms, and

they may include attributes defining properties of the enclosed text, but these details are left

for Chapter 16. For the bulk of the book, we stick to the simple tags illustrated by the figure.

In keeping with the traditional philosophy of XML, this encoding represents only the logical

structure of the document — speakers, speeches, acts, scenes, and lines. Determination of the

physical structure — fonts, bolding, layout, and page breaks — is deferred until the page is

actually rendered for display, where the details of the target display medium will be known.

Unfortunately, many document formats do not make the same consistent distinction between

logical and physical structure. Moreover, some formats impede our ability to determine a doc-

ument’s content or to return anything less than an entire document as the result of a retrieval

request. Many of these formats are binary formats, so called because they contain internal

pointers and other complex organizational structures, and cannot be treated as a stream of

characters.

For example, the content of a PostScript document is encoded in a version of the programming

language Forth. A PostScript document is essentially a program that is executed to render the

document when it is printed or displayed. Although using a programming language to encode

a document provides for maximum flexibility, it may also make the content of the document

difficult to extract for indexing purposes. The PDF format, PostScript’s younger sibling, does

not incorporate a complete programming language but otherwise retains much of the flexibility

and complexity of the older format. PostScript and PDF were originally developed by Adobe

Systems, but both are now open standards and many third-party tools are available to create

and manipulate documents in these formats, including open-source tools.

Various conversion utilities are available to extract content from PostScript and PDF doc-

uments, and they may be pressed into service for indexing purposes. Each of these utilities

implements its own heuristics to analyze the document and guess at its content. Although they

often produce excellent output for documents generated by standard tools, they may fail when

faced with a document from a more unusual source. At an extreme, a utility might render a doc-

ument into an internal buffer and apply a pattern-matching algorithm to recognize characters

and words.

Chapter 1 Introduction12

<STAGEDIR>Thunder and lightning. Enter three Witches</STAGEDIR>

<SPEECH>

<SPEAKER>First Witch</SPEAKER>

<LINE>When shall we three meet again</LINE>

<LINE>In thunder, lightning, or in rain?</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>Second Witch</SPEAKER>

<LINE>When the hurlyburly’s done,</LINE>

<LINE>When the battle’s lost and won.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>Third Witch</SPEAKER>

<LINE>That will be ere the set of sun.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>First Witch</SPEAKER>

<LINE>Where the place?</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>Second Witch</SPEAKER>

<LINE>Upon the heath.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>Third Witch</SPEAKER>

<LINE>There to meet with Macbeth.</LINE>

</SPEECH>

Figure 1.3 An XML encoding of Shakespeare’s Macbeth.

Moreover, identifying even the simplest logical structure in PostScript or PDF poses a signif-

icant challenge. Even a document’s title may have to be identified entirely from its font, size,

location in the document, and other physical characteristics. In PostScript, extracting individ-

ual pages can also cause problems because the code executed to render one page may have an

impact on later pages. This aspect of PostScript may limit the ability of an IR system to return

a range of pages from a large document, for example, to return a single section from a long

technical manual.

1.3 Working with Electronic Text 13

Other document formats are proprietary, meaning they are associated with the products

of a single software manufacturer. These proprietary formats include Microsoft’s “doc” format.

Until recently, due to the market dominance of Microsoft Office, this format was widely used for

document exchange and collaboration. Although the technical specifications for such proprietary

formats are often available, they can be complex and may be modified substantially from version

to version, entirely at the manufacturer’s discretion. Microsoft and other manufacturers have

now shifted toward XML-based formats (such as the OpenDocument format or Microsoft’s

OOXML), which may ameliorate the complications of indexing.

In practice, HTML may share many of the problems of binary formats. Many HTML pages

include scripts in the JavaScript or Flash programming languages. These scripts may rewrite

the Web page in its entirety and display arbitrary content on the screen. On pages in which the

content is generated by scripts, it may be a practical impossibility for Web crawlers and search

engines to extract and index meaningful content.

1.3.2 A Simple Tokenization of English Text

Regardless of a document’s format, the construction of an inverted index that can be used

to process search queries requires each document to be converted into a sequence of tokens.

For English-language documents, a token usually corresponds to a sequence of alphanumeric

characters (A to Z and 0 to 9), but it may also encode structural information, such as XML

tags, or other characteristics of the text. Tokenization is a critical step in the indexing process

because it effectively limits the class of queries that may be processed by the system.

As a preliminary step before tokenization, documents in binary formats must be converted to

raw text — a stream of characters. The process of converting a document to raw text generally

discards font information and other lower-level physical formatting but may retain higher-level

logical formatting, perhaps by re-inserting appropriate tags into the raw text. This higher-level

formatting might include titles, paragraph boundaries, and similar elements. This preliminary

step is not required for documents in XML or HTML because these already contain the tokens

in the order required for indexing, thus simplifying the processing cost substantially. Essentially,

these formats are in situ raw text.

For English-language documents, characters in the raw text may be encoded as seven-bit

ASCII values. However, ASCII is not sufficient for documents in other languages. For these

languages, other coding schemes must be used, and it may not be possible to encode each

character as a single byte. The UTF-8 representation of Unicode provides one popular method

for encoding these characters (see Section 3.2). UTF-8 provides a one-to-four byte encoding for

the characters in most living languages, as well as for those in many extinct languages, such

as Phoenician and Sumerian cuneiform. UTF-8 is backwards compatible with ASCII, so that

ASCII text is automatically UTF-8 text.

To tokenize the XML in Figure 1.3, we treat each XML tag and each sequence of consecutive

alphanumeric characters as a token. We convert uppercase letters outside tags to lowercase in

order to simplify the matching process, meaning that “FIRST”, “first” and “First” are treated

Chapter 1 Introduction14

· · ·

745396

<STAGEDIR>

745397

thunder

745398

and

745399

lightning

745400

enter

745401

three

745402

witches

745403

</STAGEDIR>

745404

<SPEECH>

745405

<SPEAKER>

745406

first

745407

witch

745408

</SPEAKER>

745409

<LINE>

745410

when

745411

shall

745412

we

745413

three

745414

meet

745415

again

745416

</LINE>

745417

<LINE>

745418

in

745419

thunder

745420

lightning

745421

or

745422

in

745423

rain

745424

</LINE>

745425

</SPEECH>

745426

<SPEECH>

745427

<SPEAKER>

745428

second

745429

witch

745430

</SPEAKER>

· · ·

Figure 1.4 A tokenization of Shakespeare’s Macbeth.

as equivalent. The result of our tokenization is shown in Figure 1.4. Each token is accompanied

by an integer that indicates its position in a collection of Shakespeare’s 37 plays, starting with

position 1 at the beginning of Antony and Cleopatra and finishing with position 1,271,504 at the

end of The Winter’s Tale. This simple approach to tokenization is sufficient for our purposes

through the remainder of Chapters 1 and 2, and it is assumed where necessary. We will reexamine

tokenization for English and other languages in Chapter 3.

The set of distinct tokens, or symbols, in a text collection is called the vocabulary, denoted

as V . Our collection of Shakespeare’s plays has |V| = 22,987 symbols in its vocabulary.

V = {a, aaron, abaissiez, ..., zounds, zwaggered, ..., <PLAY>, ..., <SPEAKER>, ..., </PLAY>, ...}

1.3 Working with Electronic Text 15

Table 1.1 The twenty most frequent terms in Bosak’s XML version of Shakespeare.

Rank Frequency Token Rank Frequency Token

1 107,833 <LINE> 11 17,523 of

2 107,833 </LINE> 12 14,914 a

3 31,081 <SPEAKER> 13 14,088 you

4 31,081 </SPEAKER> 14 12,287 my

5 31,028 <SPEECH> 15 11,192 that

6 31,028 </SPEECH> 16 11,106 in

7 28,317 the 17 9,344 is

8 26,022 and 18 8,506 not

9 22,639 i 19 7,799 it

10 19,898 to 20 7,753 me

For Shakespeare, the vocabulary includes 22,943 words and 44 tags, in which we consider any

string of alphanumeric characters to be a word. In this book, we usually refer to symbols in the

vocabulary as “terms” because they form the basis for matching against the terms in a query.

In addition, we often refer to a token as an “occurrence” of a term. Although this usage helps

reinforce the link between the tokens in a document and the terms in a query, it may obscure

the crucial difference between a symbol and a token. A symbol is an abstraction; a token is an

instance of that abstraction. In philosophy, this difference is called the “type-token distinction.”

In object-oriented programming, it is the difference between a class and an object.

1.3.3 Term Distributions

Table 1.1 lists the twenty most frequent terms in the XML collection of Shakespeare’s plays. Of

these terms, the top six are tags for lines, speakers, and speeches. As is normally true for English

text, “the” is the most frequent word, followed by various pronouns, prepositions, and other

function words. More than one-third (8,336) of the terms, such as “abaissiez” and “zwaggered”,

appear only once.

The frequency of the tags is determined by the structural constraints of the collection. Each

start tag <name> has a corresponding end tag </name>. Each play has exactly one title. Each

speech has at least one speaker, but a few speeches have more than one speaker, when a group

of characters speak in unison. On average, a new line starts every eight or nine words.

While the type and relative frequency of tags will be different in other collections, the relative

frequency of words in English text usually follows a consistent pattern. Figure 1.5 plots the

frequency of the terms in Shakespeare in rank order, with tags omitted. Logarithmic scales are

used for both the x and the y axes. The points fall roughly along a line with slope −1, although

both the most frequent and the least frequent terms fall below the line. On this plot, the point

Chapter 1 Introduction16

 1

 10

102

103

104

105

 1 10 102 103 104 105

F
re

qu
en

cy
 (

lo
g.

 s
ca

le
)

Rank (log. scale)

Figure 1.5 Frequency of words in the Shakespeare collection, by rank order. The dashed line
corresponds to Zipf’s law with α = 1.

corresponding to “the” appears in the upper left. The point corresponding to “zwaggered”

appears in the lower right, together with the other words that appear exactly once.

The relationship between frequency and rank represented by this line is known as Zipf’s law,

after the linguist George Zipf, who developed it in the 1930s and used it to model the relative

frequencies of data across a number of areas in the social sciences (Zipf, 1949). Mathematically,

the relationship may be expressed as

log(frequency) = C − α · log(rank) , (1.1)

or equivalently as

Fi ∼
1

iα
, (1.2)

where Fi is the frequency of the ith most frequent term. For English text, the value of α may

vary, but it is usually close to 1. Zipf’s law is known to apply to the relative word frequencies

in other natural languages, as well as to other types of data. In Chapter 4, it motivates the use

of a certain data structure for indexing natural language text. In Chapter 15, we apply Zipf’s

law to model the relative frequency of search engine queries.

1.3 Working with Electronic Text 17

1.3.4 Language Modeling

There are 912,052 tokens in Bosak’s XML version of Shakespeare’s plays, excluding tags (but

including some front matter that does not appear in the original versions). If we pick a token

uniformly at random from these plays, the probability of picking “the” is 28, 317/912, 052 ≈
3.1%, whereas the probability of picking “zwaggered” is only 1/912, 052 ≈ 0.00011%. Now,

imagine that a previously unknown Shakespearean play is discovered. Can we predict anything

about the content of this play from what we know of the existing plays? In making these

predictions, we redefine the vocabulary V to exclude tags. An unknown Shakespearean play is

unlikely to be encoded in XML (at least when it is first discovered).

Predictions concerning the content of unseen text may be made by way of a special kind of

probability distribution known as a language model. The simplest language model is a fixed

probability distribution M(σ) over the symbols in the vocabulary:∑
σ∈V

M(σ) = 1. (1.3)

A language model is often based on an existing text. For example, we might define

M(σ) =
frequency(σ)∑

σ′∈V frequency(σ′)
(1.4)

where frequency(σ) represents the number of occurrences of the term σ in Shakespeare’s plays.

Thus, we have M(“the”) ≈ 3.1% and M(“zwaggered”) ≈ 0.00011%.

If we pick a token uniformly at random from Shakespeare’s known plays, the probably of

picking the term σ is M(σ). Based on this knowledge of Shakespeare, if we pick a token

uniformly at random from the previously unseen play, we might assume that the probably of

picking σ is also M(σ). If we start reading the unseen play, we can use the language model

to make a prediction about the next term in the text, with M(σ) giving the probability that

the next term is σ. For this simple language model, we consider each term in isolation. The

language model makes the same independent prediction concerning the first term, and the next,

and the next, and so on. Based on this language model, the probability that the next six terms

are “to be or not to be” is:

2.18%× 0.76%× 0.27%× 0.93%× 2.18%× 0.76% = 0.000000000069%.

Equation 1.4 is called the maximum likelihood estimate (MLE) for this simple type of language

model. In general, maximum likelihood is the standard method for estimating unknown param-

eters of a probability distribution, given a set of data. Here, we have a parameter corresponding

to each term — the probability that the term appears next in the unseen text. Roughly speak-

ing, the maximum likelihood estimation method chooses values for the parameters that make

the data set most likely. In this case, we are treating the plays of Shakespeare as providing the

necessary data set. Equation 1.4 is the assignment of probabilities that is most likely to produce

Chapter 1 Introduction18

Shakespeare. If we assume that the unseen text is similar to the existing text, the maximum

likelihood model provides a good starting point for predicting its content.

Language models can be used to quantify how close a new text fragment is to an existing

corpus. Suppose we have a language model representing the works of Shakespeare and another

representing the works of the English playwrightJohn Webster. A new, previously unknown,

play is found; experts debate about who might be its author. Assuming that our two language

models capture salient characteristics of the two writers, such as their preferred vocabulary, we

may apply the language models to compute the probability of the new text according to each.

The language model that assigns the higher probability to the new text may indicate its author.

However, a language model need not use maximum likelihood estimates. Any probability

distribution over a vocabulary of terms may be treated as a language model. For example,

consider the probability distribution

M(“to”) = 0.40 M(“be”) = 0.30 M(“or”) = 0.20 M(“not”) = 0.10.

Based on this distribution, the probability that the next six words are “to be or not to be” is

0.40× 0.30× 0.20× 0.10× 0.40× 0.30 = 0.029%.

Of course, based on this model, the probability that the next six words are “the lady doth

protest too much” is zero.

In practice, unseen text might include unseen terms. To accommodate these unseen terms,

the vocabulary might be extended by adding an unknown symbol to represent these “out-of-

vocabulary” terms.

V ′ = V ∪ {unknown} (1.5)

The corresponding extended language model M′(σ) would then assign a positive probability to

this unknown term

M′(unknown) = β, (1.6)

where 0 ≤ β ≤ 1. The value β represents the probability that the next term does not appear in

the existing collection from which the model M was estimated. For other terms, we might then

define

M′(σ) = M(σ) · (1− β) , (1.7)

where M(σ) is the maximum likelihood language model. The choice of a value for β might be

based on characteristics of the existing text. For example, we might guess that β should be

roughly half of the probability of a unique term in the existing text:

β = 0.5 · 1∑
σ′∈V frequency(σ′)

. (1.8)

Fortunately, out-of-vocabulary terms are not usually a problem in IR systems because the

complete vocabulary of the collection may be determined during the indexing process.

1.3 Working with Electronic Text 19

Index and text compression (Chapter 6) represents another important area for the application

of language models. When used in compression algorithms, the terms in the vocabulary are

usually individual characters or bits rather than entire words. Language modeling approaches

that were invented in the context of compression are usually calledcompression models, and

this terminology is common in the literature. However, compression models are just specialized

language models. In Chapter 10, compression models are applied to the problem of detecting

e-mail spam and other filtering problems.

Language models may be used to generate text, as well as to predict unseen text. For example,

we may produce “random Shakespeare” by randomly generating a sequence of terms based on

the probability distribution M(σ):

strong die hat circumstance in one eyes odious love to our the wrong wailful would all

sir you to babies a in in of er immediate slew let on see worthy all timon nourish both

my how antonio silius my live words our my ford scape

Higher-order models

The random text shown above does not read much like Shakespeare, or even like English text

written by lesser authors. Because each term is generated in isolation, the probability of gener-

ating the word “the” immediately after generating “our” remains at 3.1%. In real English text,

the possessive adjective “our” is almost always followed by a common noun. Even though the

phrase “our the” consists of two frequently occurring words, it rarely occurs in English, and

never in Shakespeare.

Higher-order language models allow us to take this context into account. A first-order language

model consists of conditional probabilities that depend on the previous symbol. For example:

M1(σ2 |σ1) =
frequency(σ1σ2)∑

σ′∈V frequency(σ1σ′)
. (1.9)

A first-order language model for terms is equivalent to the zero-order model for term bigrams

estimated using the same technique (e.g., MLE):

M1(σ2 |σ1) =
M0(σ1σ2)∑

σ′∈VM0(σ1σ′)
. (1.10)

More generally, every nth-order language model may be expressed in terms of a zero-order

(n + 1)-gram model:

Mn(σn+1 |σ1 . . . σn) =
M0(σ1 . . . σn+1)∑

σ′∈VM0(σ1 . . . σn σ′)
. (1.11)

As an example, consider the phrase “first witch” in Shakespeare’s plays. This phrase appears

a total of 23 times, whereas the term “first” appears 1,349 times. The maximum likelihood

Chapter 1 Introduction20

bigram model thus assigns the following probability:

M0(“first witch”) =
23

912,051
≈ 0.0025%

(note that the denominator is 912,051, not 912,052, because the total number of bigrams is one

less than the total number of tokens). The corresponding probability in the first-order model is

M1(“witch” |“first”) =
23

1349
≈ 1.7%.

Using Equations 1.9 and 1.10, and ignoring the difference between the number of tokens and

the number of bigrams, the maximum likelihood estimate for “our the” is

M0(“our the”) = M0(“our”) · M1(“the” |“our”) = 0%,

which is what we would expect, because the phrase never appears in the text. Unfortunately,

the model also assigns a zero probability to more reasonable bigrams that do not appear in

Shakespeare, such as “fourth witch”. Because “fourth” appears 55 times and “witch” appears

92 times, we can easily imagine that an unknown play might contain this bigram. Moreover, we

should perhaps assign a small positive probability to bigrams such as “our the” to accommodate

unusual usage, including archaic spellings and accented speech. For example, The Merry Wives

of Windsor contains the apparently meaningless bigram “a the” in a speech by the French

physician Doctor Caius: “If dere be one or two, I shall make-a the turd.” Once more context is

seen, the meaning becomes clearer.

Smoothing

One solution to this problem is to smooth the first-order model M1 with the corresponding

zero-order model M0. Our smoothed model M′
1 is then a linear combination of M0 and M1:

M′
1(σ2 |σ1) = γ ·M1(σ2 |σ1) + (1− γ) · M0(σ2) (1.12)

and equivalently

M′
0(σ1σ2) = γ · M0(σ1σ2) + (1− γ) ·M0(σ1) ·M0(σ2), (1.13)

where γ in both cases is a smoothing parameter (0 ≤ γ ≤ 1). For example, using maximum

likelihood estimates and setting γ = 0.5, we have

M′
0(“first witch”) = γ ·M0(“first witch”) + (1− γ) · M0(“first”) ·M0(“witch”)

= 0.5 · 23

912, 051
+ 0.5 · 1, 349

912, 052
· 92

912, 052
≈ 0.0013%

1.3 Working with Electronic Text 21

� �

� �

���	
����

���	
����

���	
����

���	
����

���	
����

���	
����

���	
����

���	
����

Figure 1.6 A Markov model.

and

M′
0(“fourth witch”) = γ ·M0(“fourth witch”) + (1− γ) ·M0(“fourth”) · M0(“witch”)

= 0.5 · 0

912,051
+ 0.5 · 55

912,052
· 92

912,052
≈ 0.00000030%.

First-order models can be smoothed using zero-order models; second-order models can be

smoothed using first-order models; and so forth. Obviously, for zero-order models, this approach

does not work. However, we can follow the same approach that we used to address out-of-

vocabulary terms (Equation 1.5). Alternatively (and more commonly), the zero-order model

MS,0 for a small collection S can be smoothed using another zero-order model, built from a

larger collection L:

M′
S,0 = γ ·MS,0 + (1− γ) · ML,0 , (1.14)

where L could be an arbitrary (but large) corpus of English text.

Markov models

Figure 1.6 illustrates a Markov model, another important method for representing term dis-

tributions. Markov models are essentially finite-state automata augmented with transition

probabilities. When used to express a language model, each transition is labeled with a term, in

addition to the probability. Following a transition corresponds to predicting or generating that

term. Starting in state 1, we may generate the string “to be or not to be” by following the state

sequence 1→ 2→ 3→ 4→ 1→ 2→ 3, with the associated probability

0.40× 0.30× 0.20× 0.10× 0.40× 0.30 = 0.029%.

Chapter 1 Introduction22

Missing transitions (e.g., between state 1 and state 4) are equivalent to transitions with zero

probability. Because these transitions will never be taken, it is pointless to associate a term

with them. For simplicity, we also assume that there is at most one transition between any two

states. We do not sacrifice anything by making this simplification. For any Markov model with

multiple transitions between the same pair of states, there is a corresponding model without

them (see Exercise 1.7).

The probability predicted by a Markov model depends on the starting state. Starting in

state 4, the probability of generating “to be or not to be” is

0.90× 0.30× 0.20× 0.10× 0.40× 0.30 = 0.065%.

Markov models form the basis for a text compression model introduced for filtering in

Chapter 10.

We may represent a Markov model with n states as an n×n transition matrix M , where M [i][j]

gives the probability of a transition from state i to state j. The transition matrix corresponding

to the Markov model in Figure 1.6 is

M =

⎛⎜⎜⎜⎜⎝
0.00 0.40 0.00 0.60

0.70 0.00 0.30 0.00

0.00 0.80 0.00 0.20

0.10 0.90 0.00 0.00

⎞⎟⎟⎟⎟⎠ . (1.15)

Note that all of the values in the matrix fall in the range [0, 1] and that each row of M sums to

1. An n× n matrix with these properties is known as a stochastic matrix.

Given a transition matrix, we can compute the outcome of a transition by multiplying the

transition matrix by a state vector representing the current state. For example, we can represent

an initial start state of 1 by the vector (1 0 0 0). After one step, we have

(
1 0 0 0

)
⎛⎜⎜⎜⎜⎝

0.00 0.40 0.00 0.60

0.70 0.00 0.30 0.00

0.00 0.80 0.00 0.20

0.10 0.90 0.00 0.00

⎞⎟⎟⎟⎟⎠ =
(

0.00 0.40 0.00 0.60
)

.

That is, after one step, the probability of being in state 2 is 0.40 and the probability of being

in state 4 is 0.60, as expected. Multiplying again, we have

(
0.00 0.40 0.00 0.60

)
⎛⎜⎜⎜⎜⎝

0.00 0.40 0.00 0.60

0.70 0.00 0.30 0.00

0.00 0.80 0.00 0.20

0.10 0.90 0.00 0.00

⎞⎟⎟⎟⎟⎠ =
(

0.34 0.54 0.12 0.00
)

.

1.4 Test Collections 23

This result tells us, for example, that the probability of being in state 2 after two steps is

0.54. In general, the state vector may be any n-dimensional vector whose elements sum to 1.

Multiplying the state vector by the transition matrix k times gives the probability of being in

each state after k steps.

A stochastic matrix together with an initial state vector is known as a Markov chain. Markov

chains are used in the presentation of Web link analysis algorithms in Chapter 15. Markov

chains — and by extension Markov models — are named after the Russian statistician Andrey

Markov (1856–1922), who stated and proved many of their properties.

1.4 Test Collections

Although Macbeth and Shakespeare’s other plays provide an excellent source of examples for

simple IR concepts, researchers have developed more substantial test collections for evaluation

purposes. Many of these collections have been created as part of TREC2 (Text REtrieval Con-

ference), a series of experimental evaluation efforts conducted annually since 1991 by the U.S.

National Institute of Standards and Technology (NIST). TREC provides a forum for researchers

to test their IR systems on a broad range of problems. For example, more than 100 groups from

universities, industry, and government participated in TREC 2007.

In a typical year, TREC experiments are structured into six or seven tracks, each devoted

to a different area of information retrieval. In recent years, TREC has included tracks devoted

to enterprise search, genomic information retrieval, legal discovery, e-mail spam filtering, and

blog search. Each track is divided into several tasks that test different aspects of that area. For

example, at TREC 2007, the enterprise search track included an e-mail discussion search task

and a task to identify experts on given topics. A track typically operates for three or more years

before being retired.

TREC provides at least two important benefits to the IR community. First, it focuses

researchers on common problems, using common data, thus providing a forum for them to

present and discuss their work and facilitating direct inter-system comparisons. What works

and what does not work can be determined quickly. As a result, considerable progress and sub-

stantial performance improvements are often seen immediately following the introduction of a

new track into TREC. As a second benefit, TREC aims to create reusable test collections that

can be used by participating groups to validate further improvements and by non-participating

groups to evaluate their own work. In addition, since its inception, TREC has formed the

inspiration for a number of similar experimental efforts throughout the world. These include

the European INEX effort for XML retrieval, the CLEF effort for multi-lingual information

retrieval, the Japanese NTCIR effort for Asian language information retrieval, and the Indian

FIRE effort.

2 trec.nist.gov

Chapter 1 Introduction24

<DOC>

<DOCNO> LA051990-0141 </DOCNO>

<HEADLINE> COUNCIL VOTES TO EDUCATE DOG OWNERS </HEADLINE>

<P>

The City Council stepped carefully around enforcement of a dog-curbing

ordinance this week, vetoing the use of police to enforce the law.

</P>

. . .

</DOC>

Figure 1.7 Example TREC document (LA051990-0141) from disk 5 of the TREC CDs.

1.4.1 TREC Tasks

Basic search tasks — in which systems return a ranked list from a static set of documents using

previously unseen topics — are referred to as “adhoc” tasks in TREC jargon (often written as

one word). Along with a set of documents, a test collection for an adhoc task includes sets of

topics, from which queries may be created, and sets of relevance judgments (known as “qrel

files” or just “qrels”), indicating documents that are relevant or not relevant to each topic. Over

the history of TREC, adhoc tasks have been a part of tracks with a number of different research

themes, such as Web retrieval or genomic IR. Despite differences in themes, the organization and

operation of an adhoc task is basically the same across the tracks and is essentially unchanged

since the earliest days of TREC.

Document sets for older TREC adhoc tasks (before 2000) were often taken from a set of 1.6

million documents distributed to TREC participants on five CDs. These disks contain selections

of newspaper and newswire articles from publications such as the Wall Street Journal and the LA

Times, and documents published by the U.S. federal government, such as the Federal Register

and the Congressional Record. Most of these documents are written and edited by professionals

reporting factual information or describing events.

Figure 1.7 shows a short excerpt from a document on disk 5 of the TREC CDs. The docu-

ment appeared as a news article in the LA Times on May 19, 1990. For the purposes of TREC

experiments, it is marked up in the style of XML. Although the details of the tagging schemes

vary across the TREC collections, all TREC documents adhere to the same tagging convention

for identifying document boundaries and document identifiers. Every TREC document is sur-

rounded by <DOC>...</DOC> tags; <DOCNO>...</DOCNO> tags indicate its unique identifier. This

identifier is used in qrels files when recording judgments for the document. This convention

simplifies the indexing process and allows collections to be combined easily. Many research IR

systems provide out-of-the-box facilities for working with documents that follow this convention.

1.4 Test Collections 25

<top>

<num> Number: 426

<title> law enforcement, dogs

<desc> Description:

Provide information on the use of dogs worldwide for

law enforcement purposes.

<narr> Narrative:

Relevant items include specific information on the

use of dogs during an operation. Training of dogs

and their handlers are also relevant.

</top>

Figure 1.8 TREC topic 426.

Document sets for newer TREC adhoc tasks are often taken from the Web. Until 2009, the

largest of these was the 426GB GOV2 collection, which contains 25 million Web pages crawled

from sites in the U.S. government’s gov domain in early 2004. This crawl attempted to reach as

many pages as possible within the gov domain, and it may be viewed as a reasonable snapshot

of that domain within that time period. GOV2 contains documents in a wide variety of formats

and lengths, ranging from lengthy technical reports in PDF to pages of nothing but links in

HTML. GOV2 formed the document set for the Terabyte Track from TREC 2004 until the track

was discontinued at the end of 2006. It also formed the collection for the Million Query Track

at TREC 2007 and 2008.

Although the GOV2 collection is substantially larger than any previous TREC collection, it

is still orders of magnitude smaller than the collections managed by commercial Web search

engines. TREC 2009 saw the introduction of a billion-page Web collection, known as the

ClueWeb09 collection, providing an opportunity for IR researchers to work on a scale comparable

to commercial Web search.3

For each year that a track operates an adhoc task, NIST typically creates 50 new topics.

Participants are required to freeze development of their systems before downloading these topics.

After downloading the topics, participants create queries from them, run these queries against

the document set, and return ranked lists to NIST for evaluation.

A typical TREC adhoc topic, created for TREC 1999, is shown in Figure 1.8. Like most

TREC topics, it is structured into three parts, describing the underlying information need in

several forms. The title field is designed to be treated as a keyword query, similar to a query

that might be entered into a search engine. The description field provides a longer statement

of the topic requirements, in the form of a complete sentence or question. It, too, may be used

3 boston.lti.cs.cmu.edu/Data/clueweb09

Chapter 1 Introduction26

Table 1.2 Summary of the test collections used for many of the experiments
described in this book.

Document Set Number of Docs Size (GB) Year Topics

TREC45 0.5 million 2 1998 351–400

1999 401–450

GOV2 25.2 million 426 2004 701–750

2005 751–800

as a query, particularly by research systems that apply natural language processing techniques

as part of retrieval. The narrative, which may be a full paragraph in length, supplements the

other two fields and provides additional information required to specify the nature of a relevant

document. The narrative field is primarily used by human assessors, to help determine if a

retrieved document is relevant or not.

Most retrieval experiments in this book report results over four TREC test collections based

on two document sets, a small one and a larger one. The small collection consists of the doc-

uments from disks 4 and 5 of the TREC CDs described above, excluding the documents from

the Congressional Record. It includes documents from the Financial Times, the U.S. Federal

Register, the U.S. Foreign Broadcast Information Service, and the LA Times. This document

set, which we refer to as TREC45, was used for the main adhoc task at TREC 1998 and 1999.

In both 1998 and 1999, NIST created 50 topics with associated relevance judgments over

this document set. The 1998 topics are numbered 351–400; the 1999 topics are numbered 401–

450. Thus, we have two test collections over the TREC45 document set, which we refer to as

TREC45 1998 and TREC45 1999. Although there are minor differences between our experi-

mental procedure and that used in the corresponding TREC experiments (which we will ignore),

our experimental results reported over these collections may reasonably be compared with the

published results at TREC 1998 and 1999.

The larger one of the two document sets used in our experiments is the GOV2 corpus men-

tioned previously. We take this set together with topics and judgments from the TREC Terabyte

track in 2004 (topics 701–750) and 2005 (751–800) to form the GOV2 2004 and GOV2 2005

collections. Experimental results reported over these collections may reasonably be compared

with the published results for the Terabyte track of TREC 2004 and 2005.

Table 1.2 summarizes our four test collections. The TREC45 collection may be obtained

from the NIST Standard Reference Data Products Web page as Special Databases 22 and 23.4

The GOV2 collection is distributed by the University of Glasgow.5 Topics and qrels for these

collections may be obtained from the TREC data archive.6

4 www.nist.gov/srd
5 ir.dcs.gla.ac.uk/test collections
6 trec.nist.gov

1.5 Open-Source IR Systems 27

1.5 Open-Source IR Systems

There exists a wide variety of open-source information retrieval systems that you may use for

exercises in this book and to start conducting your own information retrieval experiments. As

always, a (non-exhaustive) list of open-source IR systems can be found in Wikipedia.7

Since this list of available systems is so long, we do not even try to cover it in detail. Instead,

we restrict ourselves to a very brief overview of three particular systems that were chosen

because of their popularity, their influence on IR research, or their intimate relationship with

the contents of this book. All three systems are available for download from the Web and may

be used free of charge, according to their respective licenses.

1.5.1 Lucene

Lucene is an indexing and search system implemented in Java, with ports to other programming

languages. The project was started by Doug Cutting in 1997. Since then, it has grown from a

single-developer effort to a global project involving hundreds of developers in various countries.

It is currently hosted by the Apache Foundation.8 Lucene is by far the most successful open-

source search engine. Its largest installation is quite likely Wikipedia: All queries entered into

Wikipedia’s search form are handled by Lucene. A list of other projects relying on its indexing

and search capabilities can be found on Lucene’s “PoweredBy” page.9

Known for its modularity and extensibility, Lucene allows developers to define their own

indexing and retrieval rules and formulae. Under the hood, Lucene’s retrieval framework is

based on the concept of fields: Every document is a collection of fields, such as its title, body,

URL, and so forth. This makes it easy to specify structured search requests and to give different

weights to different parts of a document.

Due to its great popularity, there is a wide variety of books and tutorials that help you get

started with Lucene quickly. Try the query “lucene tutorial” in your favorite Web search engine.

1.5.2 Indri

Indri10 is an academic information retrieval system written in C++. It is developed by

researchers at the University of Massachusetts and is part of the Lemur project,11 a joint

effort of the University of Massachusetts and Carnegie Mellon University.

7 en.wikipedia.org/wiki/List of search engines
8 lucene.apache.org
9 wiki.apache.org/lucene-java/PoweredBy

10 www.lemurproject.org/indri/
11 www.lemurproject.org

Chapter 1 Introduction28

Indri is well known for its high retrieval effectiveness and is frequently found among the top-

scoring search engines at TREC. Its retrieval model is a combination of the language modeling

approaches discussed in Chapter 9. Like Lucene, Indri can handle multiple fields per docu-

ment, such as title, body, and anchor text, which is important in the context of Web search

(Chapter 15). It supports automatic query expansion by means of pseudo-relevance feedback, a

technique that adds related terms to an initial search query, based on the contents of an initial

set of search results (see Section 8.6). It also supports query-independent document scoring that

may, for instance, be used to prefer more recent documents over less recent ones when ranking

the search results (see Sections 9.1 and 15.3).

1.5.3 Wumpus

Wumpus12 is an academic search engine written in C++ and developed at the University of

Waterloo. Unlike most other search engines, Wumpus has no built-in notion of “documents”

and does not know about the beginning and the end of each document when it builds the index.

Instead, every part of the text collection may represent a potential unit for retrieval, depending

on the structural search constraints specified in the query. This makes the system particularly

attractive for search tasks in which the ideal search result may not always be a whole document,

but may be a section, a paragraph, or a sequence of paragraphs within a document.

Wumpus supports a variety of different retrieval methods, including the proximity ranking

function from Chapter 2, the BM25 algorithm from Chapter 8, and the language modeling and

divergence from randomness approaches discussed in Chapter 9. In addition, it is able to carry

out real-time index updates (i.e., adding/removing files to/from the index) and provides support

for multi-user security restrictions that are useful if the system has more than one user, and

each user is allowed to search only parts of the index.

Unless explicitly stated otherwise, all performance figures presented in this book were obtained

using Wumpus.

1.6 Further Reading

This is not the first book on the topic of information retrieval. Of the older books providing

a general introduction to IR, several should be mentioned. The classic books by Salton (1968)

and van Rijsbergen (1979) continue to provide insights into the foundations of the field. The

treatment of core topics given by Grossman and Frieder (2004) remains relevant. Witten et al.

(1999) provide background information on many related topics that we do not cover in this

book, including text and image compression.

12 www.wumpus-search.org

1.6 Further Reading 29

Several good introductory texts have appeared in recent years. The textbook by Croft et al.

(2010) is intended to give an undergraduate-level introduction to the area. Baeza-Yates and

Ribeiro-Neto (2010) provide a broad survey of the field, with experts contributing individual

chapters on their areas of expertise. Manning et al. (2008) provide another readable survey.

Survey articles on specific topics appear regularly as part of the journal series Foundations

and Trends in Information Retrieval. The Encyclopedia of Database Systems (Özsu and Liu,

2009) contains many introductory articles on topics related to information retrieval. Hearst

(2009) provides an introduction to user interface design for information retrieval applications.

The field of natural language processing, particularly the sub-field of statistical natural language

processing, is closely related to the field of information retrieval. Manning and Schütze (1999)

provide a thorough introduction to that area.

The premier research conference in the area is the Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval (SIGIR), now well into its fourth

decade. Other leading research conferences and workshops include the ACM Conference on

Information and Knowledge Management (CIKM), the Joint Conference on Digital Libraries

(JCDL), the European Conference on Information Retrieval (ECIR), the ACM International

Conference on Web Search and Data Mining (WSDM), the conference on String Processing and

Information Retrieval (SPIRE), and the Text REtrieval Conference (TREC). Important IR

research also regularly appears in the premier venues of related fields, such as the World Wide

Web Conference (WWW), the Annual Conference on Neural Information Processing Systems

(NIPS), the Conference on Artificial Intelligence (AAAI), and the Knowledge Discovery and

Data Mining Conference (KDD). The premier IR journal is ACM Transactions on Information

Systems. Other leading journals include Information Retrieval and the venerable Information

Processing & Management.

Many books and Web sites devoted to learning and using XML are available. One important

resource is the XML home page of the World Wide Web Consortium (W3C),13 the organization

responsible for defining and maintaining the XML technical specification. Along with exten-

sive reference materials, the site includes pointers to introductory tutorials and guides. Jon

Bosak’s personal Web page14 contains many articles and other information related to the early

development and usage of XML, including Shakespeare’s plays.

13 www.w3.org/XML/
14 www.ibiblio.org/bosak

Chapter 1 Introduction30

1.7 Exercises

Exercise 1.1 Record the next ten queries you issue to a Web search engine (or check your

Web history if your search engine allows it). Note how many are refinements of previous queries,

adding or removing terms to narrow or broaden the focus of the query. Choose three commercial

search engines, including the engine you normally use, and reissue the queries on all three. For

each query, examine the top five results from each engine. For each result, rate on it a scale from

-10 to +10, where +10 represents a perfect or ideal result and -10 represents a misleading or

harmful result (spam). Compute an average score for each engine over all ten queries and results.

Did the engine you normally use receive the highest score? Do you believe that the results of

this exercise accurately reflect the relative quality of the search engines? Suggest three possible

improvements to this experiment.

Exercise 1.2 Obtain and install an open-source IR system, such as one of those listed in

Section 1.5. Create a small document collection from your e-mail, or from another source. A

few dozen documents should be enough. Index your collection. Try a few queries.

Exercise 1.3 Starting in state 3 of the Markov model in Figure 1.6, what is the probability

of generating “not not be to be”?

Exercise 1.4 Starting in an unknown state, the Markov model in Figure 1.6 generates “to

be”. What state or states could be the current state of the model after generating this text?

Exercise 1.5 Is there a finite n, such that the current state of the Markov model in Figure 1.6

will always be known after it generates a string of length n or greater, regardless of the starting

state?

Exercise 1.6 For a given Markov model, assume there is a finite n so that the current state

of the model will always be known after it generates a string of length n or greater. Describe a

procedure for converting such a Markov model into an nth-order finite-context model.

Exercise 1.7 Assume that we extend Markov models to allow multiple transitions between

pairs of states, where each transition between a given pair of states is labeled with a different

term. For any such model, show that there is an equivalent Markov model in which there is no

more than one transition between any pair of states. (Hint: Split target states.)

Exercise 1.8 Outline a procedure for converting an nth-order finite-context language model

into a Markov model. How many states might be required?

1.7 Exercises 31

Exercise 1.9 (project exercise) This exercise develops a test corpus, based on Wikipedia,

that will be used in a number of exercises throughout Part I.

To start, download a current copy of the English-language Wikipedia. At the time of writing,

its downloadable version consisted of a single large file. Wikipedia itself contains documentation

describing the format of this download.15

Along with the text of the articles themselves, the download includes redirection records that

provide alternative titles for articles. Pre-process the download to remove these records and any

other extraneous information, leaving a set of individual articles. Wikipedia-style formatting

should also be removed, or replaced with XML-style tags of your choosing. Assign a unique

identifier to each article. Add <DOC> and <DOCNO> tags. The result should be consistent

with TREC conventions, as described in Section 1.4 and illustrated in Figure 1.7.

Exercise 1.10 (project exercise) Following the style of Figure 1.8, create three to four

topics suitable for testing retrieval performance over the English-language Wikipedia. Try to

avoid topics expressing an information need that can be completely satisfied by a single “best”

article. Instead, try to create topics that require multiple articles in order to cover all relevant

information. (Note: This exercise is suitable as the foundation for a class project to create a

Wikipedia test collection, with each student contributing enough topics to make a combined set

of 50 topics or more. (See Exercise 2.13 for further details.)

Exercise 1.11 (project exercise) Obtain and install an open-source IR system (see Exer-

cise 1.2). Using this IR system, index the collection you created in Exercise 1.9. Submit the

titles of the topics you created in Exercise 1.10 as queries to the system. For each topic, judge

the top five documents returned as either relevant or not. Does the IR system work equally well

on all topics?

Exercise 1.12 (project exercise) Tokenize the collection you created in Exercise 1.9, fol-

lowing the procedure of Section 1.3.2. For this exercise, discard the tags and keep only the

words (i.e., strings of alphanumeric characters). Wikipedia text is encoded in UTF-8 Unicode,

but you may treat it as ASCII text for the purpose of this exercise. Generate a log-log plot of

frequency vs. rank order, equivalent to that shown in Figure 1.5. Does the data follow Zipf’s

law? If so, what is an approximate value for α?

Exercise 1.13 (project exercise) Create a trigram language model based on the tokeniza-

tion of Exercise 1.12. Using your language model, implement a random Wikipedia text generator.

How could you extend your text generator to generate capitalization and punctuation, making

your text look more like English? How could you extend your text generator to generate random

Wikipedia articles, including tagging and links?

15 en.wikipedia.org/wiki/Wikipedia:Database download

Chapter 1 Introduction32

1.8 Bibliography

Baeza-Yates, R. A., and Ribeiro-Neto, B. (2010). Modern Information Retrieval (2nd ed.).

Reading, Massachusetts: Addison-Wesley.

Croft, W. B., Metzler, D., and Strohman, T. (2010). Search Engines: Information Retrieval in
Practice. London, England: Pearson.

Grossman, D. A., and Frieder, O. (2004). Information Retrieval: Algorithms and Heuristics

(2nd ed.). Berlin, Germany: Springer.

Hearst, M. A. (2009). Search User Interfaces. Cambridge, England: Cambridge University Press.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge, England: Cambridge University Press.

Manning, C. D., and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

Cambridge, Massachusetts: MIT Press.

Özsu, M. T., and Liu, L., editors (2009). Encyclopedia of Database Systems. Berlin, Germany:

Springer.

Salton, G. (1968). Automatic Information Organziation and Retrieval. New York: McGraw-Hill.

van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). London, England: Butterworths.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Compressing and

Indexing Documents and Images (2nd ed.). San Francisco, California: Morgan Kaufmann.

Zipf, G. K. (1949). Human Behavior and the Principle of Least-Effort. Cambridge, Mas-

sachusetts: Addison-Wesley.

2 Basic Techniques

As a foundation for the remainder of the book, this chapter takes a tour through the elements

of information retrieval outlined in Chapter 1, covering the basics of indexing, retrieval and

evaluation. The material on indexing and retrieval, constituting the first two major sections, is

closely linked, presenting a unified view of these topics. The third major section, on evaluation,

examines both the efficiency and the effectiveness of the algorithms introduced in the first two

sections.

2.1 Inverted Indices

The inverted index (sometimes called inverted file) is the central data structure in virtually every

information retrieval system. At its simplest, an inverted index provides a mapping between

terms and their locations of occurrence in a text collection C. The fundamental components of an

inverted index are illustrated in Figure 2.1, which presents an index for the text of Shakespeare’s

plays (Figures 1.2 and 1.3). The dictionary lists the terms contained in the vocabulary V of the

collection. Each term has associated with it a postings list of the positions in which it appears,

consistent with the positional numbering in Figure 1.4 (page 14).

If you have encountered inverted indices before, you might be surprised that the index shown

in Figure 2.1 contains not document identifiers but “flat” word positions of the individual

term occurrences. This type of index is called a schema-independent index because it makes no

assumptions about the structure (usually referred to as schema in the database community)

of the underlying text. We chose the schema-independent variant for most of the examples

in this chapter because it is the simplest. An overview of alternative index types appears in

Section 2.1.3.

Regardless of the specific type of index that is used, its components — the dictionary and

the postings lists — may be stored in memory, on disk, or a combination of both. For now, we

keep the precise data structures deliberately vague. We define an inverted index as an abstract

data type (ADT) with four methods:

• first(t) returns the first position at which the term t occurs in the collection;

• last(t) returns the last position at which t occurs in the collection;

• next(t, current) returns the position of t’s first occurrence after the current position;

• prev(t, current) returns the position of t’s last occurrence before the current position.

Chapter 2 Basic Techniques34

��������	
 �������������

��������

�	�
��	�
����

����

��	�����

��������

�������������

����������

����������

���������

������������

�����������

� ����������

� ��������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

!!"#$�!!%&$�'''$�()#)"%$�()#)%%$�()##"*$�'''$�*!(*)&(

+*%%%,$�()#)+)

($�),$�'''$�()#)&$�()#)!!$�'''$�*!(*)&"

+%&,&$�*+(!+%$�'''$�()#+,($�()#)*,$�'''$�*!)(*+,

#,&$�!(###$�'''$�()#)"($�()#)!,$�()#)#$�()#)%($�'''$�*!)#!(%

(*()$�*%#*#"$�'''$�*!#,)"%

***"*&$�**,*&+$�'''$�()#)"!$�'''$�(%!&&+

!%#*,(

+$�)"#**$�'''$�*!+)%"!

+*+$�)(!$�'''$�()#)"#$�()#)!($�()#)),$�()#)%#$�'''$�*!(*!()

+*!$�)(*$�'''$�()#)")$�()#)!%$�()#))&$�()#)%)$�'''$�*!(*!(+

)"#"&$�(##&"$�'''$�*!(*#")

)("$�)&%$�'''$�()#)!#$�()#))($�()#)%+$�()#)()$�'''$�*!(*),&

�
�
�

�
�
�

Figure 2.1 A schema-independent inverted index for Shakespeare’s plays. The dictionary provides a
mapping from terms to their positions of occurrence.

In addition, we define lt to represent the total number of times the term t appears in the

collection (i.e., the length of its postings list). We define lC to be the length of the collection,

so that
∑

t∈V lt = lC (where V is the collection’s vocabulary).

For the inverted index in Figure 2.1, we have:

first(“hurlyburly”) = 316669 last(“thunder”) = 1247139

first(“witching”) = 265197 last(“witching”) = 265197

2.1 Inverted Indices 35

next(“witch”, 745429) = 745451 prev(“witch”, 745451) = 745429

next(“hurlyburly”, 345678) = 745434 prev(“hurlyburly”, 456789) = 316669

next(“witch”, 1245276) =∞ prev(“witch”, 1598) = −∞

l<PLAY> = 37 lC = 1271504

lwitching = 1

The symbols −∞ and ∞ act as beginning-of-file and end-of-file markers, representing positions

beyond the beginning and the end of the term sequence. As a practical convention we define:

next(t, −∞) = first(t) next(t, ∞) =∞

prev(t, ∞) = last(t) prev(t, −∞) = −∞

The methods of our inverted index permit both sequential and random access into postings

lists, with a sequential scan of a postings list being a simple loop:

current← −∞
while current <∞ do

current← next(t, current)

do something with the current value

However, many algorithms require random access into postings lists, including the phrase search

algorithm we present next. Often, these algorithms take the result of a method call for one term

and apply it as an argument to a method call for another term, skipping through the postings

lists nonsequentially.

2.1.1 Extended Example: Phrase Search

Most commercial Web search engines, as well as many other IR systems, treat a list of terms

enclosed in double quotes ("...") as a phrase. To process a query that contains a phrase, the IR

system must identify the occurrences of the phrase in the collection. This information may then

be used during the retrieval process for filtering and ranking — perhaps excluding documents

that do not contain an exact phrase match.

Phrase search provides an excellent example of how algorithms over inverted indices operate.

Suppose we wish to locate all occurrences of the phrase “first witch” in our collection of Shake-

speare’s plays. Perhaps we wish to identify all speeches by this character. By visually scanning

the postings lists in Figure 2.1, we can locate one occurrence starting at 745406 and ending at

745407. We might locate other occurrences in a similar fashion by scanning the postings lists

for an occurrence of “first” immediately followed by an occurrence of “witch”. In this section we

Chapter 2 Basic Techniques36

nextPhrase (t1t2...tn, position) ≡
1 v ← position
2 for i← 1 to n do
3 v ← next(ti, v)
4 if v =∞ then
5 return [∞, ∞]
6 u← v
7 for i← n− 1 down to 1 do
8 u← prev(ti, u)
9 if v − u = n− 1 then
10 return [u, v]
11 else
12 return nextPhrase(t1t2...tn, u)

Figure 2.2 Function to locate the first occurrence of a phrase after a given position. The function calls
the next and prev methods of the inverted index ADT and returns an interval in the text collection
as a result.

present an algorithm that formalizes this process, efficiently locating all occurrences of a given

phrase with the aid of our inverted index ADT.

We specify the location of a phrase by an interval [u,v], where u indicates the start of the

phrase and v indicates the end of the phrase. In addition to the occurrence at [745406, 745407],

the phrase “first witch” may be found at [745466, 745467], at [745501, 745502], and elsewhere.

The goal of our phrase searching algorithm is to determine values of u and v for all occurrences

of the phrase in the collection.

We use the above interval notation to specify retrieval results throughout the book. In some

contexts it is also convenient to think of an interval as a stand-in for the text at that location.

For example, the interval [914823, 914829] might represent the text

O Romeo, Romeo! wherefore art thou Romeo?

Given the phrase “t1t2...tn”, consisting of a sequence of n terms, our algorithm works through

the postings lists for the terms from left to right, making a call to the next method for each

term, and then from right to left, making a call to the prev method for each term. After each

pass from left to right and back, it has computed an interval in which the terms appear in the

correct order and as close together as possible. It then checks whether the terms are in fact

adjacent. If they are, an occurrence of the phrase has been found; if not, the algorithm moves

on.

Figure 2.2 presents the core of the algorithm as a function nextPhrase that locates the next

occurrence of a phrase after a given position. The loop over lines 2–3 calls the methods of the

inverted index to locate the terms in order. At the end of the loop, if the phrase occurs in the

interval [position,v], it ends at v. The loop over lines 7–8 then shrinks the interval to the smallest

2.1 Inverted Indices 37

size possible while still including all terms in order. Finally, lines 9–12 verify that the terms are

adjacent, forming a phrase. If they are not adjacent, the function makes a tail-recursive call.

On line 12, note that u (and not v) is passed as the second argument to the recursive call. If

the terms in the phrase are all different, then v could be passed. Passing u correctly handles

the case in which two terms ti and tj are equal (1 ≤ i < j ≤ n).

As an example, suppose we want to find the first occurrences of the phrase “first witch”:

nextPhrase(“first witch”, −∞). The algorithm starts by identifying the first occurrence of

“first”:

next(“first”, −∞) = first(“first”) = 2205.

If this occurrence of “first” is part of the phrase, then the next occurrence of “witch” should

immediately follow it. However,

next(“witch”, 2205) = 27555;

that is, it does not immediately follow it. We now know that the first occurrence of the phrase

cannot end before position 27555, and we compute

prev(“first”, 27555) = 26267.

In jumping from 2205 to 26267 in the postings list for “first”, we were able to skip 15 occurrences

of “first”. Because interval [26267, 27555] has length 1288, and not the required length 2, we

move on to consider the next occurrence of “first” at

next(“first”, 26267) = 27673.

Note that the calls to the prev method in line 8 of the algorithm are not strictly necessary (see

Exercise 2.2), but they help us to analyze the complexity of the algorithm.

If we want to generate all occurrences of the phrase instead of just a single occurrence, an

additional loop is required, calling nextPhrase once for each occurrence of the phrase:

u← −∞
while u <∞ do

[u,v]← nextPhrase(“t1t2...tn”, u)

if u 	=∞ then

report the interval [u,v]

The loop reports each interval as it is generated. Depending on the application, reporting [u,v]

might involve returning the document containing the phrase to the user, or it might involve

storing the interval in an array or other data structure for further processing. Similar to the

code in Figure 2.2, u (and not v) is passed as the second argument to nextPhrase. As a result,

Chapter 2 Basic Techniques38

the function can correctly locate all six occurrences of the phrase “spam spam spam” in the

follow passage from the well-known Monty Python song:

Spam spam spam spam

Spam spam spam spam

To determine the time complexity of the algorithm, first observe that each call to nextPhrase

makes O(n) calls to the next and prev methods of the inverted index (n calls to next, followed

by n− 1 calls to prev). After line 8, the interval [u,v] contains all terms in the phrase in order,

and there is no smaller interval contained within it that also contains all the terms in order.

Next, observe that each occurrence of a term ti in the collection can be included in no more than

one of the intervals computed by lines 1–8. Even if the phrase contains two identical terms, ti
and tj , a matching token in the collection can be included in only one such interval as a match

to ti, although it might be included in another interval as a match to tj . The time complexity

is therefore determined by the length of the shortest postings list for the terms in the phrase:

l = min
1≤i≤n

lti
. (2.1)

Combining these observations, in the worst case the algorithm requires O(n · l) calls to methods

of our ADT to locate all occurrences of the phrase. If the phrase includes both common and

uncommon terms (“Rosencrantz and Guildenstern are dead”), the number of calls is determined

by the least frequent term (“Guildenstern”) and not the most frequent one (“and”).

We emphasize that O(n · l) represents the number of method calls, not the number of steps

taken by the algorithm, and that the time for each method call depends on the details of how

it is implemented. For the access patterns generated by the algorithm, there is a surprisingly

simple and efficient implementation that gives good performance for phrases containing any

mixture of frequent and infrequent terms. We present the details in the next section.

Although the algorithm requires O(n · l) method calls in the worst case, the actual number

of calls depends on the relative location of the terms in the collection. For example, suppose we

are searching for the phrase “hello world” and the text in the collection is arranged:

hello ... hello ... hello ... hello world ... world ... world ... world

with all occurrences of “hello” before all occurrences of “world”. Then the algorithm makes only

four method calls to locate the single occurrence of the phrase, regardless of the size of the text

or the number of occurrences of each term. Although this example is extreme and artificial, it

illustrates the adaptive nature of the algorithm — its actual execution time is determined by

characteristics of the data. Other IR problems may be solved with adaptive algorithms, and we

exploit this approach whenever possible to improve efficiency.

To make the adaptive nature of the algorithm more explicit, we introduce a measure of the

characteristics of the data that determines the actual number of method calls. Consider the

interval [u,v] just before the test at line 9 of Figure 2.2. The interval contains all the terms in

2.1 Inverted Indices 39

the phrase in order, but does not contain any smaller interval containing all the terms in order.

We call an interval with this property a candidate phrase for the terms. If we define κ to be the

number of candidate phrases in a given document collection, then the number of method calls

required to locate all occurrences is O(n · κ).

2.1.2 Implementing Inverted Indices

It moves across the blackness that lies between stars, and its mechanical legs move slowly.

Each step that it takes, however, crossing from nothing to nothing, carries it twice the

distance of the previous step. Each stride also takes the same amount of time as the prior

one. Suns flash by, fall behind, wink out. It runs through solid matter, passes through

infernos, pierces nebulae, faster and faster moving through the starfall blizzard in the

forest of the night. Given a sufficient warm-up run, it is said that it could circumnavigate

the universe in a single stride. What would happen if it kept running after that, no one

knows.

— Roger Zelazny, Creatures of Light and Darkness

When a collection will never change and when it is small enough to be maintained entirely

in memory, an inverted index may be implemented with very simple data structures. The

dictionary may be stored in a hash table or similar structure, and the postings list for each term

t may be stored in a fixed array Pt[] with length lt. For the term “witch” in the Shakespeare

collection, this array may be represented as follows:

1 2 31 32 33 34 92

1598 27555 · · · 745407 745429 745451 745467 · · · 1245276

The first and last methods of our inverted index ADT may be implemented in constant time

by returning Pt[1] and Pt[lt], respectively. The next and prev methods may be implemented

by a binary search with time complexity O(log(lt)). Details for the next method are provided

in Figure 2.3; the details for the prev method are similar.

Recall that the phrase searching algorithm of Section 2.1.1 requires O(n · l) calls to the next

and prev methods in the worst case. If we define

L = max
1≤i≤n

lti
, (2.2)

then the time complexity of the algorithms becomes O(n · l · log(L)) because each call to a

method may require up to O(log(L)) time. When expressed in terms of κ, the number of

candidate phrases, the time complexity becomes O(n · κ · log(L)).

When a phrase contains both frequent and infrequent terms, this implementation can provide

excellent performance. For example, the term “tempest” appears only 49 times in the works of

Shakespeare. As we saw in Section 1.3.3, the term “the” appears 28,317 times. However, when

Chapter 2 Basic Techniques40

next (t, current) ≡
1 if lt = 0 or Pt[lt] ≤ current then
2 return ∞
3 if Pt[1] > current then
4 return Pt[1]
5 return Pt[binarySearch (t, 1, lt, current)]

binarySearch (t, low, high, current) ≡
6 while high− low > 1 do
7 mid← �(low + high)/2�
8 if Pt[mid] ≤ current then
9 low← mid
10 else
11 high← mid
12 return high

Figure 2.3 Implementation of the next method through a binary search that is implemented by a
separate function. The array Pt[] (of length lt) contains the postings list for term t. The binarySearch
function assumes that Pt[low] ≤ current and Pt[high] > current. Lines 1–4 establish this precondition,
and the loop at lines 6–11 maintains it as an invariant.

searching for the phrase “the tempest”, we access the postings list array for “the” less than two

thousand times while conducting at most 2 · 49 = 98 binary searches.

On the other hand, when a phrase contains terms with similar frequencies, the repeated

binary searches may be wasteful. The terms in the phrase “two gentlemen” both appear a few

hundred times in Shakespeare (702 and 225 times, to be exact). Identifying all occurrences of

this phrase requires more than two thousand accesses to the postings list array for “two”. In this

case, it would be more efficient if we could scan sequentially through both arrays at the same

time, comparing values as we go. By changing the definition of the next and prev methods,

the phrase search algorithm can be adapted to do just that.

To start with, we note that as the phrase search algorithm makes successive calls to the next

method for a given term ti, the values passed as the second argument strictly increase across

calls to nextPhrase, including the recursive calls. During the process of finding all occurrences

of a given phrase, the algorithm may make up to l calls to next for that term (where l, as

before, is the length of the shortest postings list):

next(ti, v1), next(ti, v2), ..., next(ti, vl)

with

v1 < v2 < ... < vl .

Moreover, the results of these calls also strictly increase:

next(ti, v1) < next(ti, v2) < ... < next(ti, vl) .

2.1 Inverted Indices 41

next (t, current) ≡
1 if lt = 0 or Pt[lt] ≤ current then
2 return ∞
3 if Pt[1] > current then
4 ct ← 1
5 return Pt[ct]
6 if ct > 1 and Pt[ct − 1] > current then
7 ct ← 1
8 while Pt[ct] ≤ current do
9 ct ← ct + 1
10 return Pt[ct]

Figure 2.4 Implementation of the next method through a linear scan. This implementation updates
a cached index offset ct for each term t, where Pt[ct] represents the last noninfinite result returned from
a call to next for this term. If possible, the implementation starts its scan from this cached offset. If
not, the cached offset is reset at lines 6–7.

For example, when searching for “first witch” in Shakespeare, the sequence of calls for “first”

begins:

next(“first”, −∞), next(“first”, 26267), next(“first”, 30608), ...

returning the values

2205 < 27673 < 32995 < ...

Of course, the exact values for v1, v2, . . . and the actual number of calls to next depend on the

locations of the other terms in the phrase. Nonetheless, we know that these values will increase

and that there may be l of them in the worst case.

To implement our sequential scan, we remember (or cache) the value returned by a call to

next for a given term. When the function is called again (for the same term), we continue our

scan at this cached location. Figure 2.4 provides the details. The variable ct caches the array

offset of the value returned by the previous call, with a separate value cached for each term in

the phrase (e.g., cfirst and cwitch). Because the method may be used in algorithms that do not

process postings lists in a strictly increasing order, we are careful to reset ct if this assumption

is violated (lines 6–7).

If we take a similar approach to implementing prev and maintain corresponding cached

values, the phrase search algorithm scans the postings lists for the terms in the phrase, accessing

each element of the postings list arrays a bounded number of times (O(1)). Because the algorithm

may fully scan the longest postings list (of size L), and all postings lists may be of this length,

the overall time complexity of the algorithm is O(n ·L). In this case the adaptive nature of the

algorithm provides no benefit.

We now have two possible implementations for next and prev that in effect produce

two implementations of nextPhrase. The first implementation, with overall time complex-

ity O(n · l · log(L)), is particularly appropriate when the shortest postings list is considerably

Chapter 2 Basic Techniques42

next (t, current) ≡
1 if lt = 0 or Pt[lt] ≤ current then
2 return ∞
3 if Pt[1] > current then
4 ct ← 1
5 return Pt[ct]
6 if ct > 1 and Pt[ct − 1] ≤ current then
7 low← ct − 1
8 else
9 low← 1
10 jump← 1
11 high← low + jump
12 while high < lt and Pt[high] ≤ current do
13 low← high
14 jump← 2 · jump
15 high← low + jump
16 if high > lt then
17 high← lt
18 ct ← binarySearch (t, low, high, current)
19 return Pt[ct]

Figure 2.5 Implementation of the next method through a galloping search. Lines 6–9 determine an
initial value for low such that Pt[low] ≤ current, using the cached value if possible. Lines 12–17 gallop
ahead in exponentially increasing steps until they determine a value for high such that Pt[high] > current.
The final result is determined by a binary search (from Figure 2.3).

shorter than the longest postings list (l
 L). The second implementation, with time complexity

O(n · L), is appropriate when all postings lists have approximately the same length (l ≈ L).

Given this dichotomy, we might imagine choosing between the algorithms at run-time by

comparing l with L. However, it is possible to define a third implementation of the methods

that combines features of both algorithms, with a time complexity that explicitly depends on

the relative sizes of the longest and shortest lists (L/l). This third algorithm is based on an

exponential or galloping search. The idea is to scan forward from a cached position in exponen-

tially increasing steps (“galloping”) until the answer is passed. At this point, a binary search is

applied to the range formed by the last two steps of the gallop to locate the exact offset of the

answer. Figure 2.5 provides the details.

Figure 2.6 illustrates and compares the three approaches for a call to prev(“witch”, 745429)

over the Shakespeare collection. Using a binary search (part a), the method would access the

array seven times, first at positions 1 and 92 to establish the invariant required by the binary

search (not shown), and then at positions 46, 23, 34, 28, and 31 during the binary search

itself. Using a sequential scan (part b) starting from an initial cached offset of 1, the method

would access the array 34 times, including the accesses required to check boundary conditions

(not shown). A galloping search (part c) would access positions 1, 2, 4, 8, 16, and 32 before

2.1 Inverted Indices 43

������� ������� �����	� ����
�� 	�����
�

	 � �	 �� �� �� ��

�	���

�

����� ��� ���

�
�� ��

������� ������� �����	� ����
�� 	�����
�

	 � �	 �� �� �� ��

�	���

��

����� ��� ���

���

������� ������� �����	� ����
�� 	�����
�

	 � �	 �� �� �� ��

�	���

��

����� ��� ���

� 	

���

�

Figure 2.6 Access patterns for three approaches to solving prev(“witch”, 745429) = 745407:
(a) binary search, (b) sequential scan, and (c) galloping. For (b) and (c), the algorithms start at
an initial cached position of 1.

establishing the conditions for a binary search, which would then access positions 24, 28, 30,

and 31, for a total of twelve accesses to the postings list array (including checking the boundary

conditions). At the end of both the scanning and the galloping methods, the cached array offset

would be updated to 31.

To determine the time complexity of galloping search, we return to consider the sequence of

calls to next that originally motivated the sequential scanning algorithm. Let cj
t be the cached

value after the jth call to next for term t during the processing of a given phrase search.

Pt[c
1
t] = next (t, v1)

Pt[c
2
t] = next (t, v2)

. . .

Pt[c
l
t] = next (t, vl)

Chapter 2 Basic Techniques44

For a galloping search the amount of work done by a particular call to next depends on the

change in the cached value from call to call. If the cached value changes by Δc, then the amount

of work done by a call is O(log(Δc)). Thus, if we define

Δc1 = c1
t

Δc2 = c2
t − c1

t

. . .

Δcl = cl
t − cl−1

t ,

then the total work done by calls to next for term t is

l∑
j=1

O(log(Δcj)) = O

⎛⎝log

⎛⎝ l∏
j=1

Δcj

⎞⎠⎞⎠ . (2.3)

We know that the arithmetic mean of a list of nonnegative numbers is always greater than

its geometric mean ∑l
j=1 Δcj

l
≥ l

√√√√ l∏
j=1

Δcj , (2.4)

and since
∑l

j=1 Δcj ≤ L, we have

l∏
j=1

Δcj ≤ (L/l)
l
. (2.5)

Therefore, the total work done by calls to next (or prev) for the term t is

O

⎛⎝log

⎛⎝ l∏
j=1

Δcj

⎞⎠⎞⎠ ⊆ O
(
log

(
(L/l)l

))
(2.6)

= O (l · log (L/l)) . (2.7)

The overall time complexity for a phrase with n terms is O (n · l · log (L/l)). When l
 L, this

performance is similar to that of binary search; when l ≈ L, it is similar to scanning. Taking the

adaptive nature of the algorithm into account, a similar line of reasoning gives a time complexity

of O(n · κ · log(L/κ)).

Although we have focused on phrase searching in our discussion of the implementation

of inverted indices, we shall see that galloping search is an appropriate technique for other

problems, too. Part II of the book extends these ideas to data structures stored on disk.

2.1 Inverted Indices 45

2.1.3 Documents and Other Elements

Most IR systems and algorithms operate over a standard unit of retrieval: the document. As was

discussed in Chapter 1, requirements of the specific application environment determine exactly

what constitutes a document. Depending on these requirements, a document might be an e-mail

message, a Web page, a newspaper article, or similar element.

In many application environments, the definition of a document is fairly natural. However,

in a few environments, such as a collection of books, the natural unit (an entire book) may

sometimes be too large to return as a reasonable result, particularly when the relevant material

is limited to a small part of the text. Instead, it may be desirable to return a chapter, a section,

a subsection, or even a range of pages.

In the case of our collection of Shakespeare’s plays, the most natural course is probably to

treat each play as a document, but acts, scenes, speeches, and lines might all be appropriate

units of retrieval in some circumstances. For the purposes of a simple example, assume we are

interested in speeches and wish to locate those spoken by the “first witch”.

The phrase “first witch” first occurs at [745406, 745407]. Computing the speech that contains

this phrase is reasonably straightforward. Using the methods of our inverted index ADT, we

determine that the start of a speech immediately preceding this phrase is located at

prev(“<SPEECH>”, 745406) = 745404.

The end of this speech is located at

next(“</SPEECH>”, 754404) = 745425.

Once we confirm that the interval [745406, 745407] is contained in the interval [745404, 745425],

we know we have located a speech that contains the phrase. This check to confirm the contain-

ment is necessary because the phrase may not always occur as part of a speech. If we wish to

locate all speeches by the “first witch”, we can repeat this process with the next occurrence of

the phrase.

A minor problem remains. Although we know that the phrase occurs in the speech, we do

not know that the “first witch” is the speaker. The phrase may actually appear in the lines

spoken. Fortunately, confirming that the witch is the speaker requires only two additional calls

to methods of the inverted index (Exercise 2.4). In fact, simple calls to these methods are

sufficient to compute a broad range of structural relationships, such as the following:

1. Lines spoken by any witch.

2. The speaker who says, “To be or not to be”.

3. Titles of plays mentioning witches and thunder.

Chapter 2 Basic Techniques46

In a broader context, this flexible approach to specifying retrieval units and filtering them

with simple containment criteria has many applications. In Web search systems, simple filtering

can restrict retrieval results to a single domain. In enterprise search, applying constraints to

the sender field allows us to select messages sent by a particular person. In file system search,

structural constraints may be used to determine if file permissions and security restrictions allow

a user to search a directory.

Because a requirement for “lightweight” structure occurs frequently in IR applications, we

adopt a simple and uniform approach to supporting this structure by incorporating it directly

into the inverted index, making it part of the basic facilities an inverted index provides. The

examples above illustrate our approach. Complete details will be presented in Chapter 5, in

which the approach forms the basis for implementing the advanced search operators, which are

widely used in domain-specific IR applications, such as legal search. The approach may be used

to implement the differential field weighting described in Section 8.7, which recognizes that

the presence of a query term in a document’s title may be a stronger indicator of relevance

than its presence in the body. The approach may also be used to provide a foundation for the

implementation of the more complex index structures required to fully support XML retrieval

(see Chapter 16).

Notwithstanding those circumstances in which lightweight structure is required, most IR

research assumes that the text collection naturally divides into documents, which are considered

to be atomic units for retrieval. In a system for searching e-mail, messages form this basic

retrieval unit. In a file system, files do; on the Web, Web pages. In addition to providing a natural

unit of retrieval, documents also provide natural divisions in the text, allowing a collection to

be partitioned into multiple subcollections for parallel retrieval and allowing documents to be

reordered to improve efficiency, perhaps by grouping all documents from a single source or Web

site.

Document-Oriented Indices

Because document retrieval represents such an important special case, indices are usually opti-

mized around it. To accommodate this optimization, the numbering of positions in a document

collection may be split into two components: a document number and an offset within the

document.

We use the notation n:m to indicate positions within a document-oriented index in which n

is a document identifier (or docid) and m is an offset. Figure 2.7 presents an inverted index for

Shakespeare’s plays that treats plays as documents. The methods of our inverted index ADT

continue to operate as before, but they accept docid:offset pairs as arguments and return them

as results.

2.1 Inverted Indices 47

��������	
 �������������

��������

�	�
��	�
����

����

��	�����

��������

�������������

����������

����������

���������

������������

�����������

� ����������

� ��������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

,���,��������,�

��������-,�����������������������������������,

�����,������-��������������������������������������

����,��

�����-�����-��������������-���

-����-��-�����,��������������������������-�

�������

�������������������

���������-��������������-�����������������������-���������������

���������-��

��-�������������������������,��

��-������-��������������-�������������������������������������,�

�
�
�

�
�
�

Figure 2.7 A document-centric index for Shakespeare’s plays equivalent to the one shown in Figure 2.1
(page 34). Each posting is of the form docid :within-document-position.

For example,

first(“hurlyburly”) = 9:30963 last(“thunder”) = 37:12538

first(“witching”) = 8:25805 last(“witching”) = 8:25805

next(“witch”, 22:288) = 22:310 prev(“witch”, 22:310) = 22:288

next(“hurlyburly”, 9:30963) = 22:293 prev(“hurlyburly”, 22:293) = 9:30963

next(“witch”, 37:10675) =∞ prev(“witch”, 1:1598) = −∞

Chapter 2 Basic Techniques48

Offsets within a document start at 1 and range up to the length of the document. We continue to

use −∞ and ∞ as beginning-of-file and end-of-file markers despite the slight notational incon-

sistency, with −∞ read as −∞:−∞ and ∞ read as ∞:∞. When term positions are expressed

in this form, their values are compared by treating the document number as the primary key:

n:m < n′:m′ if and only if (n < n′ or (n = n′ and m < m′)).

We refer to an index whose structure has been optimized to support document-oriented retrieval

as a schema-dependent inverted index, because the division of the text into retrieval units (its

schema) is determined at the time its inverted index is constructed.

An index without these optimizations is a schema-independent inverted index. A schema-

independent index allows the definition of a document to be specified at query time, with a

possible cost in execution time in comparison with its schema-dependent equivalent.

To support ranking algorithms, a schema-dependent inverted index usually maintains various

document-oriented statistics. We adopt the following notation for these statistics:

Nt document frequency the number of documents in the collection containing
the term t

ft,d term frequency the number of times term t appears in document d

ld document length measured in tokens

lavg average length average document length across the collection

N document count total number of documents in the collection

Note that
∑

d∈C ld =
∑

t∈V lt = lC , and lavg = lC/N .

Over the collection of Shakespeare’s plays, lavg = 34363. If t = “witch” and d = 22 (i.e.,

d = Macbeth), then Nt = 18, ft,d = 52, and ld = 26805. In a schema-dependent index, these

statistics are usually maintained as an integral part of the index data structures. With a schema-

independent index, they have to be computed at query time with the methods of our inverted

index ADT (see Exercise 2.5).

To help us write algorithms that operate at the document level, we define additional methods

of our inverted index ADT. The first two break down positions into separate docids and offsets:

docid(position) returns the docid associated with a position

offset(position) returns the within-document offset associated with a position

When a posting takes the form [u:v], these methods simply return u and v, respectively. They

may also be implemented on top of a schema-independent index, albeit slightly less efficiently.

We also define document-oriented versions of our basic inverted index methods that will prove

useful in later parts of this chapter:

2.1 Inverted Indices 49

firstDoc(t) returns the docid of the first document containing the term t

lastDoc(t) returns the docid of the last document containing the term t

nextDoc(t, current) returns the docid of the first document after current that

contains the term t

prevDoc(t, current) returns the docid of the last document before current that

contains the term t

In a schema-dependent index, many postings may now share a common prefix in their docids.

We can separate out these docids to produce postings of the form

(d, ft,d, 〈p0, ..., pft,d
〉)

where 〈p0, ..., pft,d
〉 is the list of the offsets of all ft,d occurrences of the term t within document

d. Besides eliminating unnecessary repetition, this notation better reflects how the postings are

actually represented in an implementation of a schema-dependent index. Using this notation,

we would write the postings list for the term “witch” as

(1, 3, 〈1598, 27555, 31463〉), ..., (22, 52, 〈266, 288, ...〉), ..., (37, 1, 〈10675〉)

In specialized circumstances it may not be necessary for positional offsets to be maintained

by an inverted index. Basic keyword search is sufficient for some applications, and effective

ranking can be supported with document-level statistics. For the simplest ranking and filtering

techniques, these document-level statistics are not even required.

Based on the type of information found in each postings list, we can distinguish four types of

inverted indices, the first three of which are schema-dependent:

• A docid index is the simplest index type. For each term, it contains the document iden-

tifiers of all documents in which the term appears. Despite its simplicity, this index type

is sufficient to support filtering with basic Boolean queries (Section 2.2.3) and a simple

form of relevance ranking known as coordination level ranking (Exercise 2.7).

• In a frequency index, each entry in an inverted list consists of two components: a doc-

ument ID and a term frequency value. Each posting in a frequency index is of the

form (d, ft,d). Frequency indices are sufficient to support many effective ranking methods

(Section 2.2.1), but are insufficient for phrase searching and advanced filtering.

• A positional index consists of postings of the form (d, ft,d, 〈p1, ..., pft,d
〉). Positional indices

support all search operations supported by a frequency index. In addition, they can be

used to realize phrase queries, proximity ranking (Section 2.2.2), and other query types

that take the exact position of a query term within a document into account, including

all types of structural queries.

• A schema-independent index does not include the document-oriented optimizations found

in a positional index, but otherwise the two may be used interchangeably.

Chapter 2 Basic Techniques50

Table 2.1 Text fragment from Shakespeare’s Romeo and Juliet, act I, scene 1.

Document ID Document Content

1 Do you quarrel, sir?

2 Quarrel sir! no, sir!

3 If you do, sir, I am for you: I serve as good a man as you.

4 No better.

5 Well, sir.

Table 2.2 Postings lists for the terms shown in Table 2.1. In each case the length of the list is
appended to the start of the actual list.

Term Docid List Positional List Schema-Independent

a 1; 3 1; (3, 1, 〈13〉) 1; 21

am 1; 3 1; (3, 1, 〈6〉) 1; 14

as 1; 3 1; (3, 2, 〈11, 15〉) 2; 19, 23

better 1; 4 1; (4, 1, 〈2〉) 1; 26

do 2; 1, 3 2; (1, 1, 〈1〉), (3, 1, 〈3〉) 2; 1, 11

for 1; 3 1; (3, 1, 〈7〉) 1; 15

good 1; 3 1; (3, 1, 〈12〉) 1; 20

i 1; 3 1; (3, 2, 〈5, 9〉) 2; 13, 17

if 1; 3 1; (3, 1, 〈1〉) 1; 9

man 1; 3 1; (3, 1, 〈14〉) 1; 22

no 2; 2, 4 2; (2, 1, 〈3〉), (4, 1, 〈1〉) 2; 7, 25

quarrel 2; 1, 2 2; (1, 1, 〈3〉), (2, 1, 〈1〉) 2; 3, 5

serve 1; 3 1; (3, 1, 〈10〉) 1; 18

sir 4; 1, 2, 3, 5 4; (1, 1, 〈4〉), (2, 2, 〈2, 4〉), (3, 1, 〈4〉), (5, 1, 〈2〉) 5; 4, 6, 8, 12, 28

well 1; 5 1; (5, 1, 〈1〉) 1; 27

you 2; 1, 3 2; (1, 1, 〈2〉), (3, 3, 〈2, 8, 16〉) 4; 2, 10, 16, 24

Table 2.1 shows an excerpt from Shakespeare’s Romeo and Juliet. Here, each line is treated as

a document — we have omitted the tags to help shorten the example to a reasonable length.

Table 2.2 shows the corresponding postings lists for all terms that appear in the excerpt, giving

examples of docid lists, positional postings lists, and schema-independent postings lists.

Of the four different index types, the docid index is always the smallest one because it contains

the least information. The positional and the schema-independent indices consume the greatest

space, between two times and five times as much space as a frequency index, and between

three times and seven times as much as a docid index, for typical text collections. The exact

ratio depends on the lengths of the documents in the collection, the skewedness of the term

distribution, and the impact of compression. Index sizes for the four different index types and

2.2 Retrieval and Ranking 51

Table 2.3 Index sizes for various index types and three test collections, with and without apply-
ing index compression techniques. In each case the first number refers to an index in which each
component is stored as a simple 32-bit integer, and the second number refers to an index in which
each entry is compressed using a byte-aligned encoding method.

Shakespeare TREC GOV2

Docid index n/a 578 MB/200 MB 37751 MB/12412 MB

Frequency index n/a 1110 MB/333 MB 73593 MB/21406 MB

Positional index n/a 2255 MB/739 MB 245538 MB/78819 MB

Schema-independent index 5.7 MB/2.7 MB 1190 MB/533 MB 173854 MB/65960 MB

our three example collections are shown in Table 2.3. Index compression has a substantial effect

on index size, and it is discussed in detail in Chapter 6.

With the introduction of document-oriented indices, we have greatly expanded the notation

associated with inverted indices from the four basic methods introduced at the beginning of

the chapter. Table 2.4 provides a summary of this notation for easy reference throughout the

remainder of the book.

2.2 Retrieval and Ranking

Building on the data structures of the previous section, this section presents three simple

retrieval methods. The first two methods produce ranked results, ordering the documents in

the collection according to their expected relevance to the query. Our third retrieval method

allows Boolean filters to be applied to the collection, identifying those documents that match a

predicate.

Queries for ranked retrieval are often expressed as term vectors. When you type a query into

an IR system, you express the components of this vector by entering the terms with white space

between them. For example, the query

william shakespeare marriage

might be entered into a commercial Web search engine with the intention of retrieving a ranked

list of Web pages concerning Shakespeare’s marriage to Anne Hathaway. To make the nature

of these queries more obvious, we write term vectors explicitly using the notation 〈t1, t2, ..., tn〉.
The query above would then be written

〈“william”, “shakespeare”, “marriage”〉.

You may wonder why we represent these queries as vectors rather than sets. Representation

as a vector (or, rather, a list, since we do not assume a fixed-dimensional vector space) is useful

when terms are repeated in a query and when the ordering of terms is significant. In ranking

formulae, we use the notation qt to indicate the number of times term t appears in the query.

Chapter 2 Basic Techniques52

Table 2.4 Summary of notation for inverted indices.

Basic inverted index methods

first(term) returns the first position at which the term occurs

last(term) returns the last position at which the term occurs

next(term, current) returns the next position at which the term occurs after

the current position

prev(term, current) returns the previous position at which the term occurs before

the current position

Document-oriented equivalents of the basic methods

firstDoc(term), lastDoc(term), nextDoc(term, current), lastDoc(term, current)

Schema-dependent index positions

n:m n = docid and m = offset

docid(position) returns the docid associated with a position

offset(position) returns the within-document offset associated with a position

Symbols for document and term statistics

lt the length of t’s postings list

Nt the number of documents containing t

ft,d the number of occurrences of t within the document d

ld length of the document d, in tokens

lavg the average document length in the collection

N the total number of documents in the collection

The structure of postings lists

docid index d1, d2, . . . , dNt

frequency index (d1, ft,d1), (d2, ft,d2), . . .

positional index (d1, ft,d1 , 〈p1, . . . , pft,d1
〉), . . .

schema-independent p1, p2, . . . , plt

Boolean predicates are composed with the standard Boolean operators (AND, OR, NOT).

The result of a Boolean query is a set of documents matching the predicate. For example, the

Boolean query

“william” AND “shakespeare” AND NOT (“marlowe” OR “bacon”)

specifies those documents containing the terms “william” and “shakespeare” but not containing

either “marlowe” or “bacon”. In later chapters we will extend this standard set of Boolean

operators, which will allow us to specify additional constraints on the result set.

2.2 Retrieval and Ranking 53

There is a key difference in the conventional interpretations of term vectors for ranked retrieval

and predicates for Boolean retrieval. Boolean predicates are usually interpreted as strict filters —

if a document does not match the predicate, it is not returned in the result set. Term vectors, on

the other hand, are often interpreted as summarizing an information need. Not all the terms in

the vector need to appear in a document for it to be returned. For example, if we are interested

in the life and works of Shakespeare, we might attempt to create an exhaustive (and exhausting)

query to describe our information need by listing as many related terms as we can:

william shakespeare stratford avon london plays sonnets poems tragedy comedy poet

playwright players actor anne hathaway susanna hamnet judith folio othello hamlet

macbeth king lear tempest romeo juliet julius caesar twelfth night antony cleopatra

venus adonis willie hughe wriothesley henry ...

Although many relevant Web pages will contain some of these terms, few will contain all of

them. It is the role of a ranked retrieval method to determine the impact that any missing

terms will have on the final document ordering.

Boolean retrieval combines naturally with ranked retrieval into a two-step retrieval process.

A Boolean predicate is first applied to restrict retrieval to a subset of the document collection.

The documents contained in the resulting subcollection are then ranked with respect to a given

topic. Commercial Web search engines follow this two-step retrieval process. Until recently,

most of these systems would interpret the query

william shakespeare marriage

as both a Boolean conjunction of the terms — “william” AND “shakespeare” AND “marriage” —

and as a term vector for ranking — 〈“william”, “shakespeare”, “marriage”〉. For a page to be

returned as a result, each of the terms was required to appear in the page itself or in the anchor

text linking to the page.

Filtering out relevant pages that are missing one or more terms may have the paradoxical effect

of harming performance when extra terms are added to a query. In principle, adding extra terms

should improve performance by serving to better define the information need. Although some

commercial Web search engines now apply less restrictive filters, allowing additional documents

to appear in the ranked results, this two-step retrieval process still takes place. These systems

may handle longer queries poorly, returning few or no results in some cases.

In determining an appropriate document ranking, basic ranked retrieval methods com-

pare simple features of the documents. One of the most important of these features is

term frequency, ft,d, the number of times query term t appears in document d. Given two

documents d1 and d2, if a query term appears many more times in d1 than in d2, this

may suggest that d1 should be ranked higher than d2, other factors being equal. For the

query 〈“william”, “shakespeare”, “marriage”〉, the repeated occurrence of the term “marriage”

throughout a document may suggest that it should be ranked above one containing the term

only once.

Chapter 2 Basic Techniques54

Another important feature is term proximity. If query terms appear closer together in doc-

ument d1 than in document d2, this may suggest that d1 should be ranked higher than d2,

other factors being equal. In some cases, terms form a phrase (“william shakespeare”) or other

collocation, but the importance of proximity is not merely a matter of phrase matching. The

co-occurrence of “william”, “shakespeare”, and “marriage” together in a fragment such as

... while no direct evidence of the marriage of Anne Hathaway and William Shake-

speare exists, the wedding is believed to have taken place in November of 1582, while

she was pregnant with his child ...

suggests a relationship between the terms that might not exist if they appeared farther apart.

Other features help us make trade-offs between competing factors. For example, should a

thousand-word document containing four occurrences of “william”, five of “shakespeare”, and

two of “marriage” be ranked before or after a five-hundred-word document containing three

occurrences of “william”, two of “shakespeare”, and seven of “marriage”? These features include

the lengths of the documents (ld) relative to the average document length (lavg), as well as the

number of documents in which a term appears (Nt) relative to the total number of documents

in the collection (N).

Although the basic features listed above form the core of many retrieval models and ranking

methods, including those discussed in this chapter, additional features may contribute as well.

In some application areas, such as Web search, the exploitation of these additional features is

critical to the success of a search engine.

One important feature is document structure. For example, a query term may be treated

differently if it appears in the title of a document rather than in its body. Often the relationship

between documents is important, such as the links between Web documents. In the context

of Web search, the analysis of the links between Web pages may allow us to assign them a

query-independent ordering or static rank, which can then be a factor in retrieval. Finally, when

a large group of people make regular use of an IR system within an enterprise or on the Web,

their behavior can be monitored to improve performance. For example, if results from one Web

site are clicked more than results from another, this behavior may indicate a user preference for

one site over the other — other factors being equal — that can be exploited to improve ranking.

In later chapters these and other additional features will be covered in detail.

2.2.1 The Vector Space Model

The vector space model is one of the oldest and best known of the information retrieval models

we examine in this book. Starting in the 1960s and continuing into 1990s, the method was

developed and promulgated by Gerald Salton, who was perhaps the most influential of the early

IR researchers. As a result, the vector space model is intimately associated with the field as a

whole and has been adapted to many IR problems beyond ranked retrieval, including document

clustering and classification, in which it continues to play an important role. In recent years, the

2.2 Retrieval and Ranking 55

�

�

��

��

��

��

�

Figure 2.8 Document similarity under the vector space model. Angles are computed between a query
vector �q and two document vectors �d1 and �d2. Because θ1 < θ2, d1 should be ranked higher than d2.

vector space model has been largely overshadowed by probabilistic models, language models,

and machine learning approaches (see Part III). Nonetheless, the simple intuition underlying it,

as well as its long history, makes the vector space model an ideal vehicle for introducing ranked

retrieval.

The basic idea is simple. Queries as well as documents are represented as vectors in a high-

dimensional space in which each vector component corresponds to a term in the vocabulary of the

collection. This query vector representation stands in contrast to the term vector representation

of the previous section, which included only the terms appearing in the query. Given a query

vector and a set of document vectors, one for each document in the collection, we rank the

documents by computing a similarity measure between the query vector and each document

vector, comparing the angle between them. The smaller the angle, the more similar the vectors.

Figure 2.8 illustrates the basic idea, using vectors with only two components (A and B).

Linear algebra provides us with a handy formula to determine the angle θ between two vectors.

Given two |V|-dimensional vectors �x = 〈x1, x2, ..., x|V|〉 and �y = 〈y1, y2, ..., y|V|〉, we have

�x · �y = |�x| · |�y| · cos(θ). (2.8)

where �x · �y represents the dot product (also called the inner product or scalar product) between

the vectors; |�x| and |�y| represent the lengths of the vectors. The dot product is defined as

�x · �y =

|V|∑
i=1

xi · yi (2.9)

Chapter 2 Basic Techniques56

and the length of a vector may be computed from the Euclidean distance formula

|�x| =

√√√√ |V|∑
i=1

xi
2 . (2.10)

Substituting and rearranging these equations gives

cos(θ) =
�x

|�x| ·
�y

|�y| =

∑|V|
i=1 xi yi(√∑|V|

i=1 xi
2

)(√∑|V|
i=1 yi

2

) . (2.11)

We could now apply arccos to determine θ, but because the cosine is monotonically decreasing

with respect to the angle θ, it is convenient to stop at this point and retain the cosine itself

as our measure of similarity. If θ = 0◦, then the vectors are colinear, as similar as possible,

with cos(θ) = 1. If θ = 90◦, then the vectors are orthogonal, as dissimilar as possible, with

cos(θ) = 0.

To summarize, given a document vector �d and a query vector �q, the cosine similarity sim(�d, �q)

is computed as

sim(�d, �q) =
�d

|�d|
· �q

|�q| , (2.12)

the dot product of the document and query vectors normalized to unit length. Provided all

components of the vectors are nonnegative, the value of this cosine similarity measure ranges

from 0 to 1, with its value increasing with increasing similarity.

Naturally, for a collection of even modest size, this vector space model produces vectors with

millions of dimensions. This high-dimensionality might appear inefficient at first glance, but

in many circumstances the query vector is sparse, with all but a few components being zero.

For example, the vector corresponding to the query 〈“william”, “shakespeare”, “marriage”〉 has

only three nonzero components. To compute the length of this vector, or its dot product with

a document vector, we need only consider the components corresponding to these three terms.

On the other hand, a document vector typically has a nonzero component for each unique

term contained in the document, which may consist of thousands of terms. However, the length

of a document vector is independent of the query. It may be precomputed and stored in a

frequency or positional index along with other document-specific information, or it may be

applied to normalize the document vector in advance, with the components of the normalized

vector taking the place of term frequencies in the postings lists.

Although queries are usually short, the symmetry between how documents and queries are

treated in the vector space model allows entire documents to be used as queries. Equation 2.12

may then be viewed as a formula determining the similarity between two documents. Treat-

ing a document as a query is one possible method for implementing the “Similar pages” and

“More like this” features seen in some commercial search engines.

2.2 Retrieval and Ranking 57

As a ranking method the cosine similarity measure has intuitive appeal and natural simplicity.

If we can appropriately represent queries and documents as vectors, cosine similarity may be

used to rank the documents with respect to the queries. In representing a document or query as

a vector, a weight must be assigned to each term that represents the value of the corresponding

component of the vector. Throughout the long history of the vector space model, many formulae

for assigning these weights have been proposed and evaluated. With few exceptions, these

formulae may be characterized as belonging to a general family known as TF-IDF weights.

When assigning a weight in a document vector, the TF-IDF weights are computed by taking

the product of a function of term frequency (ft,d) and a function of the inverse of document

frequency (1/Nt). When assigning a weight to a query vector, the within-query term frequency

(qt) may be substituted for ft,d, in essence treating the query as a tiny document. It is also

possible (and not at all unusual) to use different TF and IDF functions to determine weights

for document vectors and query vectors.

������

���������������������	�
�� ������������
���������	��
������	�
��

We emphasize that a TF-IDF weight is a product of functions of term frequency and inverse doc-

ument frequency. A common error is to use the raw ft,d value for the term frequency component,

which may lead to poor performance.

Over the years a number of variants for both the TF and the IDF functions have been proposed

and evaluated. The IDF functions typically relate the document frequency to the total number

of documents in the collection (N). The basic intuition behind the IDF functions is that a term

appearing in many documents should be assigned a lower weight than a term appearing in few

documents. Of the two functions, IDF comes closer to having a “standard form”,

IDF = log(N/Nt), (2.13)

with most IDF variants structured as a logarithm of a fraction involving Nt and N .

The basic intuition behind the various TF functions is that a term appearing many times in a

document should be assigned a higher weight for that document than for a document in which

it appears fewer times. Another important consideration behind the definition of a TF function

is that its value should not necessarily increase linearly with ft,d. Although two occurrences of a

term should be given more weight than one occurrence, they shouldn’t necessarily be given twice

the weight. The following function meets these requirements and appears in much of Salton’s

later work:

TF =

{
log(ft,d) + 1 if ft,d > 0,

0 otherwise.
(2.14)

Chapter 2 Basic Techniques58

When this equation is used with a query vector, ft,d is replaced by qt the query term frequency

of t in q. We use this equation, along with Equation 2.13, to compute both document and query

weights in the example that follows.

Consider the Romeo and Juliet document collection in Table 2.1 (page 50) and the corre-

sponding postings lists given in Table 2.2. Because there are five documents in the collection

and “sir” appears in four of them, the IDF value for “sir” is

log(N/fsir) = log(5/4) ≈ 0.32.

In this formula and in other TF-IDF formulae involving logarithms, the base of the logarithm

is usually unimportant. As necessary, for purposes of this example and others throughout the

book, we assume a base of 2.

Because “sir” appears twice in document 2, the TF-IDF value for the corresponding

component of its vector is

(log(fsir,2) + 1) · (log(N/fsir)) = (log(2) + 1) · (log(5/4)) ≈ 0.64.

Computing TF-IDF values for the remaining components and the remaining documents, gives
the following set of vectors:

�d1 ≈ 〈0.00, 0.00, 0.00, 0.00, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.32, 0.00, 0.32, 0.00, 1.32〉

�d2 ≈ 〈0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.32, 1.32, 0.00, 0.64, 0.00, 0.00〉

�d3 ≈ 〈2.32, 2.32, 4.64, 0.00, 1.32, 2.32, 2.32, 4.64, 2.32, 2.32, 0.00, 0.00, 2.32, 0.32, 0.00, 3.42〉

�d4 ≈ 〈0.00, 0.00, 0.00, 2.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00〉

�d5 ≈ 〈0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.32, 2.32, 0.00〉

where the components are sorted alphabetically according to their corresponding terms.
Normalizing these vectors, dividing by their lengths, produces:

�d1/|�d1| ≈ 〈0.00, 0.00, 0.00, 0.00, 0.57, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.57, 0.00, 0.14, 0.00, 0.57〉

�d2/|�d2| ≈ 〈0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.67, 0.67, 0.00, 0.33, 0.00, 0.00〉

�d3/|�d3| ≈ 〈0.24, 0.24, 0.48, 0.00, 0.14, 0.24, 0.24, 0.48, 0.24, 0.24, 0.00, 0.00, 0.24, 0.03, 0.00, 0.35〉

�d4/|�d4| ≈ 〈0.00, 0.00, 0.00, 0.87, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.49, 0.00, 0.00, 0.00, 0.00, 0.00〉

�d5/|�d5| ≈ 〈0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.14, 0.99, 0.00〉

If we wish to rank these five documents with respect to the query 〈“quarrel”, “sir”〉, we first
construct the query vector, normalized by length:

�q/|�q| ≈ 〈0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.97, 0.00, 0.24, 0.00, 0.00〉

2.2 Retrieval and Ranking 59

rankCosine (〈t1, ..., tn〉, k) ≡
1 j ← 1
2 d← min1≤i≤n nextDoc (ti, −∞)
3 while d <∞ do
4 Result [j].docid← d

5 Result [j].score ←
�d

|�d|
· �q

|�q|

6 j ← j + 1
7 d← min1≤i≤n nextDoc (ti, d)
8 sort Result by score
9 return Result[1..k]

Figure 2.9 Query processing for ranked retrieval under the vector space model. Given the term vector
〈t1, ..., tn〉 (with corresponding query vector �q), the function identifies the top k documents.

Computing the dot product between this vector and each document vector gives the following

cosine similarity values:

Document ID 1 2 3 4 5

Similarity 0.59 0.73 0.01 0.00 0.03

The final document ranking is 2, 1, 5, 3, 4.

Query processing for the vector space model is straightforward (Figure 2.9), essentially per-

forming a merge of the postings lists for the query terms. Docids and corresponding scores

are accumulated in an array of records as the scores are computed. The function operates on

one document at a time. During each iteration of the while loop, the algorithm computes the

score for document d (with corresponding document vector �d), stores the docid and score in the

array of records Result, and determines the next docid for processing. The algorithm does not

explicitly compute a score for documents that do not contain any of the query terms, which are

implicitly assigned a score of zero. At the end of the function, Result is sorted by score and the

top k documents are returned.

For many retrieval applications, the entire ranked list of documents is not required. Instead we

return at most k documents, where the value of k is determined by the needs of the application

environment. For example, a Web search engine might return only the first k = 10 or 20

results on its first page. It then may seem inefficient to compute the score for every document

containing any of the terms, even a single term with low weight, when only the top k documents

are required. This apparent inefficiency has led to proposals for improved query processing

methods that are applicable to other IR models as well as to the vector space model. These

query processing methods will be discussed in Chapter 5.

Of the document features listed at the start of this section — term frequency, term proximity,

document frequency, and document length — the vector space model makes explicit use of

only term frequency and document frequency. Document length is handled implicitly when the

Chapter 2 Basic Techniques60

vectors are normalized to unit length. If one document is twice as long as another but contains

the same terms in the same proportions, their normalized vectors are identical. Term proximity

is not considered by the model at all. This property has led to the colorful description of the

vector space model (and other IR models with the same property) as a “bag of words” model.

We based the version of the vector space model presented in this section on the introductory

descriptions given in Salton’s later works. In practice, implementations of the vector space

model often eliminate both length normalization and the IDF factor in document vectors, in

part to improve efficiency. Moreover, the Euclidean length normalization inherent in the cosine

similarity measure has proved inadequate to handle collections containing mixtures of long and

short documents, and substantial adjustments are required to support these collections. These

efficiency and effectiveness issues are examined in Section 2.3.

The vector space model may be criticized for its entirely heuristic nature. Beyond intuition, its

simple mathematics, and the experiments of Section 2.3, we do not provide further justification

for it. IR models introduced in later chapters (Chapters 8 and 9) are more solidly grounded in

theoretical frameworks. Perhaps as a result, these models are more adaptable, and are more

readily extended to accommodate additional document features.

2.2.2 Proximity Ranking

The vector space ranking method from the previous section explicitly depends only on TF and

IDF. In contrast, the method detailed in this section explicitly depends only on term proximity.

Term frequency is handled implicitly; document frequency, document length, and other features

play no role at all.

When the components of a term vector 〈t1, t2, . . . , tn〉 appear in close proximity within a

document, it suggests that the document is more likely to be relevant than one in which the

terms appear farther apart. Given a term vector 〈t1, t2, ..., tn〉, we define a cover for the vector

as an interval in the collection [u, v] that contains a match to all the terms without containing

a smaller interval [u′, v′], u ≤ u′ ≤ v′ ≤ v, that also contains a match to all the terms. The

candidate phrases defined on page 39 are a special case of a cover in which all the terms appear

in order.

In the collection of Table 2.1 (page 50), the intervals [1:2, 1:4], [3:2, 3:4], and [3:4, 3:8] are

covers for the term vector 〈“you”, “sir”〉. The interval [3:4, 3:16] is not a cover, even though

both terms are contained within it, because it contains the cover [3:4, 3:8]. Similarly, there are

two covers for the term vector 〈“quarrel”, “sir”〉: [1:3, 1:4] and [2:1, 2:2].

Note that covers may overlap. However, a token matching a term ti appears in at most n · l
covers, where l is the length of the shortest postings list for the terms in the vector. To see that

there may be as many as n · l covers for the term vector 〈t1, t2, ..., tn〉, consider a collection in

which all the terms occur in the same order the same number of times:

... t1 ... t2 ... t3 ... tn ... t1 ... t2 ... t3 ... tn ... t1 ...

2.2 Retrieval and Ranking 61

nextCover (〈t1, ..., tn〉, position) ≡
1 v ← max1≤i≤n(next(ti, position))
2 if v =∞ then
3 return [∞,∞]
4 u← min1≤i≤n(prev(ti, v + 1))
5 if docid(u) = docid(v) then
6 return [u, v]
7 else
8 return nextCover(〈t1, ..., tn〉, u)

Figure 2.10 Function to locate the next occurrence of a cover for the term vector 〈t1, ..., tn〉 after a
given position.

We leave the demonstration that there may be no more than n · l covers to Exercise 2.8. A new

cover starts at each occurrence of a term from the vector. Thus, the total number of covers for

a term vector is constrained by n · l and does not depend on the length of the longest postings

list L. With respect to proximity ranking, we define κ to be the number of covers for a term

vector occurring in a document collection where κ ≤ n · l.
Perhaps not surprisingly, our algorithm to compute covers is a close cousin of the phrase

searching algorithm in Figure 2.2 (page 36). The function in Figure 2.10 locates the next occur-

rence of a cover after a given position. On line 1, the algorithm determines the smallest position

v such that the interval [position, v] contains all the terms in the vector. A cover starting after

u cannot end before this position. On line 4, the algorithm shrinks the interval ending at v,

adjusting u so that no smaller interval ending at v contains all the terms. The check at line 5

determines whether u and v are contained in the same document. If not, nextCover is called

recursively.

This last check is required only because the cover will ultimately contribute to a document’s

score for ranking. Technically, the interval [1:4, 2:1] is a perfectly acceptable cover for the term

vector 〈“quarrel”,“sir”〉. However, in a schema-dependent index, a cover that crosses document

boundaries is unlikely to be meaningful.

Ranking is based on two assumptions: (1) the shorter the cover, the more likely that the

text containing the cover is relevant, and (2) the more covers contained in a document, the

more likely that the document is relevant. These assumptions are consistent with intuition.

The first assumption suggests that a score for an individual cover may be based on its length.

The second assumption suggests that a document may be assigned a score by summing the

individual scores of the covers contained within it. Combining these ideas, we score a document

d containing covers [u1,v1], [u2,v2], [u3,v3], ... using the formula

score(d) =
∑(

1

vi − ui + 1

)
. (2.15)

Chapter 2 Basic Techniques62

rankProximity (〈t1, ..., tn〉, k) ≡
1 [u, v]← nextCover(〈t0, t1, ..., tn〉, −∞)
2 d← docid(u)
3 score← 0
4 j ← 0
5 while u <∞ do
6 if d < docid(u) then
7 j ← j + 1
8 Result [j].docid ← d
9 Result [j].score ← score
10 d← docid(u)
11 score← 0
12 score← score + 1/(v − u + 1)
13 [u, v]← nextCover(〈t1, . . . , tn〉, u)
14 if d <∞ then
15 j ← j + 1
16 Result [j].docid← d
17 Result [j].score ← score
18 sort Result [1..j] by score
19 return Result[1..k]

Figure 2.11 Query processing for proximity ranking. The nextCover function from Figure 2.10 is
called to generate each cover.

Query processing for proximity ranking is presented in Figure 2.11. Covers are generated

by calls to the nextCover function and processed one by one in the while loop of lines 5–13.

The number of covers κ in the collection is exactly equal to the number of calls to nextCover

at line 13. When a document boundary is crossed (line 6), the score and docid are stored in

an array of records Result (lines 8–9). After all covers are processed, information on the last

document is recorded in the array (lines 14–17), the array is sorted by score (line 18), and the

top k documents are returned (line 19).

As the rankProximity function makes calls to the nextCover function, the position passed

as its second argument strictly increases. In turn, as the nextCover function makes succes-

sive calls to the next and prev methods, the values of their second arguments also strictly

increase. As we did for the phrase searching algorithm of Section 2.1.1, we may exploit this

property by implementing next and prev using galloping search. Following a similar argument,

when galloping search is used, the overall time complexity of the rankProximity algorithm is

O
(
n2 l · log (L/l)

)
.

Note that the time complexity is quadratic in n, the size of the term vector, because there

may be O(n ·l) covers in the worst case. Fortunately, the adaptive nature of the algorithm comes

to our assistance again, giving a time complexity of O (n · κ · log (L/κ)).

For a document to receive a nonzero score, all terms must be present in it. In this respect,

proximity ranking shares the behavior exhibited until recently by many commercial search

2.2 Retrieval and Ranking 63

engines. When applied to the document collection of Table 2.1 to rank the collection with

respect to the query 〈“you”, “sir”〉, proximity ranking assigns a score of 0.33 to document 1, a

score of 0.53 to document 3, and a score of 0 to the remaining documents.

When applied to rank the same collection with respect to the query 〈“quarrel”,“sir”〉, the

method assigns scores of 0.50 to documents 1 and 2, and a score of 0.00 to documents 3 to 5.

Unlike cosine similarity, the second occurrence of “sir” in document 2 does not contribute to

the document’s score. The frequency of individual terms is not a factor in proximity ranking;

rather, the frequency and proximity of their co-occurrence are factors. It is conceivable that a

document could include many matches to all the terms but contain only a single cover, with

the query terms clustered into discrete groups.

2.2.3 Boolean Retrieval

Apart from the implicit Boolean filters applied by Web search engines, explicit support for

Boolean queries is important in specific application areas such as digital libraries and the legal

domain. In contrast to ranked retrieval, Boolean retrieval returns sets of documents rather than

ranked lists. Under the Boolean retrieval model, a term t is considered to specify the set of

documents containing it. The standard Boolean operators (AND, OR, and NOT) are used to

construct Boolean queries, which are interpreted as operations over these sets, as follows:

A AND B intersection of A and B (A ∩B)

A OR B union of A and B (A ∪B)

NOT A complement of A with respect to the document collection (Ā)

where A and B are terms or other Boolean queries. For example, over the collection in Table 2.1,

the query

(“quarrel” OR “sir”) AND “you”

specifies the set {1, 3}, whereas the query

(“quarrel” OR “sir”) AND NOT “you”

specifies the set {2, 5}.
Our algorithm for solving Boolean queries is another variant of the phrase searching algorithm

of Figure 2.2 and the cover finding algorithm of Figure 2.10. The algorithm locates candidate

solutions to a Boolean query where each candidate solution represents a range of documents

that together satisfy the Boolean query, such that no smaller range of documents contained

within it also satisfies the query. When the range represented by a candidate solution has a

length of 1, this single document satisfies the query and should be included in the result set.

Chapter 2 Basic Techniques64

The same overall method of operation appears in both of the previous algorithms. In the

phrase search algorithm, lines 1–6 identify a range containing all the terms in order, such

that no smaller range contained within it also contains all the terms in order. In the cover

finding algorithm, lines 1–4 similarly locate all the terms as close together as possible. In both

algorithms an additional constraint is then applied.

To simplify our definition of our Boolean search algorithm, we define two functions that oper-

ate over Boolean queries, extending the nextDoc and prevDoc methods of schema-dependent

inverted indices.

docRight(Q, u) — end point of the first candidate solution to Q starting after

document u

docLeft(Q, v) — start point of the last candidate solution to Q ending before

document v

For terms we define:

docRight(t, u) ≡ nextDoc(t, u)

docLeft(t, v) ≡ prevDoc(t, v)

and for the AND and OR operators we define:

docRight(A AND B, u) ≡ max(docRight(A, u),docRight(B, u))

docLeft(A AND B, v) ≡ min(docLeft(A, v),docLeft(B, v))

docRight(A OR B, u) ≡ min(docRight(A, u),docRight(B, u))

docLeft(A OR B, v) ≡ max(docLeft(A, v),docLeft(B, v))

To determine the result for a given query, these definitions are applied recursively. For example:

docRight((“quarrel” OR “sir”) AND “you”, 1)

≡ max(docRight(“quarrel” OR “sir”, 1),docRight(“you”, 1))

≡ max(min(docRight(“quarrel”, 1),docRight(“sir”, 1)),nextDoc(“you”, 1))

≡ max(min(nextDoc(“quarrel”, 1),nextDoc(“sir”, 1)), 3)

≡ max(min(2, 2), 3)

≡ 3

docLeft((“quarrel” OR “sir”) AND “you”, 4)

≡ min(docLeft(“quarrel” OR “sir”, 4),docLeft(“you”, 4))

≡ min(max(docLeft(“quarrel”, 4),docLeft(“sir”, 4)),prevDoc(“you”, 4))

≡ min(max(prevDoc(“quarrel”, 4),prevDoc(“sir”, 4)), 3)

≡ min(max(2, 3), 3)

≡ 3

2.2 Retrieval and Ranking 65

nextSolution (Q, position) ≡
1 v ← docRight(Q, position)
2 if v =∞ then
3 return ∞
4 u← docLeft(Q, v + 1)
5 if u = v then
6 return u
7 else
8 return nextSolution (Q, v)

Figure 2.12 Function to locate the next solution to the Boolean query Q after a given position. The
function nextSolution calls docRight and docLeft to generate a candidate solution. These functions
make recursive calls that depend on the structure of the query.

Definitions for the NOT operator are more problematic, and we ignore the operator until after

we present the main algorithm.

Figure 2.12 presents the nextSolution function, which locates the next solution to a Boolean

query after a given position. The function calls docRight and docLeft to generate a candidate

solution. Just after line 4, the interval [u,v] contains this candidate solution. If the candidate

solution consists of a single document, it is returned. Otherwise, the function makes a recursive

call. Given this function, all solutions to Boolean query Q may be generated by the following:

u← −∞
while u <∞ do

u← nextSolution(Q, u)

if u <∞ then

report docid(u)

Using a galloping search implementation of nextDoc and prevDoc, the time complexity of this

algorithm is O(n·l·log(L/l)), where n is the number of terms in the query. If a docid or frequency

index is used, and positional information is not recorded in the index, l and L represent the

lengths of the shortest and longest postings lists of the terms in the query as measured by the

number of documents. The reasoning required to demonstrate this time complexity is similar to

that of our phrase search algorithm and proximity ranking algorithm. When considered in terms

of the number of candidate solutions κ, which reflects the adaptive nature of the algorithm, the

time complexity becomes O(n ·κ · log(L/κ)). Note that the call to the docLeft method in line 4

of the algorithm can be avoided (see Exercise 2.9), but it helps us to analyze the complexity of

the algorithm, by providing a clear definition of a candidate solution.

We ignored the NOT operator in our definitions of docRight and docLeft. Indeed, it is

not necessary to implement general versions of these functions in order to implement the NOT

operator. Instead, De Morgan’s laws may be used to transform a query, moving any NOT

Chapter 2 Basic Techniques66

operators inward until they are directly associated with query terms:

NOT (A AND B) ≡ NOT A OR NOT B

NOT (A OR B) ≡ NOT A AND NOT B

For example, the query

“william” AND “shakespeare” AND NOT (“marlowe” OR “bacon”)

would be transformed into

“william” AND “shakespeare” AND (NOT “marlowe” AND NOT “bacon”) .

This transformation does not change the number of AND and OR operators appearing in the

query, and hence does not change the number of terms appearing in the query (n). After

appropriate application of De Morgan’s laws, we are left with a query containing expressions of

the form NOT t, where t is a term. In order to process queries containing expressions of this

form, we require corresponding definitions of docRight and docLeft. It is possible to write

these definitions in terms of nextDoc and prevDoc.

docRight(NOT t, u) ≡
u′ ← nextDoc(t, u)

while u′ = u + 1 do

u← u′

u′ ← nextDoc(t, u)

return u + 1

Unfortunately, this approach introduces potential inefficiencies. Although this definition will

exhibit acceptable performance when few documents contain the term t, it may exhibit unac-

ceptable performance when most documents contain t, essentially reverting to the linear scan

of the postings list that we avoided by introducing galloping search. Moreover, the equiva-

lent implementation of docLeft(NOT t, v) requires a scan backward through the postings list,

violating the requirement necessary to realize the benefits of galloping search.

Instead, we may implement the NOT operator directly over the data structures described in

Section 2.1.2, extending the methods supported by our inverted index with explicit methods for

nextDoc(NOT t, u) and prevDoc(NOT t, v). We leave the details for Exercise 2.5.

2.3 Evaluation

Our presentation of both cosine similarity and proximity ranking relies heavily on intuition. We

appeal to intuition to justify the representation of documents and queries as vectors, to justify

the determination of similarity by comparing angles, and to justify the assignment of higher

2.3 Evaluation 67

weights when terms appear more frequently or closer together. This reliance on intuition can

be accepted only when the methods are effective in practice. Moreover, an implementation of a

retrieval method must be efficient enough to compute the results of a typical query in adequate

time to satisfy the user, and possible trade-offs between efficiency and effectiveness must be

considered. A user may not wish to wait for a longer period of time — additional seconds or

even minutes — in order to receive a result that is only slightly better than a result she could

have received immediately.

2.3.1 Recall and Precision

Measuring the effectiveness of a retrieval method depends on human assessments of relevance.

In some cases, it might be possible to infer these assessments implicitly from user behavior. For

example, if a user clicks on a result and then quickly backtracks to the result page, we might infer

a negative assessment. Nonetheless, most published information retrieval experiments are based

on manual assessments created explicitly for experimental purposes, such as the assessments

for the TREC experiments described in Chapter 1. These assessments are often binary — an

assessor reads the document and judges it relevant or not relevant with respect to a topic. TREC

experiments generally use these binary judgments, with a document being judged relevant if

any part of it is relevant.

For example, given the information need described by TREC topic 426 (Figure 1.8 on page 25),

a user might formulate the Boolean query

((“law” AND “enforcement”) OR “police”) AND (“dog” OR “dogs”) .

Running this query over the TREC45 collection produces a set of 881 documents, representing

0.17% of the half-million documents in the collection.

In order to determine the effectiveness of a Boolean query such as this one, we compare two

sets: (1) the set of documents returned by the query, Res, and (2) the set of relevant documents

for the topic contained in the collection, Rel. From these two sets we may then compute two

standard effectiveness measures: recall and precision.

recall =
|Rel ∩ Res|
|Rel| (2.16)

precision =
|Rel ∩ Res|
|Res| (2.17)

In a nutshell, recall indicates the fraction of relevant documents that appears in the result set,

whereas precision indicates the fraction of the result set that is relevant.

According to official NIST judgments, there are 202 relevant documents in the TREC45 test

collection for topic 426. Our query returns 167 of these documents, giving a precision of 0.190

and a recall of 0.827. A user may find this result acceptable. Just 35 relevant documents are

Chapter 2 Basic Techniques68

outside the result set. However, in order to find a relevant document, the user must read an

average of 4.28 documents that are not relevant.

You will sometimes see recall and precision combined into a single value known as an F-

measure. The simplest F-measure, F1, is the harmonic mean of recall and precision:

F1 =
2

1
R + 1

P

=
2 · R · P
R + P

, (2.18)

where R represents recall and P represents precision. In comparison with the arithmetic mean

((R + P)/2), the harmonic mean enforces a balance between recall and precision. For example,

if we return the entire collection as the result of a query, recall will be 1 but precision will almost

always be close to 0. The arithmetic mean gives a value greater than 0.5 for such a result. In

contrast, the harmonic mean gives a value of 2P/(1 + P), which will be close to 0 if P is close

to 0.

This formula may be generalized through a weighted harmonic mean to allow greater emphasis

to be placed on either precision or recall,

1

α 1
R + (1− α) 1

P

. (2.19)

where 0 ≤ α ≤ 1. For α = 0, the measure is equivalent to precision. For α = 1, it is equivalent to

recall. For α = 0.5 it is equivalent to Equation 2.18. Following standard practice (van Rijsbergen,

1979, Chapter 7), we set α = 1/(β2 + 1) and define the F-measure as

Fβ =
(β2 + 1) · R · P

β2 · R + P
, (2.20)

where β may be any real number. Thus, F0 is recall and F∞ is precision. Values of |β| < 1 place

emphasis on recall; values of |β| > 1 place emphasis on precision.

recall—)precision—)

2.3.2 Effectiveness Measures for Ranked Retrieval

If the user is interested in reading only one or two relevant documents, ranked retrieval may

provide a more useful result than Boolean retrieval. To extend our notions of recall and precision

to the ordered lists returned by ranked retrieval algorithms, we consider the top k documents

returned by a query, Res[1..k], and define:

recall@k =
|Rel ∩ Res[1..k]|

|Rel| (2.21)

precision@k =
|Rel ∩ Res[1..k]|
|Res[1..k]| , (2.22)

2.3 Evaluation 69

where precision@k is often written as P@k. If we treat the title of topic 426 as a term vector for

ranked retrieval, 〈“law”, “enforcement”, “dogs”〉, proximity ranking gives P@10 = 0.400 and

recall@10 = 0.0198. If the user starts reading from the top of the list, she will find four relevant

documents in the top ten.

By definition, recall@k increases monotonically with respect to k. Conversely, if a ranked

retrieval method adheres to the Probability Ranking Principle defined in Chapter 1 (i.e., ranking

documents in order of decreasing probability of relevance), then P@k will tend to decrease as k

increases. For topic 426, proximity ranking gives

k 10 20 50 100 200 1000

P@k 0.400 0.450 0.380 0.230 0.115 0.023

recall@k 0.020 0.045 0.094 0.114 0.114 0.114

Since only 82 documents contain all of the terms in the query, proximity ranking cannot return

200 or 1,000 documents with scores greater than 0. In order to allow comparison with other

ranking methods, we compute precision and recall at these values by assuming that the empty

lower ranks contain documents that are not relevant. All things considered, a user may be

happier with the results of the Boolean query on page 67. But of course the comparison is

not really fair. The Boolean query contains terms not found in the term vector, and perhaps

required more effort to craft. Using the same term vector, cosine similarity gives

k 10 20 50 100 200 1000

P@k 0.000 0.000 0.000 0.060 0.070 0.051

recall@k 0.000 0.000 0.000 0.030 0.069 0.253

Cosine ranking performs surprisingly poorly on this query, and it is unlikely that a user would

be happy with these results.

By varying the value of k, we may trade precision for recall, accepting a lower precision in

order to identify more relevant documents and vice versa. An IR experiment might consider

k over a range of values, with lower values corresponding to a situation in which the user

is interested in a quick answer and is willing to examine only a few results. Higher values

correspond to a situation in which the user is interested in discovering as much information as

possible about a topic and is willing to explore deep into the result list. The first situation is

common in Web search, where the user may examine only the top one or two results before

trying something else. The second situation may occur in legal domains, where a case may turn

on a single precedent or piece of evidence and a thorough search is required.

As we can see from the example above, even at k = 1000 recall may be considerably lower than

100%. We may have to go very deep into the results to increase recall substantially beyond this

point. Moreover, because many relevant documents may not contain any of the query terms at

Chapter 2 Basic Techniques70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Topic 412: airport security
Topic 414: Cuba, sugar, exports
Topic 426: law enforcement, dogs

Figure 2.13 Eleven-point interpolated recall-precision curves for three TREC topics over the
TREC45 collection. Results were generated with proximity ranking.

all, it is usually not possible to achieve 100% recall without including documents with 0 scores.

For simplicity and consistency, information retrieval experiments generally consider only a fixed

number of documents, often the top k = 1000. At higher levels we simply treat precision as

being equal to 0. When conducting an experiment, we pass this value for k as a parameter to

the retrieval function, as shown in Figures 2.9 and 2.11.

In order to examine the trade-off between recall and precision, we may plot a recall-precision

curve. Figure 2.13 shows three examples for proximity ranking. The figure plots curves for

topic 426 and two other topics taken from the 1998 TREC adhoc task: topic 412 (“airport

security”) and topic 414 (“Cuba, sugar, exports”). For 11 recall points, from 0% to 100% by

10% increments, the curve plots the maximum precision achieved at that recall level or higher.

The value plotted at 0% recall represents the highest precision achieved at any recall level. Thus,

the highest precision achieved for topic 412 is 80%, for topic 414 is 50%, and for topic 426 is

100%. At 20% or higher recall, proximity ranking achieves a precision of up to 57% for topic

412, 32% for topic 414, but 0% for topic 426. This technique of taking the maximum precision

achieved at or above a given recall level is called interpolated precision. Interpolation has the

pleasant property of producing monotonically decreasing curves, which may better illustrate

the trade-off between recall and precision.

2.3 Evaluation 71

As an indication of effectiveness across the full range of recall values, we may compute an

average precision value, which we define as follows:

1

|Rel| ·
k∑

i=1

relevant(i)× P@i (2.23)

where relevant(i) = 1 if the document at rank i is relevant (i.e., if Res[i] ∈ Rel) and 0 if it

is not. Average precision represents an approximation of the area under a (noninterpolated)

recall-precision curve. Over the top one thousand documents returned for topic 426, proximity

ranking achieves an average precision of 0.058; cosine similarity achieves an average precision

of 0.016.

So far, we have considered effectiveness measures for a single topic only. Naturally, perfor-

mance on a single topic tells us very little, and a typical IR experiment will involve fifty or

more topics. The standard procedure for computing effectiveness measures over a set of topics

is to compute the measure on individual topics and then take the arithmetic mean of these

values. In the IR research literature, values stated for P@k, recall@k, and other measures, as

well as recall-precision curves, generally represent averages over a set of topics. You will rarely

see values or plots for individual topics unless authors wish to discuss specific characteristics of

these topics. In the case of average precision, its arithmetic mean over a set of topics is explicitly

referred to as mean average precision or MAP, thus avoiding possible confusion with averaged

P@k values.

Partly because it encapsulates system performance over the full range of recall values, and

partly because of its prevalence at TREC and other evaluation forums, the reporting of MAP

values for retrieval experiments was nearly ubiquitous in the IR literature until a few years ago.

Recently, various limitations of MAP have become apparent and other measures have become

more widespread, with MAP gradually assuming a secondary role.

Unfortunately, because it is an average of averages, it is difficult to interpret MAP in a way

that provides any clear intuition regarding the actual performance that might be experienced by

the user. Although a measure such as P@10 provides less information on the overall performance

of a system, it does provide a more understandable number. As a result, we report both P@10

and MAP in experiments throughout the book. In Part III, we explore alternative effectiveness

measures, comparing them with precision, recall, and MAP.

For simplicity, and to help guarantee consistency with published results, we suggest you do not

write your own code to compute effectiveness measures. NIST provides a program, trec eval1

that computes a vast array of standard measures, including P@k and MAP. The program is

the standard tool for computing results reported at TREC. Chris Buckley, the creator and

maintainer of trec eval, updates the program regularly, often including new measures as they

appear in the literature.

1 trec.nist.gov/trec eval

Chapter 2 Basic Techniques72

Table 2.5 Effectiveness measures for selected retrieval methods discussed in this book.

TREC45 GOV2

1998 1999 2004 2005

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Cosine (2.2.1) 0.264 0.126 0.252 0.135 0.120 0.060 0.194 0.092

Proximity (2.2.2) 0.396 0.124 0.370 0.146 0.425 0.173 0.562 0.230

Cosine (raw TF) 0.266 0.106 0.240 0.120 0.298 0.093 0.282 0.097

Cosine (TF docs) 0.342 0.132 0.328 0.154 0.400 0.144 0.466 0.151

BM25 (Ch. 8) 0.424 0.178 0.440 0.205 0.471 0.243 0.534 0.277

LMD (Ch. 9) 0.450 0.193 0.428 0.226 0.484 0.244 0.580 0.293

DFR (Ch. 9) 0.426 0.183 0.446 0.216 0.465 0.248 0.550 0.269

Effectiveness results

Table 2.5 presents MAP and P@10 values for various retrieval methods over our four test collec-

tions. The first row provides values for the cosine similarity ranking described in Section 2.2.1.

The second row provides values for the proximity ranking method described in Section 2.2.2.

As we indicated in Section 2.2.1, a large number of variants of cosine similarity have been

explored over the years. The next two lines of the table provide values for two of them. The

first of these replaces Equation 2.14 (page 57) with raw TF values, ft,d, the number of occur-

rences of each term. In the case of the TREC45 collection, this change harms performance but

substantially improves performance on the GOV2 collection. For the second variant (the fourth

row) we omitted both document length normalization and document IDF values (but kept IDF

in the query vector). Under this variant we compute a score for a document simply by taking

the inner product of this unnormalized document vector and the query vector:

score(q, d) =
∑

t∈(q∩d)

qt · log

(
N

Nt

)
· (log(ft,d) + 1) . (2.24)

Perhaps surprisingly, this change substantially improves performance to roughly the level of

proximity ranking.

How can we explain this improvement? The vector space model was introduced and developed

at a time when documents were of similar length, generally being short abstracts of books or

scientific articles. The idea of representing a document as a vector represents the fundamental

inspiration underlying the model. Once we think of a document as a vector, it is not difficult

to take the next step and imagine applying standard mathematical operations to these vectors,

including addition, normalization, inner product, and cosine similarity. Unfortunately, when it

is applied to collections containing documents of different lengths, vector normalization does

2.3 Evaluation 73

Table 2.6 Selected ranking formulae discussed in later chapters. In these formulae the value
qt represents query term frequency, the number of times term t appears in the query. b and k1,
for BM25, and μ, for LMD, are free parameters set to b = 0.75, k1 = 1.2, and μ = 1000 in our
experiments.

Method Formula

BM25 (Ch. 8)
P

t∈q qt · (ft,d · (k1 + 1))/(k1 · ((1− b) + b · (ld/lavg)) + ft,d) · log(N/Nt)

LMD (Ch. 9)
P

t∈q qt · (log(μ + ft,d · lC/lt)− log(μ + ld))

DFR (Ch. 9)
P

t∈q qt · (log(1 + lt/N) + f ′
t,d · log(1 + N/lt))/(f

′
t,d + 1) ,

where f ′
t,d = ft,d · log (1 + lavg/ld)

not successfully adjust for these varying lengths. For this reason, by the early 1990s this last

variant of the vector space model had become standard.

The inclusion of the vector space model in this chapter is due more to history than anything

else. Given its long-standing influence, no textbook on information retrieval would be complete

without it. In later chapters we will present ranked retrieval methods with different theoretical

underpinnings. The final three rows of Table 2.5 provide results for three of these methods:

a method based on probabilistic models (BM25), a method based on language modeling (LMD),

and a method based on divergence from randomness (DFR). The formulae for these methods

are given in Table 2.6. As can be seen from the table, all three of these methods depend only on

the simple features discussed at the start of Section 2.2. All outperform both cosine similarity

and proximity ranking.

Figure 2.14 plots 11-point interpolated recall-precision curves for the 1998 TREC adhoc task,

corresponding to the fourth and fifth columns of Table 2.5. The LM and DFR methods appear

to slightly outperform BM25, which in turn outperforms proximity ranking and the TF docs

version of cosine similarity.

2.3.3 Building a Test Collection

Measuring the effectiveness of a retrieval method depends on human assessments of relevance.

Given a topic and a set of documents, an assessor reads each document and makes a decision:

Is it relevant or not? Once a topic is well understood, assessment can proceed surprisingly

quickly. Once up to speed, an assessor might be able to make a judgment in 10 seconds or less.

Unfortunately, even at a rate of one judgment every ten seconds, an assessor working eight-

hour days with breaks and holidays would spend nearly a year judging a single topic over the

half-million documents in TREC45, and her entire career judging a topic over the 25 million

documents in GOV2.

Given the difficulty of judging a topic over the entire collection, TREC and other retrieval

efforts depend on a technique known as pooling to limit the number of judgments required. The

standard TREC experimental procedure is to accept one or more experimental runs from each

group participating in an adhoc task. Each of these runs consists of the top 1,000 or 10,000

Chapter 2 Basic Techniques74

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Cosine (2.2.1)
Proximity (2.2.2)
Cosine (raw TF)
Cosine (TF docs)
BM25
LMD
DFR

Figure 2.14 11-point interpolated recall-precision curves for various basic retrieval methods on the
1999 TREC adhoc task (topics 401–450, TREC45 document collection).

documents for each topic. Under the pooling method, the top 100 or so documents from each

run are then pooled into a single set and presented to assessors in random order for judging.

Even with dozens of participants the size of this pool may be less than a thousand documents

per topic, because the same document may be returned by multiple systems. Even if assessment

is done very carefully, with each judgment taking several minutes on average, it is possible for

an assessor to work through this pool in less than a week. Often, less time is required.

The goal of the pooling method is to reduce the amount of assessment effort while retaining

the ability to make reasonable estimates of precision and recall. For runs contributing to a pool,

the values for P@k and recall@k are accurate at least down to the pool depth. Beyond this depth

many documents will still be judged, because other runs will have ranked these documents above

the pool depth. MAP is still calculated over the entire 1,000 or 10,000 documents in each run,

with unjudged documents treated as not relevant. Because the top documents have the greatest

impact on MAP, estimates made in this way are still acceptably accurate.

Armed with the pooling method, the creation of a test collection at TREC and similar

evaluation efforts generally proceed as follows:

1. Obtain an appropriate document set either from public sources or through negotiation

with its owners.

2. Develop at least 50 topics, the minimum generally considered acceptable for a

meaningful evaluation.

2.3 Evaluation 75

3. Release the topics to the track participants and receive their experimental runs.

4. Create the pools, judge the topics, and return the results to the participants.

When developing a topic, a preliminary test of the topic on a standard IR system should reveal

a reasonable mixture of relevant and non-relevant documents in the top ranks. With many

relevant documents it may be too easy for systems to achieve a MAP value close to 1.0, making

it difficult to distinguish one system from another. With few relevant documents, many systems

will fail to achieve a MAP value above 0.0, again making it difficult to distinguish between

them. Borrowing our criteria from Goldilocks in the story of the three bears, we want not too

many, not too few, but just right.

Ideally, a test collection would be reusable. A researcher developing a new retrieval method

could use the documents, topics, and judgments to determine how the new method compares

with previous methods. Although the pooling method allows us to create a test collection in

less than a lifetime, you may have some legitimate concern regarding its ability to create such

reusable collections. A truly novel retrieval method might surface many relevant documents

that did not form part of the original pool and are not judged. If unjudged documents are

treated as nonrelevant for the purposes of computing evaluation measures, this novel method

might receive an unduly harsh score. Tragically, it might even be discarded by the researcher

and lost to science forever. Alternative effectiveness measures to address this and related issues

are covered in Chapter 12.

2.3.4 Efficiency Measures

In addition to evaluating a system’s retrieval effectiveness, it is often necessary to evaluate its

efficiency because it affects the cost of running the system and the happiness of its users. From

a user’s perspective the only efficiency measure of interest is response time, the time between

entering a query and receiving the results. Throughput, the average number of queries processed

in a given period of time, is primarily of interest to search engine operators, particularly when

the search engine is shared by many users and must cope with thousands of queries per second.

Adequate resources must be available to cope with the query load generated by these users

without compromising the response time experienced by each. Unacceptably long response

times may lead to unhappy users and, as a consequence, fewer users.

A realistic measurement of throughput and its trade-off against response time requires a

detailed simulation of query load. For the purposes of making simple efficiency measurements,

we may focus on response time and consider the performance seen by a single user issuing one

query at a time on an otherwise unburdened search engine. Chapter 13 provides a more detailed

discussion of throughput along with a broader discussion of efficiency.

A simple but reasonable procedure for measuring response time is to execute a full query set,

capturing the start time from the operating system at a well-defined point just before the first

query is issued, and the end time just after the last result is generated. The time to execute the

full set is then divided by the number of queries to give an average response time per query.

Chapter 2 Basic Techniques76

Table 2.7 Average time per query for the Wumpus implementation of Okapi
BM25 (Chapter 8), using two different index types and four different query sets.

TREC45 GOV2

Index Type 1998 1999 2004 2005

Schema-independent index 61 ms 57 ms 1686 ms 4763 ms

Frequency index 41 ms 41 ms 204 ms 202 ms

Results may be discarded as they are generated, rather than stored to disk or sent over a

network, because the overhead of these activities can dominate the response times, particularly

with small collections.

Before executing a query set, the IR system should be restarted or reset to clear any infor-

mation precomputed and stored in memory from previous queries, and the operating system’s

I/O cache must be flushed. To increase the accuracy of the measurements, the query set may

be executed multiple times, with the system reset each time and an average of the measured

execution times used to compute the average response time.

An an example, Table 2.7 compares the average response time of a schema-independent

index versus a frequency index, using the Wumpus implementation of the Okapi BM25 ranking

function (shown in Table 2.6). We use Okapi BM25 for this example, because the Wumpus

implementation of this ranking function has been explicitly tuned for efficiency.

The efficiency benefits of using the frequency index are obvious, particularly on the larger

GOV2 collection. The use of a schema-independent index requires the computation at run-time

of document and term statistics that are precomputed in the frequency index. To a user, a

202 ms response time would seem instantaneous, whereas a 4.7 sec response time would be a

noticeable lag. However, with a frequency index it is not possible to perform phrase searches or

to apply ranking functions to elements other than documents.

The efficiency measurements shown in the table, as well as others throughout the book, were

made on a rack-mounted server based on an AMD Opteron processor (2.8 GHz) with 2 GB of

RAM. A detailed performance overview of the computer system is in Appendix A.

2.4 Summary

This chapter has covered a broad range of topics, often in considerable detail. The key points

include the following:

• We view an inverted index as an abstract data type that may be accessed through the

methods and definitions summarized in Table 2.4 (page 52). There are four important

variants — docid indices, frequency indices, positional indices, and schema-independent

indices — that differ in the type and format of the information they store.

2.5 Further Reading 77

• Many retrieval algorithms — such as the phrase searching, proximity ranking, and

Boolean query processing algorithms presented in this chapter — may be efficiently

implemented using galloping search. These algorithms are adaptive in the sense that

their time complexity depends on characteristics of the data, such as the number of

candidate phrases.

• Both ranked retrieval and Boolean filters play important roles in current IR systems.

Reasonable methods for ranked retrieval may be based on simple document and term

statistics, such as term frequency (TF), inverse document frequency (IDF), and term

proximity. The well-known cosine similarity measure represents documents and queries

as vectors and ranks documents according to the cosine of the angle between them and

the query vector.

• Recall and precision are two widely used effectiveness measures. A trade-off frequently

exists between them, such that increasing recall leads to a corresponding decrease in

precision. Mean average precision (MAP) represents a standard method for summarizing

the effectiveness of an IR system over a broad range of recall levels. MAP and P@10 are

the principal effectiveness measures reported throughout the book.

• Response time represents the efficiency of an IR system as experienced by a user. We may

make reasonable estimates of minimum response time by processing queries sequentially,

reading them one at a time and reporting the results of one query before starting the

next query.

2.5 Further Reading

Inverted indices have long been the standard data structure underlying the implementation of

IR systems (Faloutsos, 1985; Knuth, 1973, pages 552–554). Other data structures have been

proposed, generally with the intention of providing more efficient support for specific retrieval

operations. However, none of these data structures provide the flexibility and generality of

inverted indices, and they have mostly fallen out of use.

Signature files were long viewed as an important competitor to inverted indices, particularly

when disk and memory were at a premium (Faloutsos, 1985; Faloutsos and Christodoulakis,

1984; Zobel et al., 1998). Signature files are intended to provide efficient support for Boolean

queries by quickly eliminating documents that do not match the query. They provide one method

for implementing the filtering step of the two-step retrieval process described on page 53. Unfor-

tunately, false matches can be reported by signature files, and they cannot be easily extended

to support phrase queries and ranked retrieval.

A suffix tree (Weiner, 1973) is a search tree in which every path from the root to a leaf corre-

sponds to a unique suffix in a text collection. A suffix array (Gonnet, 1987; Manber and Myers,

1990) is an array of pointers to unique suffixes in the collection that is sorted in lexicographical

Chapter 2 Basic Techniques78

order. Both suffix trees and suffix arrays are intended to support efficient phrase searching,

as well as operations such as lexicographical range searching and structural retrieval (Gonnet

et al., 1992). Unfortunately, both data structures provide poor support for ranked retrieval.

Galloping search is described and evaluated by Bentley and Yao (1976). The algorithms pre-

sented in this chapter for phrase searching, proximity ranking, and Boolean retrieval may all be

viewed as variants of algorithms for computing set operations over sorted lists. The term “gal-

loping” was coined by Demaine et al. (2000), who present and analyze adaptive algorithms for

set union, intersection and difference. Other algorithms for computing the intersection of sorted

lists are described by Barbay and Kenyon (2002) and by Baeza-Yates (2004). Our abstraction of

an inverted index into an ADT accessed through a small number of simple methods is based on

Clarke et al. (2000). The proximity ranking algorithm presented in this chapter is a simplified

version of the algorithm presented in that paper.

The vector space model was developed into the version presented in this chapter through a

long process that can be traced back at least to the work of Luhn in the 1950s (Luhn, 1957,

1958). The long-standing success and influence of the model are largely due to the efforts of

Salton and his research group at Cornell, who ultimately made the model a key element of their

SMART IR system, the first version of which became operational in the fall of 1964 (Salton,

1968, page 422). Until the early 1990s SMART was one of a small number of platforms available

for IR research, and during that period it was widely adopted by researchers outside Salton’s

group as a foundation for their own work.

By the time of the first TREC experiments in the early 1990s, the vector space model had

evolved into a form very close to that presented in this chapter (Buckley et al., 1994). A further

development, introduced at the fourth TREC in 1995, was the addition of an explicit adjustment

for document length, known as pivoted document length normalization (Singhal et al., 1996).

This last development has been accepted as an essential part of the vector space model for ranked

retrieval but not for other applications, such as clustering or classification. After Salton’s death

in 1995, development of the SMART system continued under the supervision of Buckley, and it

remained a competitive research system more than ten years later (Buckley, 2005).

Latent Semantic Analysis (LSA) is an important and well-known extension of the vector space

model (Deerwester et al., 1990) that we do not cover in this book. LSA applies singular value

decomposition, from linear algebra, to reduce the dimensionality of the term-vector space. The

goal is to reduce the negative impact of synonymy — multiple terms with the same meaning —

by merging related words into common dimensions. A related technique, Probabilistic Latent

Semantic Analysis (PLSA), approaches the same goal by way of a probabilistic model (Hofmann,

1999). Unfortunately, the widespread application of LSA and PLSA to IR systems has been

limited by the difficulty of efficient implementation.

The Spam song (page 38) has had perhaps the greatest influence of any song on computer

terminology. The song was introduced in the twelfth episode of the second season of Monty

Python’s Flying Circus, which first aired on December 15, 1970, on BBC Television.

2.6 Exercises 79

2.6 Exercises

Exercise 2.1 Simplify next(“the”, prev(“the”, next (“the”, −∞))).

Exercise 2.2 Consider the following version of the phrase searching algorithm shown in

Figure 2.2 (page 36).

nextPhrase2 (t1t2...tn, position) ≡
u← next(t1, position)

v ← u

for i← 2 to n do

v ← next(ti, v)

if v =∞ then

return [∞, ∞]

if v − u = n− 1 then

return [u, v]

else

return nextPhrase2(t1t2...tn, v − n)

It makes the same number of calls to next as the version shown in the figure but does not make

any calls to prev. Explain how the algorithm operates. How does it find the next occurrence of

a phrase after a given position? When combined with galloping search to find all occurrences of

a phrase, would you expect improved efficiency compared to the original version? Explain.

Exercise 2.3 Using the methods of the inverted index ADT, write an algorithm that

locates all intervals corresponding to speeches (<SPEECH>...</SPEECH>). Assume the

schema-independent indexing shown in Figure 2.1, as illustrated by Figure 1.3.

Exercise 2.4 Using the methods of the inverted index ADT, write an algorithm that locates

all speeches by a witch in Shakespeare’s plays. Assume the schema-independent indexing shown

in Figure 2.1, as illustrated by Figure 1.3.

Exercise 2.5 Assume we have a schema-independent inverted index for Shakespeare’s plays.

We decide to treat each PLAY as a separate document.

(a) Write algorithms to compute the following statistics, using only the first, last, next,

and prev methods: (i) Nt, the number of documents in the collection containing the

term t; (ii) ft,d, the number of times term t appears in document d; (iii) ld, the length of

document d; (iv) lavg, average document length; and (v) N , total number of documents.

(b) Write algorithms to implement the docid, offset, firstDoc, lastDoc, nextDoc, and

prevDoc methods, using only the first, last, next, and prev methods.

Chapter 2 Basic Techniques80

For simplicity, you may treat the position of each 〈PLAY〉 tag as the document ID for the

document starting at that position; there’s no requirement for document IDs to be assigned

sequentially. For example, Macbeth would be assigned docid 745142 (with an initial occurrence

of “first witch” at [745142:265, 745142:266]).

Exercise 2.6 When postings lists are stored on disk rather than entirely in memory, the

time required by an inverted index method call can depend heavily on the overhead required

for accessing the disk. When conducting a search for a phrase such as “Winnie the Pooh”,

which contains a mixture of frequent and infrequent terms, the first method call for “winnie”

(next(“winnie”, −∞)) might read the entire postings list from disk into an array. Further

calls would return results from this array using galloping search. Similarly, the postings list for

“pooh” could be read into memory during its first method call. On the other hand, the postings

list for “the” may not fit into memory in its entirety, and only a very small number of these

postings may form part of the target phrase.

Ideally, all of the postings for “the” would not be read from disk. Instead, the methods might

read a small part of the postings list at a time, generating multiple disk accesses as the list is

traversed and skipping portions of the list as appropriate.

Because each method call for “the” may generate a disk access, it may be preferable to

search for the phrase “Winnie the Pooh” by immediately checking for an occurrence of “pooh”

(two positions away) after locating each occurrence of “winnie”. If “pooh” does not occur in

the expected location, we may abandon this occurrence of “winnie” and continue to another

occurrence without checking for an occurrence of “the” between the two. Only when we have

located an occurrence of “winnie” and “pooh” correctly spaced (“winnie pooh”) do we need

to make a method call for “the”.

To generalize, given a phrase “t1t2...tn”, a search algorithm might work from the least frequent

term to the most frequent term, abandoning a potential phrase once a term is found to be missing

and thus minimizing the number of calls for the most frequent terms. Using the basic definitions

and methods of our inverted index ADT, complete the details of this algorithm. What is the

time complexity of the algorithm in terms of calls to the next and prev methods? What is the

overall time complexity if galloping search is used to implement these methods?

Can the algorithm be considered adaptive? (Hint: Consider a search in the “hello world”

collection on page 38. How many method calls must be made?)

Exercise 2.7 Coordination level is the number of terms from a vector 〈t1, ..., tn〉 that appear

in a document. Coordination level may range from 1 to n. Using the methods of our inverted

index ADT, write an algorithm that ranks documents according to their coordination level.

Exercise 2.8 Demonstrate that the term vector 〈t1, ..., tn〉 may have at most n · l covers (see

Section 2.2.2), where l is the length of the shortest postings list for the terms in the vector.

Exercise 2.9 Taking a hint from Exercise 2.2, design a version of the algorithm shown in

Figure 2.10 (page 61) that does not make a call to the docLeft method.

2.6 Exercises 81

Exercise 2.10 If α = 1/(β2 + 1), show that Equations 2.19 and 2.20 are equivalent.

Exercise 2.11 (project exercise) Implement the in-memory array-based version of inverted

indices presented in Section 2.1.2, including all three versions of the next method: binary search,

sequential scan and galloping search. Using your implementation of inverted indices, implement

the phrase searching algorithm of Section 2.1.1.

To test your phrase searching implementation, we suggest a corpus 256MB or larger that fits

comfortably in the main memory of your computer. The corpus created in Exercise 1.9 (or a

subset) would be suitable. Select at least 10,000 phrases of various lengths from your corpus and

verify that your implementation successfully locates these phrases. Your selection should include

short phrases of length 2–3, longer phrases of length 4–10, and very long phrases with length

100 or greater. Include phrases containing both frequent and infrequent terms. At least half of

the phrases should contain a least one very common term, such as an article or a preposition.

Following the guidelines of Section 2.3.4, compare the efficiency of phrase searching, using

your three versions of the next method. Compute average response times. Plot response time

against phrase length for all three versions. For clarity, you may need to plot the results for

linear scan separately from those of the other two methods.

Select another set of phrases, all with length 2. Include phrases containing combinations of

frequent and infrequent terms. Plot response time against L (the length of the longest postings

list) for all three versions. Plot response time against l (the length of the shortest postings list)

for all three versions.

Optional extension: Implement the phrase searching algorithm described in Exercise 2.6.

Repeat the performance measurements using this new implementation.

Exercise 2.12 (project exercise) Implement cosine similarity ranking, as described in

Section 2.2.1. Test your implementation using the test collection developed in Exercise 2.13

or with any other available collection, such as a TREC collection.

Exercise 2.13 (project exercise) As a class project, undertake a TREC-style adhoc retrieval

experiment, developing a test collection based on Wikipedia. Continuing from Exercises 1.9

and 1.10, each student should contribute enough topics to make a combined set of 50 topics or

more. Each student should implement their own retrieval system, perhaps by starting with an

open-source IR system and extending it with techniques from later chapters, or with techniques

of their own invention. Each student should then run the titles of the topics as queries to

their system. Pool and judge the results, with each student judging the topics they created.

The design and implementation of an interactive judging interface might be undertaken as a

sub-project by a group of interested students. Use trec eval to compare runs and techniques.

Chapter 2 Basic Techniques82

2.7 Bibliography

Baeza-Yates, R. (2004). A fast set intersection algorithm for sorted sequences. In Proceedings

of the 15th Annual Symposium on Combinatorial Pattern Matching, pages 400–408. Istanbul,

Turkey.

Barbay, J., and Kenyon, C. (2002). Adaptive intersection and t-threshold problems. In Pro-

ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 390–399.

San Francisco, California.

Bentley, J. L., and Yao, A. C. C. (1976). An almost optimal algorithm for unbounded searching.

Information Processing Letters, 5(3):82–87.

Buckley, C. (2005). The SMART project at TREC. In Voorhees, E.M., and Harman, D. K.,
editors, TREC — Experiment and Evaluation in Information Retrieval, chapter 13, pages

301–320. Cambridge, Massachusetts: MIT Press.

Buckley, C., Salton, G., Allan, J., and Singhal, A. (1994). Automatic query expansion using
SMART: TREC 3. In Proceedings of the 3rd Text REtrieval Conference. Gaithersburg,

Maryland.

Clarke, C. L. A., Cormack, G. V., and Tudhope, E.A. (2000). Relevance ranking for one to three
term queries. Information Processing & Management, 36(2):291–311.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G.W., and Harshman, R. A. (1990).

Indexing by latent semantic analysis. Journal of the American Society of Information Science,
41(6):391–407.

Demaine, E.D., López-Ortiz, A., and Munro, J. I. (2000). Adaptive set intersections, unions,

and differences. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 743–752. San Francisco, California.

Faloutsos, C. (1985). Access methods for text. ACM Computing Surveys, 17(1):49–74.

Faloutsos, C., and Christodoulakis, S. (1984). Signature files: An access method for documents

and its analytical performance evaluation. ACM Transactions on Office Information Systems,

2(4):267–288.

Gonnet, G. H. (1987). Pat 3.1 — An Efficient Text Searching System — User’s Manual.

University of Waterloo, Canada.

Gonnet, G. H., Baeza-Yates, R. A., and Snider, T. (1992). New indices for text — pat trees and
pat arrays. In Frakes, W. B., and Baeza-Yates, R., editors, Information Retrieval — Data

Structures and Algorithms, chapter 5, pages 66–82. Englewood Cliffs, New Jersey: Prentice

Hall.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 50–57. Berkeley, California.

2.7 Bibliography 83

Knuth, D. E. (1973). The Art of Computer Programming, volume 3. Reading, Massachusetts:

Addison-Wesley.

Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary

information. IBM Journal of Research and Development, 1(4):309–317.

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research

and Development, 2(2):159–165.

Manber, U., and Myers, G. (1990). Suffix arrays: A new method for on-line string searches. In

Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 319–327.

San Francisco, California.

Salton, G. (1968). Automatic Information Organziation and Retrieval. New York: McGraw-Hill.

Singhal, A., Salton, G., Mitra, M., and Buckley, C. (1996). Document length normalization.

Information Processing & Management, 32(5):619–633.

van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). London, England: Butterworths.

Weiner, P. (1973). Linear pattern matching algorithm. In Proceedings of the 14th Annual IEEE
Symposium on Switching and Automata Theory, pages 1–11. Iowa City, Iowa.

Zobel, J., Moffat, A., and Ramamohanarao, K. (1998). Inverted files versus signature files for

text indexing. ACM Transactions on Database Systems, 23(4):453–490.

3 Tokens and Terms

Tokens provide the link between queries and documents. During indexing, the IR system divides

each document into a sequence of tokens and inserts these tokens into an inverted index for

searching. At query time, a corresponding tokenization is applied to the query. The resulting

query terms are then matched against the inverted index to effect retrieval and ranking.

Chapter 1 introduced simple rules for tokenizing raw text: Tokens are sequences of alphanu-

meric characters separated by nonalphanumeric characters. The tokens are case normalized

by converting uppercase letters to lowercase. In addition — ignoring the complexities of full

XML — we treat simple XML tags of the form <name> and </name> as tokens.

Although these simple rules are sufficient for the purposes of the experiments reported in

this book, more complex tokenization rules may be required in practice. For example, under

our simple rules, contractions such as “didn’t” are represented by the pair of tokens “didn t”,

which would not match a search for the phrase “did not”. The number “10,000,000” would be

represented by the three tokens “10 000 000”, the first of which would incorrectly match the

query term “10”.

Moreover, in applying these simple rules we explicitly assume that the raw text is written

in the English language, perhaps encoded as ASCII values. Under these rules the definition of

“alphanumeric” does not include the letter β or the number 八 because these characters cannot

be represented in ASCII. Even the English word “näıve” cannot be properly represented using

ASCII values.

In most practical environments, IR systems must provide appropriate support for languages

other than English. Supporting a broad range of human languages requires us to take into

account specific properties of the individual languages, including their character sets and rules

for tokenization. Crudely speaking, tokenization splits documents into words. Although the

concept of a word is essentially universal in human language (Trask, 2004), the characteristics

of words vary greatly from language to language. Not every word makes a good token; not every

token is a word.

In this chapter we revisit the problem of tokenization and term matching for English, and

extend our discussion to other languages. We focus on the content of documents, leaving the

complexities of XML and other document structure for Chapters 5 and 16. Relatively minor

details of tokenization can have a substantial impact on retrieval effectiveness for specific queries.

Getting it right requires careful consideration of these specific queries, as well as measuring

overall retrieval effectiveness.

Section 3.1 covers English, including a discussion of two traditional IR topics closely associ-

ated with tokenization: stemming and stopping. Stemming provides a way for the query term

3.1 English 85

“orienteering” to match an occurrence of “orienteers” by reducing both terms to their common

root. Stopping reflects the observation that many common words, such as “the” and “I”, may

have little value for retrieval purposes. Ignoring these stopwords may improve retrieval efficiency

and reduce the size of the inverted index.

Section 3.2 discusses character encodings, covering the basics of Unicode and UTF-8.

Section 3.3 describes character n-gram indexing, which can provide a baseline for support-

ing new languages. Character n-gram indexing can also serve as a method for tokenizing noisy

text, such as that produced by OCR (optical character recognition) systems. The final sections

of the chapter discuss tokenization for a number of European and Asian languages, providing a

sketch of the difficulties associated with them.

3.1 English

English provides a good starting point for understanding tokenization and term matching. The

language is, by necessity, familiar to you as a reader of this book. It is one of the most widely

spoken languages, with hundreds of millions of native speakers. Hundreds of millions more

learn it as a second or third language. Content in the English language continues to comprise

a disproportionate share of the Web. As a result, the ability to provide effective support for

English is a fundamental requirement for many IR systems.

3.1.1 Punctuation and Capitalization

English contains a number of features that create minor tokenization problems. Many of them

are related to punctuation and capitalization. In English a particular punctuation mark may be

used for multiple unrelated purposes. The use of the apostrophe in contractions such as “I’ll”

and “it’s” has already been mentioned, and it might be reasonable to tokenize these as “I will”

and “it is” rather than “I ll” and “it s”. However, the apostrophe is also used in constructions

such as “o’clock” and “Bill’s”. The first might best be treated as a single token rather than

two, because a match against “clock” may not be appropriate. On the other hand, if a match

against “bill” is desirable, the second must be indexed as two tokens.

Periods end sentences. However, the same character appears in acronyms, numbers, initials,

Internet addresses, and other contexts. Acronyms such as “I.B.M.” and “U.S.” may alternatively

be written as “IBM” and “US”. An IR system might recognize and tokenize such acronyms

consistently, so that a query for “IBM” matches both forms. Punctuation marks may also

appear as an integral part of the names of companies and organizations, such as “Yahoo!” and

the band “Panic! At the Disco”. For a small set of terms, the improper treatment of punctuation

characters may render the search results completely useless. Examples include “C++”, “C#”,

and “\index” (a LATEX command). For the vast majority of queries, however, punctuation may

safely be ignored.

Chapter 3 Tokens and Terms86

Case normalization (i.e., converting all characters to lowercase in the index and in each

query), on the other hand, affects almost every query. In many languages the first character

of the word that starts a given sentence is always capitalized, and we want to be able to find

those words even if the user types her query in lowercase (as most users do). Unfortunately,

case normalization has the potential to cause great harm because capitalization is essential to

preserve the meaning of many terms. Only capitalization distinguishes the acronym “US” from

the pronoun “us”, or the acronym “THE”1 from the English definite article “the”.

A simple heuristic to handle acronyms and similar tokenization problems is to double index

these terms. For example, the acronym “US” would be indexed twice at each position at which it

occurs. The inverted index would include postings lists for both “us” and “US”. An occurrence

of the acronym would appear in both lists, whereas an occurrence of the pronoun would appear

only in the first list. A query containing the term “us” would be processed with the first list;

a query containing the term “US” (and possibly “U.S.”) would be processed with the second.

Double indexing may also provide support for proper names, allowing the personal name “Bill”

to be distinguished from an itemized invoice.

We must be cautious when adjusting our tokenization procedure to account for capitalization

and punctuation. Adjustments to a tokenization procedure can negatively impact some queries

while having a positive impact on others. Fans of the movie The Terminator (1984) will imme-

diately recognize the quote “I’ll be back”, and a match against “I will be back” would not be

appropriate. Occasionally, text is WRITTEN ENTIRELY IN CAPITAL LETTERS, perhaps

accidentally or as a method for communicating the emotional state of the writer. Such text

should not be treated as a long series of acronyms and abbreviations. The term “IN” in this

sentence does not refer to the US state of Indiana, and this document does not discuss its cap-

ital. As with any information retrieval technique, tokenization must be evaluated with respect

to its overall impact on effectiveness and efficiency.

3.1.2 Stemming

Stemming allows a query term such as “orienteering” to match an occurrence of “orienteers”, or

“runs” to match “running”. Stemming considers the morphology, or internal structure, of terms,

reducing each term to a root form for comparison. For example, “orienteering” and “orienteers”

might reduce to the root form “orienteer”; “runs” and “running” might reduce to “run”.

In an IR system a stemmer may be applied at both indexing time and query time. During

indexing each token is passed through the stemmer and the resulting root form is indexed. At

query time, the query terms are passed through the same stemmer and matched against the

index terms. Thus the query term “runs” would match an occurrence of “running” by way of

their common root form “run”.

1 The THE operating system, a pioneering multiprogramming system, was created at the Technische
Universiteit Eindhoven by Turing award winner Edsger Dijkstra and colleagues in the mid-1960’s.

3.1 English 87

Original
To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them? To die: to sleep;
No more; and by a sleep to say we end
The heart-ache and the thousand natural shocks
That flesh is heir to, ’tis a consummation
Devoutly to be wish’d. To die, to sleep;
To sleep: perchance to dream: ay, there’s the rub;

Normalized
to be or not to be that is the question
whether tis nobler in the mind to suffer
the slings and arrows of outrageous fortune
or to take arms against a sea of troubles
and by opposing end them to die to sleep
no more and by a sleep to say we end
the heart ache and the thousand natural shocks
that flesh is heir to tis a consummation
devoutly to be wish d to die to sleep
to sleep perchance to dream ay there s the rub

Normalized and stemmed
to be or not to be that is the question
whether ti nobler in the mind to suffer
the sling and arrow of outrag fortun
or to take arm against a sea of troubl
and by oppos end them to die to sleep
no more and by a sleep to sai we end
the heart ach and the thousand natur shock
that flesh is heir to ti a consumm
devoutli to be wish d to die to sleep
to sleep perchanc to dream ay there s the rub

Figure 3.1 The opening lines of Hamlet’s soliloquy. At the top is the original text. The bottom-left version has
been case normalized and stripped of punctuation. The bottom-right version is stemmed with the Porter stemmer.

Stemming is related to the concept of lemmatization from linguistics. Lemmatization reduces

a term to a lexeme, which roughly corresponds to a word in the sense of a dictionary entry. For

each lexeme a particular form of the word, or lemma, is chosen to represent it. The lemma is

the form of a word you look up in a dictionary. For example, the form “run” is conventionally

chosen to represent the group that includes “runs”, “running”, and “ran”.

Stemming and lemmatization are sometimes equated, but this view is misleading. Stemming

is strictly an operational process. When a stemmer transforms a term into its root form, we

are not directly concerned with the linguistic validity of this transformation, but only with its

measurable impact on retrieval effectiveness for specific queries.

The Porter stemmer, developed by Martin Porter in the late 1970s, is one of the best-known

stemmers for the English language (Porter, 1980). Figure 3.1 shows the opening lines of Hamlet’s

famous soliloquy before and after application of the Porter stemmer. The text was stripped of

punctuation and case normalized before applying the stemmer. As you can see in the figure, the

stemmer may produce root forms that are not English words. For example, “troubles” stems

down to “troubl”. This behavior does not cause problems in practice because these root forms

are never seen by a user. The term “troubling” in a query would also stem down to “troubl”,

providing a correct match.

Chapter 3 Tokens and Terms88

Table 3.1 Impact of stemming. The table lists effectiveness measures for selected retrieval methods discussed
in this book. The results in this table may be compared with those in Table 2.5 on page 72.

TREC45 GOV2

1998 1999 2004 2005

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Proximity (2.2.2) 0.418 0.139 0.430 0.184 0.453 0.207 0.576 0.283

BM25 (Ch. 8) 0.440 0.199 0.464 0.247 0.500 0.266 0.600 0.334

LMD (Ch. 9) 0.464 0.204 0.434 0.262 0.492 0.270 0.600 0.343

DFR (Ch. 9) 0.448 0.204 0.458 0.253 0.471 0.252 0.584 0.319

The Porter stemmer may sometimes appear to be overly aggressive. Both “orienteering” and

“orienteers” stem down to “orient” rather than “orienteer”. The term “oriental” also stems

down to “orient”, incorrectly conflating these terms. Moreover, the stemmer does not handle

irregular verbs and pluralizations correctly. Both “runs” and “running” stem down to “run”,

but the irregular form “ran” stems (unchanged) to “ran”. Similarly, “mouse” stems to “mous”,

but “mice” stems to “mice”. In addition, the stemmer handles only suffixes. Prefixes such as

“un” and “re” are not removed.

The stemmer operates by applying lists of rewrite rules organized into a sequence of steps.

For example, the first list of rewrite rules (constituting step 1a) handles plural forms as follows:

sses → ss

ies → i

ss → ss

s →

To apply a rule, the pattern on the left-hand side of the rule is matched against the current

suffix of the term. If the suffix matches, the suffix is rewritten by removing it and replacing it

with the pattern on the right-hand side. Thus, the first of these rules rewrites “caresses” into

“caress”, and the second rewrites “ponies” into “poni” (not “pony”). Only the first matching

rule in a list is applied. The third rule, which appears to do nothing, exists to prevent the “ss”

suffix on words such as “caress” from being rewritten by the fourth rule. This last rule simply

removes a final “s”, rewriting “cats” to “cat”. Overall, the algorithm has five main steps, some

of which have sub-steps. In total there are nine lists of rules, the longest of which contains

twenty rules.

The application of a stemmer may improve recall by allowing more documents to be retrieved

but may also harm precision by allowing inappropriate matches, assigning high scores to non-

relevant documents. Nonetheless, when averaged over the topics in a typical TREC experiment,

stemming often produces a noticable improvement. Table 3.1 shows the impact of applying the

Porter stemmer to the test collections discussed in Chapter 1. The values in this table may

be directly compared with those in Table 2.5 on page 72. For all four data sets, stemming

3.1 English 89

has a positive impact on retrieval effectiveness. These results suggest that the application of a

stemmer is an excellent idea if you are participating in a TREC-style experiment.

When stemming goes wrong, however, it can have a strongly negative impact. For example,

the title of TREC topic 314, “marine vegetation”, stems down to “marin veget” under the

Porter stemmer. Unfortunately, “marinated vegetables” stems down to the same root form. A

user issuing this query may be surprised and confused if the IR system retrieves recipes and

restaurant reviews along with (or instead of) articles on aquatic botany. A user may have no

idea why such documents would be retrieved by her query. To her, the system may appear

broken or buggy. Even if she understands the cause of the problem, she may not know how to

solve it unless a method for explicitly disabling the stemmer is provided.

In research contexts, stemming may often be appropriate. For participants in an experimental

effort such as TREC, stemming may substantially improve performance with little additional

effort on the part of the researchers. However, in more realistic settings, any tokenization method

that has the potential to produce inexplicably erroneous results should be treated with caution.

Before integrating a stemmer into an operational IR system, the downside should be considered

carefully.

3.1.3 Stopping

Function words are words that have no well-defined meanings in and of themselves; rather, they

modify other words or indicate grammatical relationships. In English, function words include

prepositions, articles, pronouns and articles, and conjunctions. Function words are usually

among the most frequently occurring words in any language. All of the words (as opposed to

XML tags) appearing in Figure 1.1 on page 15 are function words.

When documents are viewed as unstructured “bags of words”, as they are under the vector

space model, the inclusion of function words in a query may appear to be unnecessary. Even

under a proximity model, the close proximity of a particular function word to other query terms

is hardly surprising, given the frequency of all function words in ordinary text. As a result IR

systems traditionally define a list of stopwords, which usually include the function words. At

query time these stopwords are stripped from the query, and retrieval takes place on the basis

of the remaining terms alone.

Consider the appearance of the term “the” in a query. Roughly 6% of tokens in English

text will match this term. Similarly, roughly 2% of tokens will match the term “of”. Nearly

every English-language document contains both terms. If a user is searching for informa-

tion on “the marriage of William Shakespeare”, reducing this information need to the query

〈“marriage”, “william”, “shakespeare”〉— treating “of” and “the” as stopwords — should have

no negative impact on retrieval effectiveness.

In addition to function words, a list of stopwords might include single letters, digits, and

other common terms, such as the state-of-being verbs. In the specific environment of the Web,

the stopword list might include terms such as “www”, “com”, and “http”, which are essentially

meaningless in this context. Depending on the IR system and its environment, the stopword

Chapter 3 Tokens and Terms90

list might range from less than a dozen terms to many hundreds of terms. After the removal of

typical stopwords, the text of Figure 3.1 (page 87) reduces to:

question

ti nobler mind suffer

sling arrow outrag fortun

take arm sea troubl

oppos end die sleep

sleep sai end

heart ach thousand natur shock

flesh heir ti consumm

devoutli wish die sleep

sleep perchanc dream ay rub

Because stopwords are usually frequent terms with relatively long postings lists, their elimination

may substantially reduce query execution times by avoiding the processing of these longer lists.

Furthermore, if stopwords are consistently stripped from all queries, they do not need to be

included in the index at all. In early IR systems, this elimination of stopwords provided the

benefit of reducing index sizes, an important consideration when disks and memory were small

and expensive.

Unfortunately, a small number of queries are adversely affected by stopword elimination,

usually because stopwords form an essential part of a phrase. The start of Hamlet’s soliloquy,

“to be or not to be that is the”, provides a well-known example. Although we may immediately

recognize this quote, it is composed entirely of terms that are traditionally stopwords. The

name of the band “The The” provides another example — as well as further demonstrating the

importance of capitalization. Although you might view these examples as extreme cases — and

they are — they still should be handled in a reasonable way by a search engine.

In order to handle cases such as these, we recommend the inclusion of all stopwords in

the index. Depending on the retrieval algorithm, it may be possible to selectively eliminate

them from queries when the positive impact of their presence is expected to be minimal. With

stopwords present in the index, the IR system can make a decision on a query-by-query basis.

Ranking methods in a modern commercial search engine will incorporate many ranking features,

including features based on term frequency and proximity. For features that do not consider

proximity between query terms, stopwords may be elminated. For features that do consider

proximity between query terms, particularly to match their occurrence in phrases, it may be

appropriate to retain stopwords.

3.2 Characters 91

3.2 Characters

Tokenizing raw text requires an understanding of the characters it encodes. So far in the book,

we have tacitly assumed an encoding of the text as 7-bit ASCII values. ASCII is sufficient to

encode most characters in English text, including uppercase and lowercase letters, digits, and

many punctuation characters.

Although ASCII encoding is acceptable for English, it is wholly inadequate for most other

languages. ASCII was standardized in 1963, at a time when memory was at a premium, network-

ing was a dream, and English-speaking countries represented the major market for computing

equipment. Support for other languages was undertaken as needed, on a country-by-country or

region-by-region basis. Often, these specialized character encodings provided incomplete sup-

port for their target languages. For some languages, incompatible encodings were developed for

different countries or regions, or by different hardware manufacturers. Even for English, IBM’s

Extended Binary Coded Decimal Interchange Code (EBCDIC) provided a widely implemented

competitor to ASCII.

Progress came slowly, but by the late 1980s efforts were under way to create a single unified

character encoding that encompassed all living languages (and eventually many extinct ones).

This Unicode2 standard now provides encodings for the characters from a large and growing

set of languages. Except for simple experimental IR systems, support for Unicode is essential.

Although many documents still use other encodings, these can be handled by conversion to

Unicode. Providing native support for Unicode allows an IR system to grow and accommodate

new languages as required.

Unicode assigns a unique value, called a codepoint, to each character but does not specify

how these values are represented as raw text. A codepoint is written in the form U+nnnn,

where nnnn indicates the value of the codepoint in hexadecimal. For example, the character

β is represented by the codepoint U+03B2. Unicode currently supports more than 100,000

characters, with codepoints ranging beyond U+2F800.

An associated standard, UTF-8, provides a convenient method for representing these code-

points as raw text. Although there are competing methods for representing Unicode, UTF-8 has

several advantages, including backward compatibility with ASCII. UTF-8 represents each code-

point with one to four bytes. Each character appearing in the ASCII character set is encoded

as a single byte having the same value as the corresponding ASCII character. Thus, raw text in

ASCII is automatically raw text in UTF-8.

Although UTF-8 uses a variable-length encoding for a character, the interpretation of this

encoding is straightforward, with the high-order bits of the first byte indicating the length of

the encoding. If the most significant bit is 0 — so that the byte has the form 0xxxxxxx — the

length of the encoding is one byte. This byte represents the codepoint having the value indicated

2 www.unicode.org

Chapter 3 Tokens and Terms92

by the lower seven bits, which represents the character having the same seven-bit ASCII value.

For example, the UTF-8 byte 01100101 represents the character “e” (U+0065), just as it does

in ASCII.

If the most significant bit of the first byte is 1, the length of the encoding is two to four bytes,

with the length encoded in unary by the bits that follow. Thus, the first byte of a two-byte

encoding has the form 110xxxxx, the first byte of three-byte encoding has the form 1110xxxx,

and the first byte of a four-byte encoding has the form 11110xxx. The second and subsequent

bytes of a multibyte encoding all have the form 10xxxxxx. By examining the two most significant

bits of any byte, we can determine whether it starts an encoding.

The value of the codepoint for a two-to-four-byte encoding is taken from the remaining unspec-

ified bits, with the most significant bit being taken from the first byte. A two-byte encoding

can represent codepoints in the range U+0080 to U+07FF, a three-byte encoding can represent

codepoints in the range U+0800 to U+FFFF, and a four-byte encoding can represent codepoints

with values U+10000 and above. For example, a three-byte encoding has the overall form

1110xxxx 10yyyyyy 10zzzzzz

and represents the 16-bit value xxxxyyyyyyzzzzzz. The character 八 is assigned the codepoint

U+516B, which is 01010001 01101011 in binary. In UTF-8, the character would be encoded by

the three bytes 11100101 10000101 10101011.

3.3 Character N-Grams

The difficulty of translating a sequence of characters into a sequence of tokens for indexing

depends on the details of the underlying language. The process of recognizing and stemming

words differs greatly from language to language. Character n-grams represent an alternative to

complex language-specific tokenization. In this section we illustrate the technique with English.

In later sections we apply it to other languages.

Using this technique, we simply treat overlapping sequences of n characters as tokens. For

example, if n = 5, the word “orienteering” would be split into the following 5-grams:

orie orien rient iente entee nteer teeri eerin ering ring

The “ ” character indicates the beginning or end of a word. Indexing then proceeds with each

distinct n-gram given its own postings list. At query time the query is similarly split into n-

grams for retrieval. Under this technique a three-character word such as “the” would be indexed

with the 5-gram “ the ”. For two-character and one-character words, we cheat a little, indexing

“of” as “ of ” and “a” as “ a ”.

In principle, n-gram indexing need not account for punctuation, capitalization, white space,

or other language characteristics. Although the optimal value for n varies from language to

3.3 Character N-Grams 93

Table 3.2 Impact of 5-gram indexing. The table lists effectiveness measures for selected retrieval methods
discussed in this book. The results in this table may be compared with those in Tables 2.5 and 3.1.

TREC45 GOV2

1998 1999 2004 2005

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Proximity (2.2.2) 0.392 0.125 0.388 0.149 0.431 0.171 0.552 0.233

BM25 (Ch. 8) 0.410 0.177 0.446 0.214 0.463 0.226 0.522 0.296

LMD (Ch. 9) 0.416 0.186 0.438 0.222 0.404 0.188 0.502 0.276

DFR (Ch. 9) 0.440 0.203 0.444 0.230 0.478 0.243 0.540 0.284

language, the approach is otherwise language-independent. We just split documents into n-

grams, construct an index, and issue queries. In practice, n-gram indexing typically takes into

account basic language characteristics. For English, we might strip punctuation and apply case

normalization.

N-grams can substitute for a stemmer when no stemmer is available. For many languages,

morphology is reflected in the number of n-grams shared by two terms. More of the 5-grams in

“orienteers” are matched by 5-grams from “orienteering” than by 5-grams from “oriental”.

For English, n-gram indexing has no strong impact. Table 3.2 shows the effectiveness results

for 5-gram indexing over our standard experimental collections. The results in the table may

be compared with those in Tables 2.5 and 3.1. Compared with those in Table 2.5, the results

are mixed. Some are a little better; some are a little worse. As we show in the next section, the

outcome may be different for other languages.

N-gram indexing comes at the price of increased index size and decreased efficiency. The

compressed indices for the collections in Table 3.2 require up to six times as much storage as

the corresponding indices for word-based tokens (in a typical corpus of English text, an average

word consists of six characters). Query execution time may be expected to increase by a factor

of thirty or more because we increase the number of terms in each query (after tokenization) as

well as the lengths of the postings lists.

N-gram indexing can be further extended. Even when words are delimited by white space

and punctuation, as they are in English, n-grams may be allowed to cross word boundaries,

thus potentially allowing phrasal relationships to be captured. For example, the fragment

“...perchance to dream...” would be split into the following 5-grams:

perc perch ercha rchan chanc hance ance nce t ce to e to to d to dr o dre drea dream

ream

where the “ ” character indicates an interword space. Although this technique generally has a

slightly negative impact on the retrieval methods and English-language collections used in our

experiments, it may be of benefit for other methods and languages.

Chapter 3 Tokens and Terms94

3.4 European Languages

In this section we broaden our discussion of tokenization from English to other European lan-

guages. Into this category we place a broad range of languages belonging to several distinct

language families. For example, French and Italian are Romance languages; Dutch and Swedish

are Germanic languages; Russian and Polish are Slavic languages. The Romance, Germanic,

and Slavic languages are related to each other, but Finnish and Hungarian belong to a fourth,

unrelated family. Irish and Scottish Gaelic belong to a fifth family. Basque, spoken by more

than a million people in Spain and France, is an isolate, related to no other living language.

Although the category “European language” has little or no meaning from a linguistics per-

spective, from an IR perspective we can consider these languages as a group. Due to the shared

history of the continent, these languages use similar conventions in their orthography, the rules

by which they are written. Each uses an alphabet of a few dozen letters with uppercase and

lowercase forms. Punctuation provides structure. Most usefully, letters are divided into words

by white space and punctuation.

There are a number of tokenization issues common to many European languages that are not

shared by English. Accents and other diacritical marks are almost nonexistent in English, with

“näıve” being a rare exception. In many other European languages, diacritics are essential for

pronunciation and may be required to distinguish one word from another. In Spanish, “cuna”

is a cradle but “cuña” is a wedge. In Portuguese, “nó” is a knot but “no” is a function word

meaning “in the” or “at the”. Although carefully edited text will have correct diacritics, these

marks may be missing in queries and more casual writing, thus preventing a match.

One solution is to remove the accent marks during tokenization, so that “cuna” and “cuña”

are treated as the same term. Another solution is to double index such terms, with and without

diacritics. During query processing, the IR system would determine when diacritics are essential

and when they are not. Specialized retrieval methods might consider both forms, allowing a

match either way. The best solution depends on details of the specific language and the IR

environment.

Other tokenization issues are specific to individual languages or language families. In many

Germanic languages compound nouns are written as single words. For example, the Dutch

equivalent of “bicycle wheel” is “fietswiel”. During tokenization this compound noun might

be broken or segmented into two terms, allowing the query term “fiets” to match. Similarly,

the German word “Versicherungsbetrug” is a compound of “Versicherung” (“insurance”) and

“Betrug” (“fraud”). Note that in this case, it is not sufficient simply to split the word into two

parts; we also need to take care of the “s” character that connects the two components. Other

problems occur when IR systems contain documents in a mixture of languages. Only the acute

accent distinguishes the French “thé” (“tea”) from the English definite article.

3.5 CJK Languages 95

Table 3.3 Comparison of tokenization techniques for several
European languages (based on McNamee, 2008). The table
lists mean average precision values for tokenizations based on
unstemmed words, the Snowball stemmer, character 4-grams,
and character 5-grams.

Language Words Stemmer 4-grams 5-grams

Dutch 0.416 0.427 0.438 0.444

English 0.483 0.501 0.441 0.461

Finnish 0.319 0.417 0.483 0.496

French 0.427 0.456 0.444 0.440

German 0.349 0.384 0.428 0.432

Italian 0.395 0.435 0.393 0.422

Spanish 0.427 0.467 0.447 0.438

Swedish 0.339 0.376 0.424 0.427

Stemmers are available for most European languages. Of particular note is the Snowball stem-

mer, which provides support for more than a dozen European languages, including Turkish.3

Snowball is the creation of Martin Porter, the developer of the Porter stemmer for English, and

it shares the algorithmic approach of his older stemmer. N-gram character tokenization also

works well for European languages, with values of n = 4 or n = 5 being optimal.

Table 3.3 compares tokenization techniques for eight European languages, using TREC-style

test collections. For all languages the Snowball stemmer outperforms unstemmed words. For

Dutch, Finnish, German, and Swedish, character 5-grams give the best overall performance.

3.5 CJK Languages

Chinese, Japanese, and Korean form what are called the CJK languages. Like the European

languages, the written forms of these languages are linked by shared orthographic conventions

deriving from their common history, although they are not members of a single language family.

Compared with the European languages, their character sets are enormous. A typical Chinese-

language newspaper contains thousands of distinct characters. Moreover, Chinese and Japanese

words are not separated by spaces. As a result, segmentation is an essential part of tokenization

for these languages.

The complexity of the character sets poses substantial problems. Japanese uses three main

scripts. In two of these, each character represents a syllable in the spoken language. The third

script is derived from Chinese characters and shares Unicode codepoints with them. In principle,

3 snowball.tartarus.org

Chapter 3 Tokens and Terms96

a word may be written in any of the three scripts. A query term written in one script may be

expected to match against a document term written in another.

Many Chinese characters have a traditional form and a simplified form. For historical rea-

sons, different forms dominate in different regions of the Chinese-speaking world. For example,

traditional characters are common in Hong Kong and Macau, whereas simplified characters

are standard elsewhere in China. It may be appropriate to return a document in one form in

response to a query in the other form. Many people can read text written in either form. Soft-

ware tools such as browser plugins are also available to automatically translate from one form

to the other.

The Chinese language is unusual in that it assigns a meaning to each character, but this

property does not imply that each character may be treated as a word. Moreover, the meaning

of a word is not consistently linked to the meanings of its characters; a word is not just the

sum of its parts. For instance, the Chinese word for “crisis” (危機) is often described as being

composed of the character for “danger” followed by the character for “opportunity”(Gore, 2006).

However, in this context the second character means something closer to “crucial point”, and

it often means “machine” in other contexts. The same character appears as the first character

in “airport” (機場) in which the second character means “field”. Connecting the parts correctly

is essential to preserve meaning. An airport is not a “machine field”. Freedom (自由) is not just

another word for “self cause”.

Although some Chinese words, including many function words, consist of a single character,

most words are longer. A large proportion of these words are bigrams: two characters in length.

Segmenting a sequence of characters into words is a difficult process. Consider the following

English sentence written without spaces: “Wegotogethertogether.”. The correct segmentation

(“We go to get her together.”) requires a knowledge of English grammar as well as English

vocabulary. In Chinese a character may form a word with both the character that proceeds it

and the character that follows it. The correct segmentation depends on the context. Nonethe-

less, word segmentation is not absolutely essential for Chinese-language information retrieval.

Perhaps because of the predominance of bigrams, 2-gram character indexing works well for

Chinese, providing a simple baseline for evaluating automatic word segmentation.

The CJK languages all have standardized conventions for their transliteration into the Roman

alphabet. For Chinese the modern transliteration standard is Hanyu Pinyin (or just Pinyin). In

Pinyin, 危機 becomes “wēij̄i” and 機場 becomes “j̄ichǎng”. The diacritical marks indicate tonality,

the changes in pitch used when pronouncing the syllable.

Pinyin provides a convenient alternative for expressing Chinese-language queries. Unfortu-

nately, the use of Pinyin introduces a certain level of ambiguity. For example, about six common

characters are transliterated as “j̄i”. Moreover, Pinyin queries are commonly entered without

diacritics, giving rise to additional ambiguity. With tone marks omitted, some thirty common

characters are transliterated as “yi”, and even more are transliterated as “shi”. The query term

“shishi” could mean “current event” (時事), “implementation” (實施), and several other things.

To address this ambiguity, a search engine might present alternative interpretations to users,

allowing them to choose the correct one.

3.6 Further Reading 97

3.6 Further Reading

Simplistically, tokenization attempts to split a document into words. Trask (2004) provides

a readable discussion of the concept of “a word” from a linguistics standpoint. Additional

discussion of tokenization and lemmatization from an NLP perspective is given in Chapter 4 of

Manning and Schütze (1999).

Most programming languages and operating systems now provide support for Unicode and

UTF-8. Details of the Unicode standard are given on its official Web site.4 The UTF-8 encoding

for Unicode codepoints was invented by Rob Pike and Ken Thompson as part of their Plan-9

Operating System effort (Pike and Thompson, 1993). Since the time of Pike and Thompson’s

invention, UTF-8 has been modified to accommodate changes and extensions to Unicode. It is

defined as an Internet standard by RFC 3639.5

In addition to the Porter stemmer (Porter, 1980), early stemmers for English include those by

Lovins (1968), Frakes (1984), and Paice (1990). Harman (1991) describes a simple S stemmer,

designed to reduce plural words to their singular forms. She compared the performance of this S

stemmer with those of the Porter and Lovins stemmers but found no significant improvement in

retrieval performance over unstemmed words for any of the stemmers. Through a more extensive

evaluation using larger test collections, Hull (1996) demonstrates that stemming can significantly

improve average effectiveness measures. However, he cautions that aggressive stemming may

degrade the performance of many queries while still improving average effectiveness by greatly

improving the performance of a few queries.

The Snowball6 stemmer provides an algorithmic framework for creating stemmers. Nonethe-

less, the creation and validation of a stemmer for a new language remains a labor-intensive

process. As a result, several attempts have been made to automatically create stemmers by

using large corpora to provide language examples. Creutz and Lagus (2002) describe a method

for segmenting words by minimizing a cost function and compare their method with existing

stemmers for English and Finnish. Majumder et al. (2007) describe a method that clusters

words into equivalence classes based on a morphological analysis. They evaluate their method

over several languages, including Bengali.

McNamee and Mayfield (2004) provide an overview of character n-gram tokenization for

information retrieval. McNamee et al. (2008) and McNamee (2008) compare n-gram indexing

with the Snowball stemmer and with the method of Creutz and Lagus (2002). In addition,

character n-grams provide one method for coping with errors introduced by optical character

recognition (OCR). Beitzel et al. (2002) provide a short survey of this area.

4 www.unicode.org
5 tools.ietf.org/html/rfc3629
6 snowball.tartarus.org

Chapter 3 Tokens and Terms98

Spanish IR was the subject of an experimental track at TREC from 1994 to 1996; Chinese was

the subject of a track in 1996 and 1997 (Voorhees and Harman, 2005). A multilingual track that

considered Arabic along with other languages ran from 1997 until 2002 (Gey and Oard, 2001).

Starting in 2000 the Cross-Language Evaluation Forum (CLEF7) conducted multilingual and

crosslingual experiments on European languages. The results in Table 3.3 are derived from CLEF

test collections. Since 2001 the Japanese National Institute of Informatics Test Collection for IR

Systems project (NTCIR8) has provided a similar experimental forum for Asian languages. The

Indian Forum for Information Retrieval Evaluation (FIRE9) conducts experiments on languages

of the Indian subcontinent.

Computer processing for Asian languages presents difficult and complex problems, and it

remains the subject of substantial ongoing research. A major journal, ACM Transactions on

Asian Language Information Processing is devoted entirely to the topic. Luk and Kwok (2002)

provide an extensive overview of word segmentation and tokenization techniques for Chinese

information retrieval. Peng et al. (2002) explore the importance of word segmentation for

Chinese information retrieval, evaluating and comparing a number of competing techniques.

Braschler and Ripplinger (2004) consider word segmentation (also called decompounding) for

German. Kraaij and Pohlmann (1996) consider decompounding for Dutch. A special issue of

the Information Retrieval Journal is devoted to non-English Web retrieval (Lazarinis et al.,

2009).

Tokenization for a new language requires careful consideration of both its orthography and

its morphology. Fujii and Croft (1993) cover the basics of tokenization for Japanese. Asian et al.

(2005) discuss Indonesian. Larkey et al. (2002) discuss Arabic. Nwesri et al. (2005) present

and evaluate an algorithm for removing affixes representing conjunctions and prepositions from

Arabic words.

Spelling correction is closely related to tokenization. Because tokens provide the link between

queries and documents, matching becomes harder when misspellings are present. Kukich (1992)

provides a survey of foundational work on the detection and correction of spelling errors. Brill

and Moore (2000) present an error model for spelling correction. Ruch (2002) examines the

impact of spelling errors on a basic adhoc retrieval task. Both Cucerzan and Brill (2004) and Li

et al. (2006) describe spell checkers created by identifying spelling errors and their corrections

from the query logs of a commercial Web search engine. Jain et al. (2007) describe related

methods for expanding acronyms using query logs.

7 www.clef-campaign.org
8 research.nii.ac.jp/ntcir
9 www.isical.ac.in/∼clia

3.7 Exercises 99

3.7 Exercises

Exercise 3.1 Try the following queries on at least two commercial search engines:

(a) to be or not to be

(b) U.S.

(c) US

(d) THE

(e) The The

(f) I’ll be back

(g) R-E-S-P-E-C-T

Each query has a peculiar meaning that may be lost through tokenization. Judge the top five

results. Which are relevant?

Exercise 3.2 In the content of the Web certain terms appear so frequently that they may

viewed as stopwords. Try the following queries on at least two commercial search engines:

(a) www

(b) com

(c) http

Judge the top five results. Which are relevant?

Exercise 3.3 Unicode assigns the character β a codepoint of U+03B2. What is its binary

UTF-8 representation?

Exercise 3.4 (project exercise) Tokenize the collection you created in Exercise 1.9. For

this exercise, keep only the tokens consisting entirely of characters from the English alphabet.

Ignore tags and tokens containing non-ASCII characters. Generate character 5-grams from

these tokens, following the procedure of Section 3.3. Generate a log-log plot of frequency vs.

rank order, similar to the plot in Figure 1.5 or the plot generated for Exercise 1.12. Do the

5-grams follow Zipf’s law? If so, what is an approximate value for α?

Exercise 3.5 (project exercise) Repeat Exercise 3.4 using Chinese-language text from

Wikipedia, tokenized as character bigrams.

Exercise 3.6 (project exercise) Obtain a copy of the Porter stemmer or another stemmer

for English. Tokenize the collection you created in Exercise 1.9. As you did in Exercise 3.4, keep

only the tokens consisting entirely of characters from the English alphabet. Eliminate duplicate

tokens to create a vocabulary for the collection. Execute the stemmer over the terms in the

vocabulary to create sets of equivalent terms, all of which stem to the same root form. Which

set (or sets) is the largest? Identify at least three sets containing terms that are inappropriately

conflated by the stemmer.

Chapter 3 Tokens and Terms100

Exercise 3.7 (project exercise) If you are familiar with a language other than English for

which a stemmer is available, repeat Exercise 3.6 for that language. You may use Wikipedia as

a source of text.

3.8 Bibliography

Asian, J., Williams, H. E., and Tahaghoghi, S. M. M. (2005). Stemming Indonesian. In Pro-

ceedings of the 28th Australasian Computer Science Conference, pages 307–314. Newcastle,

Australia.

Beitzel, S., Jensen, E., and Grossman, D. (2002). Retrieving OCR text: A survey of current

approaches. In Proceedings of the SIGIR 2002 Workshop on Information Retrieval and OCR:

From Converting Content to Grasping Meaning. Tampere, Finland.

Braschler, M., and Ripplinger, B. (2004). How effective is stemming and decompounding for

German text retrieval? Information Retrieval, 7(3-4):291–316.

Brill, E., and Moore, R. C. (2000). An improved error model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting on Association for Computational Linguistics,

pages 286–293. Hong Kong, China.

Creutz, M., and Lagus, K. (2002). Unsupervised discovery of morphemes. In Proceedings of the
ACL-02 Workshop on Morphological and Phonological Learning, pages 21–30.

Cucerzan, S., and Brill, E. (2004). Spelling correction as an iterative process that exploits the

collective knowledge of Web users. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 293–300.

Frakes, W. B. (1984). Term conflation for information retrieval. In Proceedings of the 7th

Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 383–389. Cambridge, England.

Fujii, H., and Croft, W. B. (1993). A comparison of indexing techniques for Japanese

text retrieval. In Proceedings of the 16th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pages 237–246. Pittsburgh,

Pennsylvania.

Gey, F. C., and Oard, D. W. (2001). The TREC-2001 cross-language information retrieval track:
Searching Arabic using English, French or Arabic queries. In Proceedings of the 10th Text

REtrieval Conference, pages 16–25. Gaithersburg, Maryland.

Gore, A. (2006). An Inconvenient Truth. Emmaus, Pennsylvania: Rodale.

Harman, D. (1991). How effective is suffixing? Journal of the American Society for Information

Science, 42(1):7–15.

Hull, D. A. (1996). Stemming algorithms: A case study for detailed evaluation. Journal of the

American Society for Information Science, 47(1):70–84.

3.8 Bibliography 101

Jain, A., Cucerzan, S., and Azzam, S. (2007). Acronym-expansion recognition and ranking on

the Web. In Proceedings of the IEEE International Conference on Information Reuse and
Integration, pages 209–214. Las Vegas, Nevada.

Kraaij, W., and Pohlmann, R. (1996). Using Linguistic Knowledge in Information Retrieval.

Technical Report OTS-WP-CL-96-001. Research Institute for Language and Speech, Utrecht
University.

Kukich, K. (1992). Technique for automatically correcting words in text. ACM Computing

Surveys, 24(4):377–439.

Larkey, L. S., Ballesteros, L., and Connell, M. E. (2002). Improving stemming for Arabic infor-

mation retrieval: Light stemming and co-occurrence analysis. In Proceedings of the 25th

Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 275–282. Tampere, Finland.

Lazarinis, F., Vilares, J., Tait, J., and Efthimiadis, E.N. (2009). Introduction to the special

issue on non-English Web retrival. Information Retrieval, 12(3).

Li, M., Zhu, M., Zhang, Y., and Zhou, M. (2006). Exploring distributional similarity based

models for query spelling correction. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, pages 1025–1032. Sydney, Australia.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics, 11(1–2):22–31.

Luk, R. W. P., and Kwok, K. L. (2002). A comparison of Chinese document indexing strate-

gies and retrieval models. ACM Transactions on Asian Language Information Processing,

1(3):225–268.

Majumder, P., Mitra, M., Parui, S. K., Kole, G., Mitra, P., and Datta, K. (2007). YASS: Yet

another suffix stripper. ACM Transactions on Information Systems, 25(4):article 18.

Manning, C. D., and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

Cambridge, Massachusetts: MIT Press.

McNamee, P. (2008). Retrieval experiments at Morpho Challenge 2008. In Cross-Language
Evaluation Forum. Aarhus, Denmark.

McNamee, P., and Mayfield, J. (2004). Character n-gram tokenization for European language

text retrieval. Information Retrieval, 7(1-2):73–97.

McNamee, P., Nicholas, C., and Mayfield, J. (2008). Don’t have a stemmer?: Be

un+concern+ed. In Proceedings of the 31st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 813–814. Singapore.

Nwesri, A. F. A., Tahaghoghi, S. M. M., and Scholer, F. (2005). Stemming Arabic conjunctions

and prepositions. In Proceedings of the 12th International Conference on String Processing

and Information Retrieval, pages 206–217. Buenos Aires, Agentina.

Paice, C. D. (1990). Another stemmer. ACM SIGIR Forum, 24(3):56–61.

Chapter 3 Tokens and Terms102

Peng, F., Huang, X., Schuurmans, D., and Cercone, N. (2002). Investigating the relation-

ship between word segmentation performance and retrieval performance in Chinese IR.
In Proceedings of the 19th International Conference on Computational Linguistics. Taipei,

Taiwan.

Pike, R., and Thompson, K. (1993). Hello world. In Proceedings of the Winter 1993 USENIX
Conference, pages 43–50. San Diego, California.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Ruch, P. (2002). Information retrieval and spelling correction: An inquiry into lexical disam-

biguation. In Proceedings of the 2002 ACM Symposium on Applied Computing, pages 699–703.

Madrid, Spain.

Trask, L. (2004). What is a Word? Technical Report LxWP11/04. Department of Linguistics

and English Language, University of Sussex, United Kingdom.

Voorhees, E.M., and Harman, D. K. (2005). The Text REtrieval Conference. In Voorhees,
E.M., and Harman, D. K., editors, TREC — Experiment and Evaluation in Information

Retrieval, chapter 1, pages 3–20. Cambridge, Massachusetts: MIT Press.

II Indexing

4 Static Inverted Indices

In this chapter we describe a set of index structures that are suitable for supporting search

queries of the type outlined in Chapter 2. We restrict ourselves to the case of static text col-

lections. That is, we assume that we are building an index for a collection that never changes.

Index update strategies for dynamic text collections, in which documents can be added to and

removed from the collection, are the topic of Chapter 7.

For performance reasons, it may be desirable to keep the index for a text collection completely

in main memory. However, in many applications this is not feasible. In file system search, for

example, a full-text index for all data stored in the file system can easily consume several

gigabytes. Since users will rarely be willing to dedicate the most part of their available memory

resources to the search system, it is not possible to keep the entire index in RAM. And even

for dedicated index servers used in Web search engines it might be economically sensible to

store large portions of the index on disk instead of in RAM, simply because disk space is so

much cheaper than RAM. For example, while we are writing this, a gigabyte of RAM costs

around �40 (U.S.), whereas a gigabyte of hard drive space costs only about �0.20 (U.S.). This

factor-200 price difference, however, is not reflected by the relative performance of the two

storage media. For typical index operations, an in-memory index is usually between 10 and 20

times faster than an on-disk index. Hence, when building two equally priced retrieval systems,

one storing its index data on disk, the other storing them in main memory, the disk-based

system may actually be faster than the RAM-based one (see Bender et al. (2007) for a more

in-depth discussion of this and related issues).

The general assumption that will guide us throughout this chapter is that main memory is a

scarce resource, either because the search engine has to share it with other processes running

on the same system or because it is more economical to store data on disk than in RAM. In our

discussion of data structures for inverted indices, we focus on hybrid organizations, in which

some parts of the index are kept in main memory, while the majority of the data is stored

on disk. We examine a variety of data structures for different parts of the search engine and

evaluate their performance through a number of experiments. A performance summary of the

computer system used to conduct these experiments can be found in the appendix.

4.1 Index Components and Index Life Cycle

When we discuss the various aspects of inverted indices in this chapter, we look at them from

two perspectives: the structural perspective, in which we divide the system into its components

4.1 Index Components and Index Life Cycle 105

and examine aspects of an individual component of the index (e.g., an individual postings list);

and the operational perspective, in which we look at different phases in the life cycle of an

inverted index and discuss the essential index operations that are carried out in each phase

(e.g., processing a search query).

As already mentioned in Chapter 2, the two principal components of an inverted index are

the dictionary and the postings lists. For each term in the text collection, there is a postings list

that contains information about the term’s occurrences in the collection. The information found

in these postings lists is used by the system to process search queries. The dictionary serves

as a lookup data structure on top of the postings lists. For every query term in an incoming

search query, the search engine first needs to locate the term’s postings list before it can start

processing the query. It is the job of the dictionary to provide this mapping from terms to the

location of their postings lists in the index.

In addition to dictionary and postings lists, search engines often employ various other data

structures. Many engines, for instance, maintain a document map that, for each document in

the index, contains document-specific information, such as the document’s URL, its length,

PageRank (see Section 15.3.1), and other data. The implementation of these data structures,

however, is mostly straightforward and does not require any special attention.

The life cycle of a static inverted index, built for a never-changing text collection, consists of

two distinct phases (for a dynamic index the two phases coincide):

1. Index construction: The text collection is processed sequentially, one token at a time,

and a postings list is built for each term in the collection in an incremental fashion.

2. Query processing: The information stored in the index that was built in phase 1 is used

to process search queries.

Phase 1 is generally referred to as indexing time, while phase 2 is referred to as query time. In

many respects these two phases are complementary; by performing additional work at indexing

time (e.g., precomputing score contributions — see Section 5.1.3), less work needs to be done at

query time. In general, however, the two phases are quite different from one another and usually

require different sets of algorithms and data structures. Even for subcomponents of the index

that are shared by the two phases, such as the search engine’s dictionary data structure, it is

not uncommon that the specific implementation utilized during index construction is different

from the one used at query time.

The flow of this chapter is mainly defined by our bifocal perspective on inverted indices. In

the first part of the chapter (Sections 4.2–4.4), we are primarily concerned with the query-time

aspects of dictionary and postings lists, looking for data structures that are most suitable for

supporting efficient index access and query processing. In the second part (Section 4.5) we focus

on aspects of the index construction process and discuss how we can efficiently build the data

structures outlined in the first part. We also discuss how the organization of the dictionary and

the postings lists needs to be different from the one suggested in the first part of the chapter,

if we want to maximize their performance at indexing time.

Chapter 4 Static Inverted Indices106

For the sake of simplicity, we assume throughout this chapter that we are dealing exclusively

with schema-independent indices. Other types of inverted indices, however, are similar to the

schema-independent variant, and the methods discussed in this chapter apply to all of them

(see Section 2.1.3 for a list of different types of inverted indices).

4.2 The Dictionary

The dictionary is the central data structure that is used to manage the set of terms found in

a text collection. It provides a mapping from the set of index terms to the locations of their

postings lists. At query time, locating the query terms’ postings lists in the index is one of the

first operations performed when processing an incoming keyword query. At indexing time, the

dictionary’s lookup capability allows the search engine to quickly obtain the memory address

of the inverted list for each incoming term and to append a new posting at the end of that list.

Dictionary implementations found in search engines usually support the following set of

operations:

1. Insert a new entry for term T .

2. Find and return the entry for term T (if present).

3. Find and return the entries for all terms that start with a given prefix P .

When building an index for a text collection, the search engine performs operations of types 1

and 2 to look up incoming terms in the dictionary and to add postings for these terms to the

index. After the index has been built, the search engine can process search queries, performing

operations of types 2 and 3 to locate the postings lists for all query terms. Although dictionary

operations of type 3 are not strictly necessary, they are a useful feature because they allow

the search engine to support prefix queries of the form “inform∗”, matching all documents

containing a term that begins with “inform”.

Table 4.1 Index sizes for various index types and three example collections, with and without
applying index compression techniques. In each case the first number refers to an index in which
each component is stored as a simple 32-bit integer, while the second number refers to an index
in which each entry is compressed using a byte-aligned encoding method.

Shakespeare TREC45 GOV2

Number of tokens 1.3× 106 3.0× 108 4.4× 1010

Number of terms 2.3× 104 1.2× 106 4.9 × 107

Dictionary (uncompr.) 0.4 MB 24 MB 1046 MB

Docid index n/a 578 MB/200 MB 37751 MB/12412 MB

Frequency index n/a 1110 MB/333 MB 73593 MB/21406 MB

Positional index n/a 2255 MB/739 MB 245538 MB/78819 MB

Schema-ind. index 5.7 MB/2.7 MB 1190 MB/532 MB 173854 MB/63670 MB

4.2 The Dictionary 107

��������

��	
���

�����������

�����	��

�������������

����
�
	�

����������������

����
����

������

������	�

��������	
���	��	�����

������	�����	��	��������	����������	
���������	����������	�������	����	�������	�	��������	����	��������	
����

��������

��	
����

�������

�����
�

��������	����

Figure 4.1 Dictionary data structure based on a sorted array (data extracted from a schema-independent
index for TREC45). The array contains fixed-size dictionary entries, composed of a zero-terminated string and
a pointer into the postings file that indicates the position of the term’s postings list.

For a typical natural-language text collection, the dictionary is relatively small compared to

the total size of the index. Table 4.1 shows this for the three example collections used in this

book. The size of the uncompressed dictionary is only between 0.6% (GOV2) and 7% (Shake-

speare) of the size of an uncompressed schema-independent index for the respective collection

(the fact that the relative size of the dictionary is smaller for large collections than for small

ones follows directly from Zipf’s law — see Equation 1.2 on page 16). We therefore assume, at

least for now, that the dictionary is small enough to fit completely into main memory.

The two most common ways to realize an in-memory dictionary are:

• A sort-based dictionary, in which all terms that appear in the text collection are arranged

in a sorted array or in a search tree, in lexicographical (i.e., alphabetical) order, as shown

in Figure 4.1. Lookup operations are realized through tree traversal (when using a search

tree) or binary search (when using a sorted list).

• A hash-based dictionary, in which each index term has a corresponding entry in a hash

table. Collisions in the hash table (i.e., two terms are assigned the same hash value)

are resolved by means of chaining — terms with the same hash value are arranged in a

linked list, as shown in Figure 4.2.

Storing the dictionary terms

When implementing the dictionary as a sorted array, it is important that all array entries are of

the same size. Otherwise, performing a binary search may be difficult. Unfortunately, this causes

some problems. For example, the longest sequence of alphanumeric characters in GOV2 (i.e.,

the longest term in the collection) is 74,147 bytes long. Obviously, it is not feasible to allocate

74 KB of memory for each term in the dictionary. But even if we ignore such extreme outliers

and truncate each term after, say, 20 bytes, we are still wasting precious memory resources.

Following the simple tokenization procedure from Section 1.3.2, the average length of a term

Chapter 4 Static Inverted Indices108

�����������

		

����

��������������

		���
�

��������

����
��

��������������

����

������� �����

������

����������

���
���

��!���

����	����

������������

���

����

��� �����

�
�	���

��������	

������

��		�������������	���
��	����

��		�������������	���
��	����

��		�������������	���
��	����

�

�

	

�

�

���

��

Figure 4.2 Dictionary data structure based on a hash table with 210 = 1024 entries (data extracted
from schema-independent index for TREC45). Terms with the same hash value are arranged in a linked
list (chaining). Each term descriptor contains the term itself, the position of the term’s postings list,
and a pointer to the next entry in the linked list.

in GOV2 is 9.2 bytes. Storing each term in a fixed-size memory region of 20 bytes wastes 10.8

bytes per term on average (internal fragmentation).

One way to eliminate the internal fragmentation is to not store the index terms themselves in

the array, but only pointers to them. For example, the search engine could maintain a primary

dictionary array, containing 32-bit pointers into a secondary array. The secondary array then

contains the actual dictionary entries, consisting of the terms themselves and the corresponding

pointers into the postings file. This way of organizing the search engine’s dictionary data is

shown in Figure 4.3. It is sometimes referred to as the dictionary-as-a-string approach, because

there are no explicit delimiters between two consecutive dictionary entries; the secondary array

can be thought of as a long, uninterrupted string.

For the GOV2 collection, the dictionary-as-a-string approach, compared to the dictionary

layout shown in Figure 4.1, reduces the dictionary’s storage requirements by 10.8 − 4 = 6.8

bytes per entry. Here the term 4 stems from the pointer overhead in the primary array; the

term 10.8 corresponds to the complete elimination of any internal fragmentation.

It is worth pointing out that the term strings stored in the secondary array do not require an

explicit termination symbol (e.g., the “\0” character), because the length of each term in the

dictionary is implicitly given by the pointers in the primary array. For example, by looking at

the pointers for “shakespeare” and “shakespearean” in Figure 4.3, we know that the dictionary

entry for “shakespeare” requires 16629970−16629951 = 19 bytes in total: 11 bytes for the term

plus 8 bytes for the 64-bit file pointer into the postings file.

4.2 The Dictionary 109

������� ����		�� ����		�
 ����			� �������� ��������

����������������
��	�
������
�	������
���
	�	�����
���	���

��	��	�

�����������

������

���
	�	�

����������

����	��	�

������������

����
�
��

���������������

����
����

������

���	��	��

�
��
������	��

������

�������

���
	�	�

�������

���	�	
��

�
�	����������
��	�
������

��
�
�����	�����	�����

����	
��	���	������
������
�
	����

��
��
������	�

������

Figure 4.3 Sort-based dictionary data structure with an additional level of indirection (the so-called
dictionary-as-a-string approach).

Sort-based versus hash-based dictionary

For most applications a hash-based dictionary will be faster than a sort-based implementation,

as it does not require a costly binary search or the traversal of a path in a search tree to find

the dictionary entry for a given term. The precise speed advantage of a hash-based dictionary

over a sort-based dictionary depends on the size of the hash table. If the table is too small, then

there will be many collisions, potentially reducing the dictionary’s performance substantially.

As a rule of thumb, in order to keep the lengths of the collision chains in the hash table small,

the size of the table should grow linearly with the number of terms in the dictionary.

Table 4.2 Lookup performance at query time. Average latency of a single-term lookup for a sort-
based (shown in Figure 4.3) and a hash-based (shown in Figure 4.2) dictionary implementation. For
the hash-based implementation, the size of the hash table (number of array entries) is varied between
218 (≈ 262,000) and 224 (≈ 16.8 million).

Sorted Hashed (218) Hashed (220) Hashed (222) Hashed (224)

Shakespeare 0.32 μs 0.11 μs 0.13 μs 0.14 μs 0.16 μs

TREC45 1.20 μs 0.53 μs 0.34 μs 0.27 μs 0.25 μs

GOV2 2.79 μs 19.8 μs 5.80 μs 2.23 μs 0.84 μs

Table 4.2 shows the average time needed to find the dictionary entry for a random index term

in each of our three example collections. A larger table usually results in a shorter lookup time,

except for the Shakespeare collection, which is so small (23,000 different terms) that the effect

of decreasing the term collisions is outweighed by the less efficient CPU cache utilization. A

bigger hash table in this case results in an increased lookup time. Nonetheless, if the table size

is chosen properly, a hash-based dictionary is usually at least twice as fast as a sort-based one.

Chapter 4 Static Inverted Indices110

Unfortunately, this speed advantage for single-term dictionary lookups has a drawback: A

sort-based dictionary offers efficient support for prefix queries (e.g., “inform∗”). If the dictionary

is based on a sorted array, for example, then a prefix query can be realized through two binary

search operations, to find the first term Tj and the last term Tk matching the given prefix query,

followed by a linear scan of all k − j + 1 dictionary entries between Tj and Tk. The total time

complexity of this procedure is

Θ(log(|V|)) + Θ(m), (4.1)

where m = k− j + 1 is the number of terms matching the prefix query and V is the vocabulary

of the search engine.

If prefix queries are to be supported by a hash-based dictionary implementation, then this

can be realized only through a linear scan of all terms in the hash table, requiring Θ(|V|) string

comparisons. It is therefore not unusual that a search engine employs two different dictionary

data structures: a hash-based dictionary, used during the index construction process and pro-

viding efficient support of operations 1 (insert) and 2 (single-term lookup), and a sort-based

dictionary that is created after the index has been built and that provides efficient support of

operations 2 (single-term lookup) and 3 (prefix lookup).

The distinction between an indexing-time and a query-time dictionary is further motivated

by the fact that support for high-performance single-term dictionary lookups is more important

during index construction than during query processing. At query time the overhead associated

with finding the dictionary entries for all query terms is negligible (a few microseconds) and

is very likely to be outweighed by the other computations that have to be performed while

processing a query. At indexing time, however, a dictionary lookup needs to be performed for

every token in the text collection — 44 billion lookup operations in the case of GOV2. Thus, the

dictionary represents a major bottleneck in the index construction process, and lookups should

be as fast as possible.

4.3 Postings Lists

The actual index data, used during query processing and accessed through the search engine’s

dictionary, is stored in the index’s postings lists. Each term’s postings list contains information

about the term’s occurrences in the collection. Depending on the type of the index (docid,

frequency, positional, or schema-independent — see Section 2.1.3), a term’s postings list contains

more or less detailed, and more or less storage-intensive, information. Regardless of the actual

type of the index, however, the postings data always constitute the vast majority of all the data

in the index. In their entirety, they are therefore usually too large to be stored in main memory

and have to be kept on disk. Only during query processing are the query terms’ postings lists (or

small parts thereof) loaded into memory, on a by-need basis, as required by the query processing

routines.

4.3 Postings Lists 111

To make the transfer of postings from disk into main memory as efficient as possible, each

term’s postings list should be stored in a contiguous region of the hard drive. That way, when

accessing the list, the number of disk seek operations is minimized. The hard drives of the

computer system used in our experiments (summarized in the appendix) can read about half a

megabyte of data in the time it takes to perform a single disk seek, so discontiguous postings

lists can reduce the system’s query performance dramatically.

Random list access: The per-term index

The search engine’s list access pattern at query time depends on the type of query being pro-

cessed. For some queries, postings are accessed in an almost strictly sequential fashion. For other

queries it is important that the search engine can carry out efficient random access operations

on the postings lists. An example of the latter type is phrase search or — equivalently — con-

junctive Boolean search (processing a phrase query on a schema-independent index is essentially

the same as resolving a Boolean AND on a docid index).

Recall from Chapter 2 the two main access methods provided by an inverted index: next

and prev, returning the first (or last) occurrence of the given term after (or before) a given

index address. Suppose we want to find all occurrences of the phrase “iterative binary search”

in GOV2. After we have found out that there is exactly one occurrence of “iterative binary” in

the collection, at position [33,399,564,886, 33,399,564,887], a single call to

next(“search”, 33,399,564,887)

will tell us whether the phrase “iterative binary search” appears in the corpus. If the method

returns 33,399,564,888, then the answer is yes. Otherwise, the answer is no.

If postings lists are stored in memory, as arrays of integers, then this operation can be

performed very efficiently by conducting a binary search (or galloping search — see Section 2.1.2)

on the postings array for “search”. Since the term “search” appears about 50 million times in

GOV2, the binary search requires a total of

�log2(5× 107)� = 26

random list accesses. For an on-disk postings list, the operation could theoretically be carried

out in the same way. However, since a hard disk is not a true random access device, and a disk

seek is a very costly operation, such an approach would be prohibitively expensive. With its 26

random disk accesses, a binary search on the on-disk postings list can easily take more than 200

milliseconds, due to seek overhead and rotational latency of the disk platter.

As an alternative, one might consider loading the entire postings list into memory in a single

sequential read operation, thereby avoiding the expensive disk seeks. However, this is not a

good solution, either. Assuming that each posting requires 8 bytes of disk space, it would take

our computer more than 4 seconds to read the term’s 50 million postings from disk.

Chapter 4 Static Inverted Indices112

������ ������ ������ ������ �	
	�� �	����

�	�	�� �	���� �	���� �	���� �	���� �	����

�	�
�
 �	���� �	��
� �	�
�� ��	��� ��	��

������ ���	�� ��	��
 ���
�� ������ ����
�

���
�
 ������ ��	
��

������ �	�	�� �	�
�
 ������ ���
�

���������������������������������

� !���

Figure 4.4 Schema-independent postings list for “denmark” (extracted from the Shakespeare col-
lection) with per-term index: one synchronization point for every six postings. The number of
synchronization points is implicit from the length of the list: �27/6� = 5.

In order to provide efficient random access into any given on-disk postings list, each list has

to be equipped with an auxiliary data structure, which we refer to as the per-term index. This

data structure is stored on disk, at the beginning of the respective postings list. It contains

a copy of a subset of the postings in the list, for instance, a copy of every 5,000th posting.

When accessing the on-disk postings list for a given term T , before performing any actual index

operations on the list, the search engine loads T ’s per-term index into memory. Random-access

operations of the type required by the next method can then be carried out by performing a

binary search on the in-memory array representing T ’s per-term index (identifying a candidate

range of 5,000 postings in the on-disk postings list), followed by loading up to 5,000 postings

from the candidate range into memory and then performing a random access operation on those

postings.

This approach to random access list operations is sometimes referred to as self-indexing

(Moffat and Zobel, 1996). The entries in the per-term index are called synchronization points.

Figure 4.4 shows the postings list for the term “denmark”, extracted from the Shakespeare

collection, with a per-term index of granularity 6 (i.e., one synchronization point for every six

postings in the list). In the figure, a call to next(250,000) would first identify the postings

block starting with 248,080 as potentially containing the candidate posting. It would then load

this block into memory, carry out a binary search on the block, and return 254,313 as the

answer. Similarly, in our example for the phrase query “iterative binary search”, the random

access operation into the list for the term “search” would be realized using only 2 disk seeks

and loading a total of about 15,000 postings into memory (10,000 postings for the per-term

index and 5,000 postings from the candidate range) — translating into a total execution time

of approximately 30 ms.

Choosing the granularity of the per-term index, that is, the number of postings between two

synchronization points, represents a trade-off. A greater granularity increases the amount of

data between two synchronization points that need to be loaded into memory for every random

access operation; a smaller granularity, conversely, increases the size of the per-term index and

4.3 Postings Lists 113

thus the amount of data read from disk when initializing the postings list (Exercise 4.1 asks you

to calculate the optimal granularity for a given list).

In theory it is conceivable that, for a very long postings list containing billions of entries, the

optimal per-term index (with a granularity that minimizes the total amount of disk activity)

becomes so large that it is no longer feasible to load it completely into memory. In such a situa-

tion it is possible to build an index for the per-term index, or even to apply the whole procedure

recursively. In the end this leads to a multi-level static B-tree that provides efficient random

access into the postings list. In practice, however, such a complicated data structure is rarely

necessary. A simple two-level structure, with a single per-term index for each on-disk postings

list, is sufficient. The term “the”, for instance, the most frequent term in the GOV2 collection,

appears roughly 1 billion times in the collection. When stored uncompressed, its postings list in

a schema-independent index consumes about 8 billion bytes (8 bytes per posting). Suppose the

per-term index for “the” contains one synchronization point for every 20,000 postings. Loading

the per-term index with its 50,000 entries into memory requires a single disk seek, followed

by a sequential transfer of 400,000 bytes (≈ 4.4 ms). Each random access operation into the

term’s list requires an additional disk seek, followed by loading 160,000 bytes (≈ 1.7 ms) into

RAM. In total, therefore, a single random access operation into the term’s postings list requires

about 30 ms (two random disk accesses, each taking about 12 ms, plus reading 560,000 bytes

from disk). In comparison, adding an additional level of indexing, by building an index for the

per-term index, would increase the number of disk seeks required for a single random access to

at least three, and would therefore most likely decrease the index’s random access performance.

Compared to an implementation that performs a binary search directly on the on-disk post-

ings list, the introduction of the per-term index improves the performance of random access

operations quite substantially. The true power of the method, however, lies in the fact that

it allows us to store postings of variable length, for example postings of the form (docid, tf,

〈positions〉), and in particular compressed postings. If postings are stored not as fixed-size (e.g.,

8-byte) integers, but in compressed form, then a simple binary search is no longer possible. How-

ever, by compressing postings in small chunks, where the beginning of each chunk corresponds

to a synchronization point in the per-term index, the search engine can provide efficient random

access even for compressed postings lists. This application also explains the choice of the term

“synchronization point”: a synchronization point helps the decoder establish synchrony with

the encoder, thus allowing it to start decompressing data at an (almost) arbitrary point within

the compressed postings sequence. See Chapter 6 for details on compressed inverted indices.

Prefix queries

If the search engine has to support prefix queries, such as “inform∗”, then it is imperative

that postings lists be stored in lexicographical order of their respective terms. Consider the

GOV2 collection; 4,365 different terms with a total of 67 million occurrences match the prefix

query “inform∗”. By storing lists in lexicographical order, we ensure that the inverted lists for

these 4,365 terms are close to each other in the inverted file and thus close to each other on

Chapter 4 Static Inverted Indices114

disk. This decreases the seek distance between the individual lists and leads to better query

performance. If lists were stored on disk in some random order, then disk seeks and rotational

latency alone would account for almost a minute (4,365 × 12 ms), not taking into account any

of the other operations that need to be carried out when processing the query. By arranging the

inverted lists in lexicographical order of their respective terms, a query asking for all documents

matching “inform∗” can be processed in less than 2 seconds when using a frequency index; with

a schema-independent index, the same query takes about 6 seconds. Storing the lists in the

inverted file in some predefined order (e.g., lexicographical) is also important for efficient index

updates, as discussed in Chapter 7.

A separate positional index

If the search engine is based on a document-centric positional index (containing a docid, a

frequency value, and a list of within-document positions for each document that a given term

appears in), it is not uncommon to divide the index data into two separate inverted files: one

file containing the docid and frequency component of each posting, the other file containing the

exact within-document positions. The rationale behind this division is that for many queries —

and many scoring functions — access to the positional information is not necessary. By excluding

it from the main index, query processing performance can be increased.

4.4 Interleaving Dictionary and Postings Lists

For many text collections the dictionary is small enough to fit into the main memory of a single

machine. For large collections, however, containing many millions of different terms, even the

collective size of all dictionary entries might be too large to be conveniently stored in RAM.

The GOV2 collection, for instance, contains about 49 million distinct terms. The total size of

the concatenation of these 49 million terms (if stored as zero-terminated strings) is 482 MB.

Now suppose the dictionary data structure used in the search engine is based on a sorted array,

as shown in Figure 4.3. Maintaining for each term in the dictionary an additional 32-bit pointer

in the primary sorted array and a 64-bit file pointer in the secondary array increases the overall

memory consumption by another 12×49 = 588 million bytes (approximately), leading to a total

memory requirement of 1046 MB. Therefore, although the GOV2 collection is small enough to

be managed by a single machine, the dictionary may be too large to fit into the machine’s main

memory.

To some extent, this problem can be addressed by employing dictionary compression tech-

niques (discussed in Section 6.4). However, dictionary compression can get us only so far. There

exist situations in which the number of distinct terms in the text collection is so enormous that

it becomes impossible to store the entire dictionary in main memory, even after compression.

Consider, for example, an index in which each postings list represents not an individual term

but a term bigram, such as “information retrieval”. Such an index is very useful for processing

4.4 Interleaving Dictionary and Postings Lists 115

Table 4.3 Number of unique terms, term bigrams, and trigrams for our three text collections.
The number of unique bigrams is much larger than the number of unique terms, by about one
order of magnitude.

Tokens Unique Words Unique Bigrams Unique Trigrams

Shakespeare 1.3 × 106 2.3× 104 2.9× 105 6.5× 105

TREC45 3.0 × 108 1.2× 106 2.5× 107 9.4× 107

GOV2 4.4× 1010 4.9× 107 5.2× 108 2.3× 109

phrase queries. Unfortunately, the number of unique bigrams in a text collection is substan-

tially larger than the number of unique terms. Table 4.3 shows that GOV2 contains only about

49 million distinct terms, but 520 million distinct term bigrams. Not surprisingly, if trigrams are

to be indexed instead of bigrams, the situation becomes even worse — with 2.3 billion different

trigrams in GOV2, it is certainly not feasible to keep the entire dictionary in main memory

anymore.

Storing the entire dictionary on disk would satisfy the space requirements but would slow

down query processing. Without any further modifications an on-disk dictionary would add at

least one extra disk seek per query term, as the search engine would first need to fetch each

term’s dictionary entry from disk before it could start processing the given query. Thus, a pure

on-disk approach is not satisfactory, either.

�������	
������	����
�����	�����������	����������	��������

���������	����������	����������	����	
�������	���	�	������	��	���	�����������

����������� 〈����������〉 �	
����
��
� 〈����������〉 �	
����
��
���� 〈������〉 �	
���� 〈���������〉

����������	�����
������	����

�	
����
��

���������

�	
���

���������

�	
����

���������

�	
��

���������

Figure 4.5 Interleaving dictionary and postings lists: Each on-disk inverted list is immediately preceded by
the dictionary entry for the respective term. The in-memory dictionary contains entries for only some of the
terms. In order to find the postings list for “shakespeareanism”, a sequential scan of the on-disk data between
“shakespeare” and “shaking” is necessary.

A possible solution to this problem is called dictionary interleaving, shown in Figure 4.5. In

an interleaved dictionary all entries are stored on disk, each entry right before the respective

postings list, to allow the search engine to fetch dictionary entry and postings list in one sequen-

tial read operation. In addition to the on-disk data, however, copies of some dictionary entries

Chapter 4 Static Inverted Indices116

Table 4.4 The impact of dictionary interleaving on a schema-independent index for GOV2 (49.5
million distinct terms). By choosing an index block size B = 16,384 bytes, the number of in-memory
dictionary entries can be reduced by over 99%, at the cost of a minor query slowdown: 1 ms per
query term.

Index Block Size (in bytes) 1,024 4,096 16,384 65,536 262,144

No. of in-memory dict. entries (×106) 3.01 0.91 0.29 0.10 0.04

Avg. index access latency (in ms) 11.4 11.6 12.3 13.6 14.9

(but not all of them) are kept in memory. When the search engine needs to determine the loca-

tion of a term’s postings list, it first performs a binary search on the sorted list of in-memory

dictionary entries, followed by a sequential scan of the data found between two such entries. For

the example shown in the figure, a search for “shakespeareanism” would first determine that

the term’s postings list (if it appears in the index) must be between the lists for “shakespeare”

and “shaking”. It would then load this index range into memory and scan it in a linear fashion

to find the dictionary entry (and thus the postings list) for the term “shakespeareanism”.

Dictionary interleaving is very similar to the self-indexing technique from Section 4.3, in the

sense that random access disk operations are avoided by reading a little bit of extra data in a

sequential manner. Because sequential disk operations are so much faster than random access,

this trade-off is usually worthwhile, as long as the additional amount of data transferred from

disk into main memory is small. In order to make sure that this is the case, we need to define

an upper limit for the amount of data found between each on-disk dictionary entry and the

closest preceding in-memory dictionary entry. We call this upper limit the index block size. For

instance, if it is guaranteed for every term T in the index that the search engine does not need

to read more than 1,024 bytes of on-disk data before it reaches T ’s on-disk dictionary entry,

then we say that the index has a block size of 1,024 bytes.

Table 4.4 quantifies the impact that dictionary interleaving has on the memory consumption

and the list access performance of the search engine (using GOV2 as a test collection). Without

interleaving, the search engine needs to maintain about 49.5 million in-memory dictionary entries

and can access the first posting in a random postings list in 11.3 ms on average (random disk

seek + rotational latency). Choosing a block size of B = 1,024 bytes, the number of in-memory

dictionary entries can be reduced to 3 million. At the same time, the search engine’s list access

latency (accessing the first posting in a randomly chosen list) increases by only 0.1 ms — a

negligible overhead. As we increase the block size, the number of in-memory dictionary entries

goes down and the index access latency goes up. But even for a relatively large block size of

B = 256 KB, the additional cost — compared with a complete in-memory dictionary — is only

a few milliseconds per query term.

Note that the memory consumption of an interleaved dictionary with block size B is quite

different from maintaining an in-memory dictionary entry for every B bytes of index data.

For example, the total size of the (compressed) schema-independent index for GOV2 is 62 GB.

Choosing an index block size of B = 64 KB, however, does not lead to 62GB/ 64KB ≈ 1 million

4.4 Interleaving Dictionary and Postings Lists 117

��������	
��������	 �������
�����
���

� � � � � � � 	
��� � ������ � � � � �� �

	
��� � ������ ������ ������ ������ � �

� � �

�

� � � �� � 	
��� � ����� ������ � �

� � � � � � �� �� 	
�� � ����� � � � ��

� � � � � � � � 	
�� � ������ � � � �� � �

� � 	
��� � ����� ���� ������ ����� �

� � � � � �� � 	
�� ������ � � � � � � ��

� 	
��� ������ ������ � � � � �� � 	
���

���� ������ ������ � � � � � � � � � � � �

 �������!"�������

 ���������!"������

 �������!"�������

 ���#!"�����

 ���#!"�����

 ���#!"�����

 ������!"������

 ���#�$��!"������

Figure 4.6 Combining dictionary and postings lists. The index is split into blocks of 72 bytes. Each
entry of the in-memory dictionary is of the form (term, posting), indicating the first term and first posting
in a given index block. The “#” symbols in the index data are record delimiters that have been inserted
for better readability.

dictionary entries, but 10 times less. The reason is that frequent terms, such as “the” and “of”,

require only a single in-memory dictionary entry each, even though their postings lists each

consume far more disk space than 64 KB (the compressed list for “the” consumes about 1 GB).

In practice, a block size between 4 KB and 16 KB is usually sufficient to shrink the in-memory

dictionary to an acceptable size, especially if dictionary compression (Section 6.4) is used to

decrease the space requirements of the few remaining in-memory dictionary entries. The disk

transfer overhead for this range of block sizes is less than 1 ms per query term and is rather

unlikely to cause any performance problems.

Dropping the distinction between terms and postings

We may take the dictionary interleaving approach one step further by dropping the distinction

between terms and postings altogether, and by thinking of the index data as a sequence of pairs

of the form (term, posting). The on-disk index is then divided into fixed-size index blocks, with

each block perhaps containing 64 KB of data. All postings are stored on disk, in alphabetical

order of their respective terms. Postings for the same term are stored in increasing order, as

before. Each term’s dictionary entry is stored on disk, potentially multiple times, so that there

is a dictionary entry in every index block that contains at least one posting for the term. The in-

memory data structure used to access data in the on-disk index then is a simple array, containing

for each index block a pair of the form (term, posting), where term is the first term in the given

block, and posting is the first posting for term in that block.

Chapter 4 Static Inverted Indices118

An example of this new index layout is shown in Figure 4.6 (data taken from a schema-

independent index for the Shakespeare collection). In the example, a call to

next(“hurried”, 1,000,000)

would load the second block shown (starting with “hurricano”) from disk, would search the block

for a posting matching the query, and would return the first matching posting (1,085,752). A call

to

next(“hurricano”, 1,000,000)

would load the first block shown (starting with “hurling”), would not find a matching posting

in that block, and would then access the second block, returning the posting 1,203,814.

The combined representation of dictionary and postings lists unifies the interleaving method

explained above and the self-indexing technique described in Section 4.3 in an elegant way.

With this index layout, a random access into an arbitrary term’s postings list requires only a

single disk seek (we have eliminated the initialization step in which the term’s per-term index

is loaded into memory). On the downside, however, the total memory consumption of the

index is higher than if we employ self-indexing and dictionary interleaving as two independent

techniques. A 62-GB index with block size B = 64 KB now in fact requires approximately

1 million in-memory entries.

4.5 Index Construction

In the previous sections of this chapter, you have learned about various components of an

inverted index. In conjunction, they can be used to realize efficient access to the contents of the

index, even if all postings lists are stored on disk, and even if we don’t have enough memory

resources to hold a complete dictionary for the index in RAM. We now discuss how to efficiently

construct an inverted index for a given text collection.

From an abstract point of view, a text collection can be thought of as a sequence of term

occurrences — tuples of the form (term, position), where position is the word count from the

beginning of the collection, and term is the term that occurs at that position. Figure 4.7 shows

a fragment of the Shakespeare collection under this interpretation. Naturally, when a text

collection is read in a sequential manner, these tuples are ordered by their second component,

the position in the collection. The task of constructing an index is to change the ordering of the

tuples so that they are sorted by their first component, the term they refer to (ties are broken

by the second component). Once the new order is established, creating a proper index, with all

its auxiliary data structures, is a comparatively easy task.

In general, index construction methods can be divided into two categories: in-memory index

construction and disk-based index construction. In-memory indexing methods build an index for

a given text collection entirely in main memory and can therefore only be used if the collection

4.5 Index Construction 119

Text fragment:

〈SPEECH〉

〈SPEAKER〉 JULIET 〈/SPEAKER〉

〈LINE〉 O Romeo, Romeo! wherefore art thou Romeo? 〈/LINE〉

〈LINE〉 . . .

Original tuple ordering (collection order):

. . ., (“〈speech〉”, 915487), (“〈speaker〉”, 915488), (“juliet”, 915489),

(“〈/speaker〉”, 915490), (“〈line〉”, 915491), (“o”, 915492), (“romeo”, 915493),

(“romeo”, 915494), (“wherefore”, 915495), (“art”, 915496), (“thou”, 915497),

(“romeo”, 915498), (“〈/line〉”, 915499), (“〈line〉”, 915500), . . .

New tuple ordering (index order):

. . ., (“〈line〉”, 915491), (“〈line〉”, 915500), . . .,

(“romeo”, 915411), (“romeo”, 915493), (“romeo”, 915494), (“romeo”, 915498),

. . ., (“wherefore”, 913310), (“wherefore”, 915495), (“wherefore”, 915849), . . .

Figure 4.7 The index construction process can be thought of as reordering the tuple sequence that
constitutes the text collection. Tuples are rearranged from their original collection order (sorted by
position) to their new index order (sorted by term).

is small relative to the amount of available RAM. They do, however, form the basis for more

sophisticated, disk-based index construction methods. Disk-based methods can be used to build

indices for very large collections, much larger than the available amount of main memory.

As before, we limit ourselves to schema-independent indices because this allows us to ignore

some details that need to be taken care of when discussing more complicated index types, such

as document-level positional indices, and lets us focus on the essential aspects of the algorithms.

The techniques presented, however, can easily be applied to other index types.

4.5.1 In-Memory Index Construction

Let us consider the simplest form of index construction, in which the text collection is small

enough for the index to fit entirely into main memory. In order to create an index for such a

collection, the indexing process needs to maintain the following data structures:

• a dictionary that allows efficient single-term lookup and insertion operations;

• an extensible (i.e., dynamic) list data structure that is used to store the postings for each

term.

Assuming these two data structures are readily available, the index construction procedure is

straightforward, as shown in Figure 4.8. If the right data structures are used for dictionary and

extensible postings lists, then this method is very efficient, allowing the search engine to build

Chapter 4 Static Inverted Indices120

buildIndex (inputTokenizer) ≡
1 position← 0
2 while inputTokenizer.hasNext() do
3 T ← inputTokenizer.getNext()
4 obtain dictionary entry for T ; create new entry if necessary
5 append new posting position to T ’s postings list
6 position← position + 1
7 sort all dictionary entries in lexicographical order
8 for each term T in the dictionary do
9 write T ’s postings list to disk
10 write the dictionary to disk
11 return

Figure 4.8 In-memory index construction algorithm, making use of two abstract data types: in-
memory dictionary and extensible postings lists.

an index for the Shakespeare collection in less than one second. Thus, there are two questions

that need to be discussed: 1. What data structure should be used for the dictionary? 2. What

data structure should be used for the extensible postings lists?

Indexing-time dictionary

The dictionary implementation used during index construction needs to provide efficient sup-

port for single-term lookups and term insertions. Data structures that support these kinds of

operations are very common and are therefore part of many publicly available programming

libraries. For example, the C++ Standard Template Library (STL) published by SGI1 provides

a map data structure (binary search tree), and a hash map data structure (variable-size hash

table) that can carry out the lookup and insert operations performed during index construction.

If you are implementing your own indexing algorithm, you might be tempted to use one of these

existing implementations. However, it is not always advisable to do so.

We measured the performance of the STL data structures on a subset of GOV2, indexing the

first 10,000 documents in the collection. The results are shown in Table 4.5. At first sight, it

seems that the lookup performance of STL’s map and hash map implementations is sufficient for

the purposes of index construction. On average, map needs about 630 ns per lookup; hash map

is a little faster, requiring 240 ns per lookup operation.

Now suppose we want to index the entire GOV2 collection instead of just a 10,000-document

subset. Assuming the lookup performance stays at roughly the same level (an optimistic assump-

tion, since the number of terms in the dictionary will keep increasing), the total time spent on

1 www.sgi.com/tech/stl/

4.5 Index Construction 121

hash map lookup operations, one for each of the 44 billion tokens in GOV, is:

44× 109 × 240 ns = 10,560 sec ≈ 3 hrs.

Given that the fastest publicly available retrieval systems can build an index for the same

collection in about 4 hours, including reading the input files, parsing the documents, and

writing the (compressed) index to disk, there seems to be room for improvement. This calls for

a custom dictionary implementation.

When designing our own dictionary implementation, we should try to optimize its perfor-

mance for the specific type of data that we are dealing with. We know from Chapter 1 that

term occurrences in natural-language text data roughly follow a Zipfian distribution. A key

property of such a distribution is that the vast majority of all tokens in the collection corre-

spond to a surprisingly small number of terms. For example, although there are about 50 million

different terms in the GOV2 corpus, more than 90% of all term occurrences correspond to one

of the 10,000 most frequent terms. Therefore, the bulk of the dictionary’s lookup load may be

expected to stem from a rather small set of very frequent terms. If the dictionary is based on a

hash table, and collisions are resolved by means of chaining (as in Figure 4.2), then it is crucial

that the dictionary entries for those frequent terms are kept near the beginning of each chain.

This can be realized in two different ways:

1. The insert-at-back heuristic

If a term is relatively frequent, then it is likely to occur very early in the stream of

incoming tokens. Conversely, if the first occurrence of a term is encountered rather late,

then chances are that the term is not very frequent. Therefore, when adding a new term

to an existing chain in the hash table, it should be inserted at the end of the chain. This

way, frequent terms, added early on, stay near the front, whereas infrequent terms tend

to be found at the end.

2. The move-to-front heuristic

If a term is frequent in the text collection, then it should be at the beginning of its chain

in the hash table. Like insert-at-back, the move-to-front heuristic inserts new terms at

the end of their respective chain. In addition, however, whenever a term lookup occurs

and the term descriptor is not found at the beginning of the chain, it is relocated and

moved to the front. This way, when the next lookup for the term takes place, the term’s

dictionary entry is still at (or near) the beginning of its chain in the hash table.

We evaluated the lookup performance of these two alternatives (using a handcrafted hash table

implementation with a fixed number of hash slots in both cases) and compared it against a third

alternative that inserts new terms at the beginning of the respective chain (referred to as the

insert-at-front heuristic). The outcome of the performance measurements is shown in Table 4.5.

The insert-at-back and move-to-front heuristics achieve approximately the performance level

(90 ns per lookup for a hash table with 214 slots). Only for a small table size does move-to-front

have a slight edge over insert-at-back (20% faster for a table with 210 slots). The insert-at-front

Chapter 4 Static Inverted Indices122

Table 4.5 Indexing the first 10,000 documents of GOV2 (≈ 14 million tokens; 181,334
distinct terms). Average dictionary lookup time per token in microseconds. The rows labeled
“Hash table” represent a handcrafted dictionary implementation based on a fixed-size hash
table with chaining.

Dictionary Implementation Lookup Time String Comparisons

Binary search tree (STL map) 0.63 μs per token 18.1 per token

Variable-size hash table (STL hash map) 0.24 μs per token 2.2 per token

Hash table (210 entries, insert-at-front) 6.11 μs per token 140 per token

Hash table (210 entries, insert-at-back) 0.37 μs per token 8.2 per token

Hash table (210 entries, move-to-front) 0.31 μs per token 4.8 per token

Hash table (214 entries, insert-at-front) 0.32 μs per token 10.1 per token

Hash table (214 entries, insert-at-back) 0.09 μs per token 1.5 per token

Hash table (214 entries, move-to-front) 0.09 μs per token 1.3 per token

heuristic, however, exhibits a very poor lookup performance and is between 3 and 20 times

slower than move-to-front. To understand the origin of this extreme performance difference,

look at the table column labeled “String Comparisons”. When storing the 181,344 terms from

the 10,000-document subcollection of GOV2 in a hash table with 214 = 16,384 slots, we expect

about 11 terms per chain on average. With the insert-at-front heuristic, the dictionary — on

average — performs 10.1 string comparisons before it finds the term it is looking for. Because the

frequent terms tend to appear early on in the collection, insert-at-front places them at the end of

the respective chain. This is the cause of the method’s dismal lookup performance. Incidentally,

STL’s hash map implementation also inserts new hash table entries at the beginning of the

respective chain, which is one reason why it does not perform so well in this benchmark.

A hash-based dictionary implementation employing the move-to-front heuristic is largely

insensitive to the size of the hash table. In fact, even when indexing text collections containing

many millions of different terms, a relatively small hash table, containing perhaps 216 slots, will

be sufficient to realize efficient dictionary lookups.

Extensible in-memory postings lists

The second interesting aspect of the simple in-memory index construction method, besides the

dictionary implementation, is the implementation of the extensible in-memory postings lists. As

suggested earlier, realizing each postings list as a singly linked list allows incoming postings to

be appended to the existing lists very efficiently. The disadvantage of this approach is its rather

high memory consumption: For every 32-bit (or 64-bit) posting, the indexing process needs to

store an additional 32-bit (or 64-bit) pointer, thus increasing the total space requirements by

50–200%.

Various methods to decrease the storage overhead of the extensible postings lists have been

proposed. For example, one could use a fixed-size array instead of a linked list. This avoids the

4.5 Index Construction 123

�������

�	�
���

���
���
��

��������	� �
��������	�

����������

�
	�
�
����
�
��

���������� ����������

���������� ���������� ���������� �����������

����������

Figure 4.9 Realizing per-term extensible postings list by linking between groups of postings (unrolled linked
list). Proportional pre-allocation (here with pre-allocation factor k = 2) provides an attractive trade-off
between space overhead due to next pointers and space overhead due to internal fragmentation.

storage overhead associated with the next pointers in the linked list. Unfortunately, the length

of each term’s postings list is not known ahead of time, so this method requires an additional

pass over the input data: In the first pass, term statistics are collected and space is allocated

for each term’s postings list; in the second pass, the pre-allocated arrays are filled with postings

data. Of course, reading the input data twice harms indexing performance.

Another solution is to pre-allocate a postings array for every term in the dictionary, but to

allow the indexing process to change the size of the array, for example, by performing a call

to realloc (assuming that the programming language and run-time environment support this

kind of operation). When a novel term is encountered, init bytes are allocated for the term’s

postings (e.g., init = 16). Whenever the capacity of the existing array is exhausted, a realloc

operation is performed in order to increase the size of the array. By employing a proportional

pre-allocation strategy, that is, by allocating a total of

snew = max{sold + init, k × sold} (4.2)

bytes in a reallocation operation, where sold is the old size of the array and k is a constant,

called the pre-allocation factor, the number of calls to realloc can be kept small (logarithmic

in the size of each postings list). Nonetheless, there are some problems with this approach. If the

pre-allocation factor is too small, then a large number of list relocations is triggered during index

construction, possibly affecting the search engine’s indexing performance. If it is too big, then a

large amount of space is wasted due to allocated but unused memory (internal fragmentation).

For instance, if k = 2, then 25% of the allocated memory will be unused on average.

A third way of realizing extensible in-memory postings lists with low storage overhead is

to employ a linked list data structure, but to have multiple postings share a next pointer by

linking to groups of postings instead of individual postings. When a new term is inserted into

the dictionary, a small amount of space, say 16 bytes, is allocated for its postings. Whenever

the space reserved for a term’s postings list is exhausted, space for a new group of postings is

Chapter 4 Static Inverted Indices124

Table 4.6 Indexing the TREC45 collection. Index construction performance for various
memory allocation strategies used to manage the extensible in-memory postings lists (32-bit
postings; 32-bit pointers). Arranging postings for the same term in small groups and linking
between these groups is faster than any other strategy. Pre-allocation factor used for both
realloc and grouping: k = 1.2.

Allocation Strategy Memory Consumption Time (Total) Time (CPU)

Linked list (simple) 2,312 MB 88 sec 77 sec

Two-pass indexing 1,168 MB 123 sec 104 sec

realloc 1,282 MB 82 sec 71 sec

Linked list (grouping) 1,208 MB 71 sec 61 sec

allocated. The amount of space allotted to the new group is

snew = min{l imit,max{16, (k − 1)× stotal}}, (4.3)

where limit is an upper bound on the size of a postings group, say, 256 postings, stotal is the

amount of memory allocated for postings so far, and k is the pre-allocation factor, just as in

the case of realloc.

This way of combining postings into groups and having several postings share a single next

pointer is shown in Figure 4.9. A linked list data structure that keeps more than one value in

each list node is sometimes called an unrolled linked list, in analogy to loop unrolling techniques

used in compiler optimization. In the context of index construction, we refer to this method as

grouping.

Imposing an upper limit on the amount of space pre-allocated by the grouping technique

allows to control internal fragmentation. At the same time, it does not constitute a performance

problem; unlike in the case of realloc, allocating more space for an existing list is a very

lightweight operation and does not require the indexing process to relocate any postings data.

A comparative performance evaluation of all four list allocation strategies — simple linked

list, two-pass, realloc, and linked list with grouping — is given by Table 4.6. The two-pass

method exhibits the lowest memory consumption but takes almost twice as long as the grouping

approach. Using a pre-allocation factor k = 1.2, the reallocmethod has a memory consumption

that is about 10% above that of the space-optimal two-pass strategy. This is consistent with the

assumption that about half of the pre-allocated memory is never used. The grouping method,

on the other hand, exhibits a memory consumption that is only 3% above the optimum. In

addition, grouping is about 16% faster than realloc (61 sec vs. 71 sec CPU time).

Perhaps surprisingly, linking between groups of postings is also faster than linking between

individual postings (61 sec vs. 77 sec CPU time). The reason for this is that the unrolled linked

list data structure employed by the grouping technique not only decreases internal fragmen-

tation, but also improves CPU cache efficiency, by keeping postings for the same term close

4.5 Index Construction 125

buildIndex sortBased (inputTokenizer) ≡
1 position← 0
2 while inputTokenizer.hasNext() do
3 T ← inputTokenizer.getNext()
4 obtain dictionary entry for T ; create new entry if necessary
5 termID ← unique term ID of T
6 write record Rposition ≡ (termID, position) to disk
7 position← position + 1
8 tokenCount ← position
9 sort R0 . . . RtokenCount−1 by first component; break ties by second component
10 perform a sequential scan of R0 . . . RtokenCount−1, creating the final index
11 return

Figure 4.10 Sort-based index construction algorithm, creating a schema-independent index for a text
collection. The main difficulty lies in efficiently sorting the on-disk records R0 . . . RtokenCount−1.

together. In the simple linked-list implementation, postings for a given term are randomly scat-

tered across the used portion of the computer’s main memory, resulting in a large number of

CPU cache misses when collecting each term’s postings before writing them to disk.

4.5.2 Sort-Based Index Construction

Hash-based in-memory index construction algorithms can be extremely efficient, as demon-

strated in the previous section. However, if we want to index text collections that are

substantially larger than the available amount of RAM, we need to move away from the idea that

we can keep the entire index in main memory, and need to look toward disk-based approaches

instead. The sort-based indexing method presented in this section is the first of two disk-based

index construction methods covered in this chapter. It can be used to index collections that are

much larger than the available amount of main memory.

Recall from the beginning of this section that building an inverted index can be thought

of as the process of reordering the sequence of term-position tuples that represents the text

collection — transforming it from collection order into index order. This is a sorting process,

and sort-based index construction realizes the transformation in the simplest way possible.

Consuming tokens from the input files, a sort-based indexing process emits records of the form

(termID, position) and writes them to disk immediately. The result is a sequence of records,

sorted by their second component (position). When it is done processing the input data, the

indexer sorts all tuples written to disk by their first component, using the second component to

break ties. The result is a new sequence of records, sorted by their first component (termID).

Transforming this new sequence into a proper inverted file, using the information found in the

in-memory dictionary, is straightforward.

Chapter 4 Static Inverted Indices126

��������

����	
��������������	
���
������������������������� �������

���������

!

!

"

"

#

#

$

$

%

%

%

%

&

&

'

'

!(

!(

)

)

!!

!!

!

!"

"

!#

!"

!$

$

!%

'

!&

%

!%

)

!'

!#

!)

!(

"!

)

"(

!!

""

��������

����	
���	*�	�	+�����	
���
������,����������.�/������0�������

���������

��1��23�

��1��4���

5��5���

���1��4���

���/��

6�

���

�������

���

/�

�7��3�8

���1��23�

!

"

#

$

%

%

&

'

)

!!

!"

!#

����/�� !(

��������	�

���� ��

�������� ��

!

!

"

"

#

#

$

$

%

%

%

%

&

&

'

'

!(

!(

)

)

!!

!!

!

!"

"

!#

!"

!$

$

!%

'

!&

%

!%

)

!'

!#

!)

!(

"!

)

"(

!!

""

&

&

'

'

!(

!(

)

)

!!

!!

!

!"

!

!

"

"

#

#

$

$

%

%

%

%

"

!#

!"

!$

$

!%

'

!&

%

!%

)

!'

!#

!)

!(

"!

)

"(

!!

""

�����������������������������	�����

&

&

'

'

!(

!(

)

)

!!

!!

!

!"

!

!

"

"

#

#

$

$

%

%

%

%

"

!#

!"

!$

$

!%

'

!&

%

!%

)

!'

!#

!)

!(

"!

)

"(

!!

""

9�1���:��8�;<

;��8��

1���;��/

��	

�
	

��	

��	

Figure 4.11 Sort-based index construction with global term IDs. Main memory is large enough to hold 6
(termID, position) tuples at a time. (1)→(2): sorting blocks of size ≤ 6 in memory, one at a time. (2)→(3)
and (3)→(4): merging sorted blocks into bigger blocks.

The method, shown as pseudo-code in Figure 4.10, is very easy to implement and can be used

to create an index that is substantially larger than the available amount of main memory. Its

main limitation is the available amount of disk space.

Sorting the on-disk records can be a bit tricky. In many implementations, it is performed by

loading a certain number of records, say n, into main memory at a time, where n is defined by

the size of a record and the amount of available main memory. These n records are then sorted

in memory and written back to disk. The process is repeated until we have � tokenCount
n � blocks

of sorted records. These blocks can then be combined, in a multiway merge operation (processing

records from all blocks at the same time) or in a cascaded merge operation (merging, for example,

two blocks at a time), resulting in a sorted sequence of tokenCount records. Figure 4.11 shows a

sort-based indexing process that creates the final tuple sequence by means of a cascaded merge

operation, merging two tuple sequences at a time. With some additional data structures, and

with the termID component removed from each posting, this final sequence can be thought of

as the index for the collection.

Despite its ability to index text collections much larger than the available amount of main

memory, sort-based indexing has two essential limitations:

4.5 Index Construction 127

• It requires a substantial amount of disk space, usually at least 8 bytes per input token

(4 bytes for the term ID + 4 bytes for the position), or even 12 bytes (4 + 8) for larger

text collections. When indexing GOV2, for instance, the disk space required to store the

temporary files is at least 12×44×109 bytes (= 492 GB) — more than the uncompressed

size of the collection itself (426 GB).

• To be able to properly sort the (termID, docID) pairs emitted in the first phase, the

indexing process needs to maintain globally unique term IDs, which can be realized only

through a complete in-memory dictionary. As discussed earlier, a complete dictionary

for GOV2 might consume more than 1 GB of RAM, making it difficult to index the

collection on a low-end machine.

There are various ways to address these issues. However, in the end they all have in common

that they transform the sort-based indexing method into something more similar to what is

known as merge-based index construction.

4.5.3 Merge-Based Index Construction

In contrast to sort-based index construction methods, the merge-base method presented in this

section does not need to maintain any global data structures. In particular, there is no need for

globally unique term IDs. The size of the text collection to be indexed is therefore limited only

by the amount of disk space available to store the temporary data and the final index, but not

by the amount of main memory available to the indexing process.

Merge-based indexing is a generalization of the in-memory index construction method dis-

cussed in Section 4.5.1, building inverted lists by means of hash table lookup. In fact, if the

collection for which an index is being created is small enough for the index to fit completely

into main memory, then merge-based indexing behaves exactly like in-memory indexing. If the

text collection is too large to be indexed completely in main memory, then the indexing pro-

cess performs a dynamic partitioning of the collection. That is, it starts building an in-memory

index. As soon as it runs out of memory (or when a predefined memory utilization threshold

is reached), it builds an on-disk inverted file by transferring the in-memory index data to disk,

deletes the in-memory index, and continues indexing. This procedure is repeated until the whole

collection has been indexed. The algorithm is shown in Figure 4.12.

The result of the process outlined above is a set of inverted files, each representing a certain

part of the whole collection. Each such subindex is referred to as an index partition. In a final

step, the index partitions are merged into the final index, representing the entire text collection.

The postings lists in the index partitions (and in the final index) are usually stored in compressed

form (see Chapter 6), in order to keep the disk I/O overhead low.

The index partitions written to disk as intermediate output of the indexing process are com-

pletely independent of each other. For example, there is no need for globally unique term IDs;

there is not even a need for numerical term IDs. Each term is its own ID; the postings lists in

each partition are stored in lexicographical order of their terms, and access to a term’s list can

Chapter 4 Static Inverted Indices128

buildIndex mergeBased (inputTokenizer, memoryLimit) ≡
1 n← 0 // initialize the number of index partitions
2 position← 0
3 memoryConsumption← 0
4 while inputTokenizer.hasNext() do
5 T ← inputTokenizer.getNext()
6 obtain dictionary entry for T ; create new entry if necessary
7 append new posting position to T ’s postings list
8 position← position + 1
9 memoryConsumption← memoryConsumption + 1
10 if memoryConsumption ≥ memoryLimit then
11 createIndexPartition()
12 if memoryConsumption > 0 then
13 createIndexPartition()
14 merge index partitions I0 . . . In−1, resulting in the final on-disk index Ifinal

15 return

createIndexPartition () ≡
16 create empty on-disk inverted file In

17 sort in-memory dictionary entries in lexicographical order
18 for each term T in the dictionary do
19 add T ’s postings list to In

20 delete all in-memory postings lists
21 reset the in-memory dictionary
22 memoryConsumption← 0
23 n← n + 1
24 return

Figure 4.12 Merge-based indexing algorithm, creating a set of independent sub-indices (index par-
titions). The final index is generated by combining the sub-indices via a multiway merge operation.

be realized by using the data structures described in Sections 4.3 and 4.4. Because of the lexico-

graphical ordering and the absence of term IDs, merging the individual partitions into the final

index is straightforward. Pseudo-code for a very simple implementation, performing repeated

linear probing of all subindices, is given in Figure 4.13. If the number of index partitions is

large (more than 10), then the algorithm can be improved by arranging the index partitions in

a priority queue (e.g., a heap), ordered according to the next term in the respective partition.

This eliminates the need for the linear scan in lines 7–10.

Overall performance numbers for merge-based index construction, including all components,

are shown in Table 4.7. The total time necessary to build a schema-independent index for GOV2

is around 4 hours. The time required to perform the final merge operation, combining the n

index partitions into one final index, is about 30% of the time it takes to generate the partitions.

4.5 Index Construction 129

mergeIndexPartitions (〈I0, . . . , In−1〉) ≡
1 create empty inverted file Ifinal

2 for k ← 0 to n− 1 do
3 open index partition Ik for sequential processing
4 currentIndex ← 0
5 while currentIndex �= nil do
6 currentIndex ← nil
7 for k ← 0 to n− 1 do
8 if Ik still has terms left then
9 if (currentIndex = nil) ∨ (Ik.currentTerm < currentTerm) then
10 currentIndex ← Ik

11 currentTerm ← Ik.currentTerm
12 if currentIndex �= nil then
13 Ifinal.addPostings(currentTerm, currentIndex.getPostings(currentTerm))
14 currentIndex.advanceToNextTerm()
15 delete I0 . . . In−1

16 return

Figure 4.13 Merging a set of n index partitions I0 . . . In−1 into an index Ifinal. This is the final step
in merge-based index construction.

The algorithm is very scalable: On our computer, indexing the whole GOV2 collection (426 GB

of text) takes only 11 times as long as indexing a 10% subcollection (43 GB of text).

There are, however, some limits to the scalability of the method. When merging the index

partitions at the end of the indexing process, it is important to have at least a moderately sized

read-ahead buffer, a few hundred kilobytes, for each partition. This helps keep the number of

disk seeks (jumping back and forth between the different partitions) small. Naturally, the size

of the read-ahead buffer for each partition is bounded from above by M/n, where M is the

amount of available memory and n is the number of partitions. Thus, if n becomes too large,

merging becomes slow.

Reducing the amount of memory available to the indexing process therefore has two effects.

First, it decreases the total amount of memory available for the read-ahead buffers. Second, it

increases the number of index partitions. Thus, reducing main memory by 50% decreases the

size of each index partition’s read-ahead buffer by 75%. Setting the memory limit to M = 128

MB, for example, results in 3,032 partitions that need to be merged, leaving each partition with

a read-ahead buffer of only 43 KB. The general trend of this effect is depicted in Figure 4.14.

The figure shows that the performance of the final merge operation is highly dependent on the

amount of main memory available to the indexing process. With 128 MB of available main

memory, the final merge takes 6 times longer than with 1,024 MB.

There are two possible countermeasures that could be taken to overcome this limitation. The

first is to replace the simple multiway merge by a cascaded merge operation. For instance,

if 1,024 index partitions need to be merged, then we could first perform 32 merge operations

Chapter 4 Static Inverted Indices130

Table 4.7 Building a schema-independent index for various text collections, using
merge-based index construction with 512 MB of RAM for the in-memory index. The
indexing-time dictionary is realized by a hash table with 216 entries and move-to-front
heuristic. The extensible in-memory postings lists are unrolled linked lists, linking
between groups of postings, with a pre-allocation factor k = 1.2.

Reading, Parsing & Indexing Merging Total Time

Shakespeare 1 sec 0 sec 1 sec

TREC45 71 sec 11 sec 82 sec

GOV2 (10%) 20 min 4 min 24 min

GOV2 (25%) 51 min 11 min 62 min

GOV2 (50%) 102 min 25 min 127 min

GOV2 (100%) 205 min 58 min 263 min

 0

 2

 4

 6

 8

 10

 128 256 512 1024

In
de

xi
ng

 ti
m

e
(h

ou
rs

)

Memory limit (MB)

Total time elapsed
Time to build index partitions
Time for final merge operation

Figure 4.14 The impact of available RAM on the performance of merge-based indexing (data set:
GOV2). The performance of phase 1 (building index partitions) is largely independent of the amount of
available main memory. The performance of phase 2 (merging partitions) suffers severely if little main
memory is available.

involving 32 partitions each, and then merge the resulting 32 new partitions into the final index.

This is a generalization of the process shown in Figure 4.11, which depicts a cascaded merge

operation that works on 2 partitions at a time. The second countermeasure is to decrease the

space consumed by the postings lists, by means of compressed in-memory inversion. Compressing

postings on-the-fly, as they enter the in-memory index, allows the indexing process to accumulate

more postings before it runs out of memory, thus decreasing the number of on-disk index

partitions created.

4.6 Other Types of Indices 131

In conclusion, despite some problems with the final merge operation, merge-based index

construction lets us build an inverted file for very large text collections, even on a single PC. Its

advantage over the sort-based method is that it does not require globally unique term IDs. It

is therefore especially attractive if the number of dictionary terms is very large. Another great

advantage of this index construction algorithm over the sort-based method is that it produces

an in-memory index that is immediately queriable. This feature is essential when the search

engine needs to deal with dynamic text collections (see Chapter 7).

4.6 Other Types of Indices

In our discussion of index data structures, we have limited ourselves to the case of inverted

indices. However, an inverted index is just one possible type of index that can be used as part

of a search engine.

A forward index (or direct index) is a mapping from document IDs to the list of terms appear-

ing in each document. Forward indices complement inverted indices. They are usually not used

for the actual search process, but to obtain information about per-document term distributions

at query time, which is required by query expansion techniques such as pseudo-relevance feed-

back (see Chapter 8), and to produce result snippets. Compared to extracting this information

from the raw text files, a forward index has the advantage that the text has already been parsed,

and the relevant data can be extracted more efficiently.

Signature files (Faloutsos and Christodoulakis, 1984) are an alternative to docid indices.

Similar to a Bloom filter (Bloom, 1970), a signature file can be used to obtain a list of documents

that may contain the given term. In order to find out whether the term actually appears in a

document, the document itself (or a forward index) needs to be consulted. By changing the

parameters of the signature file, it is possible to trade time for speed: A smaller index results

in a greater probability of false positives, and vice versa.

Suffix trees (Weiner, 1973) and suffix arrays (Manber and Myers, 1990) can be used to effi-

ciently find all occurrences of a given n-gram sequence in a given text collection. They can be

used either to index character n-grams (without tokenizing the input text) or to index word

n-grams (after tokenization). Suffix trees are attractive data structures for phrase search or

regular expression search, but are usually larger than inverted indices and provide less efficient

search operations when stored on disk instead of in RAM.

Chapter 4 Static Inverted Indices132

4.7 Summary

In this chapter we have covered the essential algorithms and data structures necessary to build

and access inverted indices. The main points of the chapter are:

• Inverted indices are usually too large to be loaded completely into memory. It is therefore

common to keep only the dictionary, which is relatively small compared to the size of

the entire index, in memory, while storing the postings lists on disk (Section 4.2).

• For a large text collection even the dictionary might be too large to fit into RAM. The

memory requirements of the dictionary can be substantially decreased by keeping an

incomplete dictionary in memory, interleaving dictionary entries with on-disk postings

lists, and exploiting the fact that all lists in the index are sorted in lexicographical order

(Section 4.4).

• A sort-based dictionary implementation should be used, and postings lists should be

stored on disk in lexicographical order, if prefix queries are to be supported by the

search engine (Sections 4.2 and 4.3).

• For each on-disk postings list, a per-term index, containing a subset of the term’s

postings, can be used to realize efficient quasi-random access into the list (Section 4.3).

• Highly efficient in-memory index construction can be realized by employing a hash-based

in-memory dictionary with move-to-front heuristic and by using grouped linked lists to

implement extensible in-memory postings lists (Section 4.5.1).

• If the amount of main memory available to the indexing process is too small to allow the

index to be built completely in RAM, then the in-memory index construction method

can be extended to a merge-based method, in which the text collection is divided into

subcollections, dynamically and based on the available amount of main memory. An index

for each subcollection is built using the in-memory indexing method. After the entire

collection has been indexed, the indices for the individual subcollections are merged in

a single multiway merge operation or a cascaded merge process (Section 4.5.3).

• The performance of merge-based index construction is essentially linear in the size of

the collection. However, the final merge operation may suffer severely if too little main

memory is available for the subindices’ read buffers (Section 4.5.3).

4.8 Further Reading

Good entry points for an in-depth understanding of the architecture and performance of inverted

indices are provided by Witten et al. (1999, chapters 3 and 5) and Zobel and Moffat (2006). A

high-level overview of the index data structures employed by Google around 1998 is given by

Brin and Page (1998).

4.9 Exercises 133

Moffat and Zobel (1996) discuss query-time efficiency issues of inverted files, including the

per-term index data structure (“self-indexing”) used for random list access that is outlined in

Section 4.3. Rao and Ross (1999, 2000) demonstrate that random access issues arise not only

in the context of on-disk indices but also for in-memory inverted files. They show that binary

search is not the best way to realize random access for in-memory postings lists.

Heinz and Zobel (2003) discuss single-pass merge-based index construction and its advantages

over the sort-based method. They also examine the efficiency of various in-memory dictionary

implementations, including the move-to-front heuristic described in Section 4.5.1 (Zobel et al.,

2001), and propose a new dictionary data structure, the burst trie (Heinz et al., 2002), which

achieves a single-term lookup performance close to a hash table but — unlike a hash table — can

also be used to resolve prefix queries.

Memory management strategies for extensible in-memory postings lists (e.g., unrolled linked

lists) are examined by Büttcher and Clarke (2005) and, more recently, by Luk and Lam (2007).

With a näıve implementation of the final merge procedure in merge-based index construction

(and variants of sort-based indexing), the total storage requirement is twice as large as the size

of the final index. Moffat and Bell (1995) describe a clever technique that can be used to realize

the merge in situ, re-using the disk space occupied by already processed parts of the input

partitions to store the final index.

Faloutsos and Christodoulakis (1984) give a nice overview of signature files, including some

theoretical properties. Zobel et al. (1998) discuss the relative performance of inverted files and

signature files in text search. They come to the conclusion that, for many applications, inverted

files are the better choice. Carterette and Can (2005) argue that, under certain circumstances,

signature files can be almost as fast as inverted files.

Suffix trees made their first appearance under the name position trees in a paper by Weiner

(1973). Ukkonen (1995) presents a linear-time construction method for suffix trees. Clark and

Munro (1996) discuss a variant of suffix trees that allows efficient search operations when stored

on disk instead of main memory.

4.9 Exercises

Exercise 4.1 In Section 4.3 we introduced the concept of the per-term index as a means

to improve the index’s random access performance. Suppose the postings list for some term

consists of 64 million postings, each of which consumes 4 bytes. In order to carry out a single

random access into the term’s postings list, the search engine needs to perform two disk read

operations:

1. Loading the per-term index (list of synchronization points) into RAM.

2. Loading a block B of postings into RAM, where B is identified by means of binary

search on the list of synchronization points.

Chapter 4 Static Inverted Indices134

Let us call the number of postings per synchronization point the granularity of the per-term

index. For the above access pattern, what is the optimal granularity (i.e., the one that minimizes

disk I/O)? What is the total number of bytes read from disk?

Exercise 4.2 The introduction of the per-term index in Section 4.3 was motivated by the

performance characteristics of typical hard disk drives (in particular, the high cost of disk

seeks). However, the same method can also be used to improve the random access performance

of in-memory indices. To confirm this claim, you have to implement two different data structures

for in-memory postings lists and equip them with a next access method (see Chapter 2). The

first data structure stores postings in a simple array of 32-bit integers. Its next method operates

by performing a binary search on that array. In the second data structure, an auxiliary array is

used to store a copy of every 64th posting in the postings list. The next method first performs a

binary search on the auxiliary array, followed by a sequential scan of the 64 candidate postings

in the postings list. Measure the average single-element lookup latency of both implementations,

working with lists of n postings, for n = 212, 216, 220, 224. Describe and analyze your findings.

Exercise 4.3 Building an inverted index is essentially a sorting process. The lower bound

for every general-purpose sorting algorithm is Ω(n log(n)). However, the merge-based index

construction method from Section 4.5.3 has a running time that is linear in the size of the

collection (see Table 4.7, page 130). Find at least two places where there is a hidden logarithmic

factor.

Exercise 4.4 In the algorithm shown in Figure 4.12, the memory limit is expressed as the

number of postings that can be stored in RAM. What is the assumption that justifies this

definition of the memory limit? Give an example of a text collection or an application in which

the assumption does not hold.

Exercise 4.5 In Section 4.5.1 we discussed the performance characteristics of various dictio-

nary data structures. We pointed out that hash-based implementations offer better performance

for single-term lookups (performed during index construction), while sort-based solutions are

more appropriate for multi-term lookups (needed for prefix queries). Design and implement a

data structure that offers better single-term lookup performance than a sort-based dictionary

and better prefix query performance than a hash-based implementation.

Exercise 4.6 (project exercise) Design and implement an index construction method that

creates a schema-independent index for a given text collection. The result of the index con-

struction process is an on-disk index. The index does not need to use any of the optimizations

discussed in Sections 4.3 and 4.4.

• Implement the in-memory index construction method described in Section 4.5.1. When

run on typical English text, your implementation should be able to build an index for a

collection containing approximately M
8 tokens, where M is the amount of available main

memory, in bytes.

4.10 Bibliography 135

• Extend your implementation so that the size of the text collection is no longer limited

by the amount of main memory available to the indexing process. This will probably

require you to write a module that can merge two or more on-disk indices into a single

index.

4.10 Bibliography

Bender, M., Michel, S., Triantafillou, P., and Weikum, G. (2007). Design alternatives for

large-scale Web search: Alexander was great, Aeneas a pioneer, and Anakin has the force. In

Proceedings of the 1st Workshop on Large-Scale Distributed Systems for Information Retrieval

(LSDS-IR), pages 16–22. Amsterdam, The Netherlands.

Bloom, B.H. (1970). Space/time trade-offs in hash coding with allowable errors. Communica-

tions of the ACM, 13(7):422–426.

Brin, S., and Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine.

Computer Networks and ISDN Systems, 30(1-7):107–117.

Büttcher, S., and Clarke, C. L. A. (2005). Memory Management Strategies for Single-Pass
Index Construction in Text Retrieval Systems. Technical Report CS-2005-32. University of

Waterloo, Waterloo, Canada.

Carterette, B., and Can, F. (2005). Comparing inverted files and signature files for searching a
large lexicon. Information Processing & Management, 41(3):613–633.

Clark, D. R., and Munro, J. I. (1996). Efficient suffix trees on secondary storage. In Proceedings

of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 383–391. Atlanta,
Georgia.

Faloutsos, C., and Christodoulakis, S. (1984). Signature files: An access method for docu-

ments and its analytical performance evaluation. ACM Transactions on Information Systems,
2(4):267–288.

Heinz, S., and Zobel, J. (2003). Efficient single-pass index construction for text databases.

Journal of the American Society for Information Science and Technology, 54(8):713–729.

Heinz, S., Zobel, J., and Williams, H. E. (2002). Burst tries: A fast, efficient data structure for

string keys. ACM Transactions on Information Systems, 20(2):192–223.

Luk, R. W. P., and Lam, W. (2007). Efficient in-memory extensible inverted file. Information

Systems, 32(5):733–754.

Manber, U., and Myers, G. (1990). Suffix arrays: A new method for on-line string searches. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 319–327.

San Francisco, California.

Moffat, A., and Bell, T. A. H. (1995). In-situ generation of compressed inverted files. Journal
of the American Society for Information Science, 46(7):537–550.

Chapter 4 Static Inverted Indices136

Moffat, A., and Zobel, J. (1996). Self-indexing inverted files for fast text retrieval. ACM

Transactions on Information Systems, 14(4):349–379.

Rao, J., and Ross, K.A. (1999). Cache conscious indexing for decision-support in main memory.

In Proceedings of 25th International Conference on Very Large Data Bases, pages 78–89.

Edinburgh, Scotland.

Rao, J., and Ross, K. A. (2000). Making B+-trees cache conscious in main memory. In Proceed-

ings of the 2000 ACM SIGMOD International Conference on Management of Data, pages

475–486. Dallas, Texas.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3):249–260.

Weiner, P. (1973). Linear pattern matching algorithm. In Proceedings of the 14th Annual IEEE
Symposium on Switching and Automata Theory, pages 1–11. Iowa City, Iowa.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Compressing and

Indexing Documents and Images (2nd ed.). San Francisco, California: Morgan Kaufmann.

Zobel, J., Heinz, S., and Williams, H. E. (2001). In-memory hash tables for accumulating text

vocabularies. Information Processing Letters, 80(6):271–277.

Zobel, J., and Moffat, A. (2006). Inverted files for text search engines. ACM Computing Surveys,

38(2):1–56.

Zobel, J., Moffat, A., and Ramamohanarao, K. (1998). Inverted files versus signature files for

text indexing. ACM Transactions on Database Systems, 23(4):453–490.

5 Query Processing

In Chapter 4 we explored the fundamental data structures that make up an inverted index. We

now discuss how to realize efficient search operations on top of these data structures. Details

of the search process and its implementation can vary from search engine to search engine.

However, the essential ideas and algorithms are usually the same, regardless of whether we are

dealing with a single-user desktop search system or a large-scale Web search engine.

The most basic retrieval model is quite likely the Boolean model that we have already dis-

cussed in Section 2.2. In the Boolean model, each term represents the set of documents in

which it appears. Document sets may be combined by using the standard operators AND (set

intersection), OR (union), and NOT (inversion). In this chapter we explore two popular alter-

natives to the Boolean model. The first one, ranked retrieval (Section 5.1), allows the search

engine to rank search results according to their predicted relevance to the query. The second

one, lightweight structure (Section 5.2), is a natural extension of the Boolean model to the

sub-document level. Instead of restricting the search process to entire documents, it allows the

user to search for arbitrary text passages satisfying Boolean-like constraints (e.g., “show me all

passages that contain ‘apothecary’ and ‘drugs’ within 10 words”).

Although we will occasionally refer to effectiveness measures, such as mean average precision

(MAP), the focus of this chapter is not so much on the quality of the search results as on the

efficiency of the search process. Quality aspects of various retrieval functions are covered in

Chapters 8 and 9.

5.1 Query Processing for Ranked Retrieval

As pointed out in Section 2.2, Boolean retrieval and ranked retrieval are not mutually exclusive,

but complementary: The search engine may use a Boolean interpretation of the user’s query to

determine the set of matching documents. For instance, given the query

Q = 〈“greek”, “philosophy”, “stoicism”〉 (5.1)

(TREC topic 433), the search engine may retrieve all documents that match the conjunctive

Boolean query
“greek” AND “philosophy” AND “stoicism” (5.2)

or the disjunctive Boolean query

“greek” OR “philosophy” OR “stoicism” (5.3)

Chapter 5 Query Processing138

and then rank those documents according to their similarity to Q, for example, using the cosine

measure (Equation 2.12 on page 56).

Traditional information retrieval systems usually follow the disjunctive approach, while Web

search engines often employ conjunctive query semantics. The conjunctive retrieval model leads

to faster query processing than the disjunctive model, because fewer documents have to be

scored and ranked. However, this performance advantage comes at the cost of a lower recall:

If a relevant document contains only two of the three query terms, it will never be returned

to the user. This limitation is quite obvious for the query Q shown above. Of the half-million

documents in the TREC collection, 7,834 match the disjunctive interpretation of the query,

whereas only a single document matches the conjunctive version. Incidentally, that document

is not even relevant (it is about a Mexican actor and his latest film projects).

The failure of the conjunctive approach for the above query can be explained as follows:

Authors familiar with the concept of Stoicism do not feel the need to mention that it is a

philosophy or that it originated in Greece; both details seem obvious to them. The user might

think that she helps the search engine by providing the additional keywords “philosophy” and

“greek”, when in fact adding these terms makes the search results worse. This effect becomes

even more pronounced for longer queries, in which the presence of a single unwisely chosen (or

misspelled) query term can completely ruin the search results.

We hold the view that adding relevant terms to the query should not hurt the search results.

Throughout the following sections, we assume that the search engine follows the disjunctive

approach, retrieving all documents that contain at least one of the query terms, and leaving it

to the ranking function to determine which of these documents best match the user’s query. Of

course, there is no doubt that the conjunctive model usually allows more efficient query pro-

cessing than the disjunctive model. Therefore, many of the optimizations covered in this section

share the same common goal: to narrow the performance gap between the AND interpretation

and the OR interpretation of a given query.

Okapi BM25

For the purpose of our discussion, we assume that the search engine employs the Okapi BM25

scoring function (Equation 8.48 on page 272) to rank documents based on their predicted

relevance to the query. For convenience, we repeat the ranking formula here:

ScoreBM25(q, d) =
∑
t∈q

log

(
N

Nt

)
· TFBM25(t, d), (5.4)

TFBM25(t, d) =
ft,d · (k1 + 1)

ft,d + k1 · ((1 − b) + b · (ld/lavg))
. (5.5)

The formula has two free parameters: k1 (default value: k1 = 1.2), which regulates how fast

the TF component saturates, and b (default value: b = 0.75), which controls the degree of

5.1 Query Processing for Ranked Retrieval 139

document length normalization. All other variables have the standard semantics, as listed in

the “Notation” table at the beginning of this book.

If you are interested in the theory underlying the BM25 formula, you can find a derivation

and in-depth discussion in Chapter 8. In order to follow the material covered in this section, a

full understanding of BM25 is not required. We do, however, want to focus briefly on the role of

the parameter k1, as it interacts closely with various query optimizations for ranked retrieval.

k1 caps the score contribution of an individual query term:

lim
ft,d→∞

TFBM25(t, d) = k1 + 1. (5.6)

For the default value k1 = 1.2, the TF contribution of any given query term can never exceed

2.2. Because of this rather tight upper bound, a document that contains two different query

terms is far more likely to be ranked highly than a document that contains only a single query

term, even if the latter contains that term many times.

Suppose we are given the query q = 〈t1, t2〉, with Nt1 ≈ Nt2 , and we want to score two

documents d1 and d2 of average length (i.e., ld1 = ld2 = lavg). Further suppose that d1 contains

one occurrence of each t1 and t2, while d2 contains 10 occurrences of t1 and no occurrence of

t2. Then we have:

ScoreBM25(q, d1) ≈ log

(
N

Nt1

)
·
(

2 · 1 · (k1 + 1)

1 + k1

)
≈ 2 · log

(
N

Nt1

)
, (5.7)

ScoreBM25(q, d2) ≈ log

(
N

Nt1

)
· 10 · (k1 + 1)

10 + k1
≈ 1.95 · log

(
N

Nt1

)
(5.8)

(for k1 = 1.2). Later in this section we will use the upper bounds provided by k1 to ignore

postings for which we know a priori that they cannot push the corresponding document into

the top search results.

5.1.1 Document-at-a-Time Query Processing

The most common form of query processing for ranked retrieval is called the document-at-a-time

approach. In this method all matching documents are enumerated, one after the other, and a

score is computed for each of them. At the end all documents are sorted according to their

score, and the top k results (where k is chosen by the user or the application) are returned to

the user.

Figure 5.1 shows a document-at-a-time algorithm for BM25. The algorithm — except for the

score computation — is the same as the rankCosine algorithm in Figure 2.9 (page 59). The

overall time complexity of the algorithm is

Θ(m · n + m · log(m)), (5.9)

Chapter 5 Query Processing140

rankBM25 DocumentAtATime (〈t1, ..., tn〉, k) ≡
1 m← 0 // m is the total number of matching documents
2 d← min1≤i≤n{nextDoc(ti,−∞)}
3 while d <∞ do
4 results[m].docid← d
5 results[m].score ←

Pn
i=1 log(N/Nti) · TFBM25(ti, d)

6 m← m + 1
7 d← min1≤i≤n{nextDoc(ti, d)}
8 sort results[0..(m − 1)] in decreasing order of score
9 return results[0..(k − 1)]

Figure 5.1 Document-at-a-time query processing with BM25.

where n is the number of query terms and m is the number of matching documents (containing

at least one query term). The term m · n corresponds to the loop starting in line 3 of the

algorithm. The term m · log(m) corresponds to the sorting of the search results in line 8.

It is sometimes difficult to use Equation 5.9 directly, because the value of m is not known

without running the algorithm and enumerating all search results. Depending on how often

the query terms co-occur in a document, m can be anywhere between Nq/n and Nq, where

Nq = Nt1 + · · ·+ Ntn
is the total number of postings of all query terms. In the worst case, each

matching document contains only a single query term. The time complexity of the algorithm in

Figure 5.1 is then

Θ(Nq · n + Nq · log(Nq)). (5.10)

In practice the vast majority of all matching documents do in fact contain only one query

term. For instance, for our earlier example query 〈“greek”, “philosophy”, “stoicism”〉 we have

m = 7835 and Nq = 7921. Thus, Equation 5.10 is usually a good approximation of Equation 5.9.

The basic document-at-a-time algorithm shown in Figure 5.1 has two major sources of

inefficiency:

• The computations carried out in lines 5 and 7 need to iterate over all n query terms,

regardless of whether they actually appear in the current document or not. If n is large,

then this can become a problem. Consider the extreme case in which we have ten query

terms, and each matching document contains exactly one of them. Then the algorithm

performs ten times as much work as it would if it processed each term individually.

• The final sorting step in line 8 sorts all documents in the results array. Of course, sorting

the whole array is a waste of resources, given that we are interested in only the top k

results. The Θ(m · log(m)) complexity of the sorting process might not seem so bad. But

keep in mind that we are potentially dealing with a few million matching documents, so

the m · log(m) term in Equation 5.9 may in fact outweigh the m · n term corresponding

to the score computation.

5.1 Query Processing for Ranked Retrieval 141

We can address both problems in the same way: by employing a data structure known as heap.

If you already know what a heap is, feel free to skip ahead to the section “Efficient query

processing with heaps” (page 142).

Binary heaps

A heap (or, more precisely, a binary min-heap) is a binary tree that satisfies the following

definition:

1. Every empty binary tree is a heap.

2. A nonempty binary tree T is a heap if all of the following hold:

(a) T is completely filled on all levels, except possibly the deepest one.

(b) T ’s deepest level is filled from left to right.

(c) For each node v, the value stored in v is smaller than the values stored in any of

v’s children.

Requirements (a) and (b), in combination, are sometimes referred to as the shape property.

Because of the shape property, a heap may be represented not only as a tree but also as an

array. The tree’s root node is then stored in position 0, and the children for a node in position i

are stored in position 2i+1 and 2i+2, respectively. Figure 5.2(a) shows the tree representation

of a heap for the set {1, 2, 3, 4, 5, 6}. Figure 5.2(b) shows the equivalent array representation.

(a) Tree representation (b) Array representation

1

3

4 6

2

5

1 3 2 4 6 5

Figure 5.2 A heap for {1, 2, 3, 4, 5, 6}, in tree representation and equivalent array representation.

In practical implementations the array representation is almost always preferred over the tree

representation because it is more space efficient (no child pointers) and also faster (better data

locality). In the array representation, requirement 2(c) from above translates into

∀i ∈ {0, 1, 2, . . . , len− 1} :

(2i + 1 ≥ len ∨ A[i] ≤ A[2i + 1]) ∧ (2i + 2 ≥ len ∨ A[i] ≤ A[2i + 2]),
(5.11)

where len is the length of the array A. In particular, every sorted array is a heap (but not every

heap is a sorted array).

Chapter 5 Query Processing142

Heaps support a variety of interesting operations. The only operation we are interested in

here is called Reheap. Consider the heap from Figure 5.2. Suppose we want to replace the

root’s value, 1, with a new value, say 9, while maintaining the heap property. The Reheap

algorithm would do this by replacing 1 with 9, then swapping 9 with 2 and finally swapping

9 with 5, resulting in the new array 〈2, 3, 5, 4, 6, 9〉, which again has the heap property. More

formally, Reheap takes a binary tree that meets all requirements for being a heap except for

2(c), and transforms it into a heap by moving the root’s value down the tree until the heap

property is established.

What is the time complexity of this algorithm? Consider a heap T containing n elements.

Because every heap is a balanced binary tree, we know that each of T ’s leaves has either height

�log2(n)� or height �log2(n)− 1�. Therefore, Reheap will finish in O(log(n)) steps.

Efficient query processing with heaps

We can use Reheap to overcome the limitations of the algorithm in Figure 5.1. In the revised

version of the algorithm, we employ two heaps: one to manage the query terms and, for each

term t, keep track of the next document that contains t; the other one to maintain the set of

the top k search results seen so far.

The resulting algorithm is shown in Figure 5.3. The terms heap contains the set of query terms,

ordered by the next document in which the respective term appears (nextDoc). It allows us to

perform an efficient multiway merge operation on the n postings lists. The results heap contains

the top k documents encountered so far, ordered by their scores. It is important to note that

results’s root node (i.e., results[0] in the array representation employed by the algorithm) does

not contain the best document seen so far, but the kth-best document seen so far. This allows

us to maintain and continually update the top k search results by replacing the lowest-scoring

document in the top k (and restoring the heap property) whenever we find a new document

that scores better than the old one.

The worst-case time complexity of the revised version of the document-at-a-time algorithm is

Θ(Nq · log(n) + Nq · log(k)), (5.12)

where Nq = Nt1 + · · ·+ Ntn
is the total number of postings for all query terms. The first term

(Nq ·log(n)) corresponds to Reheap operations carried out on the terms heap, restoring the heap

property after every posting. The second term (Nq · log(k)) corresponds to Reheap operations

carried out on the results heap, restoring the heap property whenever a new document is added

to the set of top k results.

Compared to Equation 5.10, the revised algorithm constitutes a substantial improvement,

primarily because of the speedup achieved by restricting the final sorting procedure to the top

k documents instead of all matching documents. Moreover, although maintaining the top-k

set has indeed a worst-case complexity of Θ(Nq · log(k)), this worst-case complexity plays no

role in practice; the algorithm’s average-case complexity is even better than what is shown in

Equation 5.12 (see Exercise 5.1).

5.1 Query Processing for Ranked Retrieval 143

rankBM25 DocumentAtATime WithHeaps (〈t1, ..., tn〉, k) ≡
1 for i ← 1 to k do // create a min-heap for the top k search results
2 results[i].score ← 0
3 for i ← 1 to n do // create a min-heap for the n query terms
4 terms[i].term ← ti

5 terms[i].nextDoc ← nextDoc(ti,−∞)
6 sort terms in increasing order of nextDoc // establish heap property for terms
7 while terms[0].nextDoc <∞ do
8 d← terms[0].nextDoc
9 score← 0
10 while terms[0].nextDoc = d do
11 t← terms[0].term
12 score← score + log(N/Nt) · TFBM25(t, d)
13 terms[0].nextDoc ← nextDoc(t, d)
14 reheap(terms) // restore heap property for terms
15 if score > results[0].score then
16 results[0].docid← d
17 results[0].score ← score
18 reheap(results) // restore heap property for results
19 remove from results all items with score = 0
20 sort results in decreasing order of score
21 return results

Figure 5.3 Document-at-a-time query processing with BM25, using binary heaps for managing the
set of terms and managing the set of top-k documents.

MaxScore

Although the algorithm in Figure 5.3 already achieves reasonable query processing performance,

there is still room for improvement. Recall from our earlier discussion that the BM25 TF

contribution can never exceed k1 + 1 = 2.2. Thus, the overall score contribution of a term t is

bounded from above by 2.2 · log(N/Nt). This bound is called the term’s MaxScore. Now consider

again the query

Q = 〈 “greek”, “philosophy”, “stoicism” 〉 . (5.13)

The query terms’ document frequencies, IDF weights, and corresponding MaxScore values are:

Term Nt log2(N/Nt) MaxScore

“greek” 4,504 6.874 15.123

“philosophy” 3,359 7.297 16.053

“stoicism” 58 13.153 28.936

Chapter 5 Query Processing144

Table 5.1 Total time per query and CPU time per query, with and without MaxScore. Data set: 10,000
queries from TREC TB 2006, evaluated against a frequency index for GOV2.

Without MaxScore With MaxScore

Wall Time CPU Docs Scored Wall Time CPU Docs Scored

OR, k=10 400 ms 304 ms 4.4 · 106 188 ms 93 ms 2.8 · 105

OR, k=100 402 ms 306 ms 4.4 · 106 206 ms 110 ms 3.9 · 105

OR, k=1000 426 ms 329 ms 4.4 · 106 249 ms 152 ms 6.2 · 105

AND, k=10 160 ms 62 ms 2.8 · 104 n/a n/a n/a

Suppose the user who entered the query is interested in the top k = 10 search results. After

scoring a few hundred documents, we may encounter the situation in which the 10th-best result

found so far exceeds the maximum score contribution of the term “greek”. That is,

results[0].score > MaxScore(“greek”) = 15.123. (5.14)

When this happens, we know that a document that only contains “greek”, but neither “phi-

losophy” nor “stoicism”, can never make it into the top 10 search results. Thus, there is no

need even to score any documents that contain only “greek”. We may remove the term from

the terms heap and look at its postings only when we find a document that contains one of the

other two query terms.

As we compute scores for more and more documents, we may at some point encounter the

situation in which

results[0].score > MaxScore(“greek”) + MaxScore(“philosophy”) = 31.176. (5.15)

At that point, we know that a document can make it into the top 10 only if it contains the term

“stoicism”, and we can remove “philosophy” from the terms heap, just as we did for “greek”.

The strategy outlined above is called MaxScore. It is due to Turtle and Flood (1995).

MaxScore is guaranteed to produce the same set of top k results as the algorithm in Figure 5.3,

but to do so much faster because it ignores all documents for which we know a priori that they

cannot be part of the final top k.

Note that, even though MaxScore removes some terms from the heap, it still uses them

for scoring. This is done by maintaining two data structures, one for terms that are still on

the heap and the other for terms that have been removed from the heap. Whenever we find a

document d that contains one of the terms still on the heap, we iterate over the set of terms

removed from the heap, and for each term t we call nextDoc(t, d− 1) to determine whether t

appears in d. If it does, we compute t’s score contribution and add it to the score for d.

Table 5.1 lists the average time per query and average CPU time per query for 10,000 queries

from the TREC 2006 Terabyte track, run against an on-disk frequency index for the GOV2

5.1 Query Processing for Ranked Retrieval 145

collection (containing postings of the form (d, ft,d)). For k = 10, the default setting of many

search engines, MaxScore decreases the total time per query by 53% and the CPU time per

query by 69%, compared to the algorithm in Figure 5.3. It does this by reducing the total

number of documents scored by the search engine, from 4.4 million to 280,000 documents per

query on average. Note that, even with MaxScore, the search engine still has to score an

order of magnitude more documents than it would if it employed a conjunctive retrieval model

(Boolean AND). However, in terms of overall performance, Boolean OR with MaxScore is not

very far from Boolean AND. The average CPU time per query, for instance, is only 50% higher:

93 ms per query versus 62 ms.

5.1.2 Term-at-a-Time Query Processing

As an alternative to the document-at-a-time approach, some search engines process queries in a

term-at-a-time fashion. Instead of merging the query terms’ postings lists by using a heap, the

search engine examines, in turn, all (or some) of the postings for each query term. It maintains a

set of document score accumulators. For each posting inspected, it identifies the corresponding

accumulator and updates its value according to the posting’s score contribution to the respective

document. When all query terms have been processed, the accumulators contain the final scores

of all matching documents, and a heap may be used to collect the top k search results.

One of the motivations behind the term-at-a-time approach is that the index is stored on

disk and that the query terms’ postings lists may be too large to be loaded into memory in

their entirety. In that situation a document-at-a-time implementation would need to jump back

and forth between the query terms’ postings lists, reading a small number of postings into

memory after each such jump, and incurring the cost of a nonsequential disk access (disk seek).

For short queries, containing two or three terms, this may not be a problem, as we can keep

the number of disk seeks low by allocating an appropriately sized read-ahead buffer for each

postings list. However, for queries containing more than a dozen terms (e.g., after applying

pseudo-relevance feedback — see Section 8.6), disk seeks may become a problem. A term-at-a-

time implementation does not exhibit any nonsequential disk access pattern. The search engine

processes each term’s postings list in a linear fashion, moving on to term ti+1 when it is done

with term ti.

Because the term-at-a-time paradigm processes each postings list separately, it is typically

used only for scoring functions that are of the form

score(q, d) = quality(d) +
∑
t∈q

score(t, d) . (5.16)

In this equation, quality(d) is an optional, query-independent score component, for example,

PageRank (Equation 15.8 on page 518). Most traditional scoring functions, including VSM

(Equation 2.12 on page 56), BM25 (Equation 8.48 on page 272) and LMD (Equation 9.32 on

page 295), are of this (or an equivalent) form. They are sometimes referred to as bag-of-words

Chapter 5 Query Processing146

rankBM25 TermAtATime (〈t1, ..., tn〉, k) ≡
1 sort 〈t1, ..., tn〉 in increasing order of Nti

2 acc← {}, acc′ ← {} // initialize two empty accumulator sets
3 acc[0].docid←∞ // end-of-list marker
4 for i ← 1 to n do
5 inPos← 0 // current position in acc
6 outPos← 0 // current position in acc′

7 for each document d in ti’s postings list do
8 while acc[inPos] < d do // copy accumulators from acc to acc′

9 acc′[outPos ++]← acc[inPos ++]
10 acc′[outPos].docid← d
11 acc′[outPos].score ← log(N/Nti) · TFBM25(ti, d)
12 if acc[inPos].docid = d then // term and accumulator coincide
13 acc′[outPos].score ← acc′[outPos].score + acc[inPos ++].score
14 d← nextDoc(ti, acc

′[outPos])
15 outPos← outPos + 1
16 while acc[inPos] <∞ do // copy remaining accumulators from acc to acc′

17 acc′[outPos ++]← acc[inPos ++]
18 acc′[outPos].docid←∞ // end-of-list marker
19 swap acc and acc′

20 return the top k items of acc // use a heap to select the top k

Figure 5.4 Term-at-a-time query processing with BM25. Document scores are stored in accumulators.
The accumulator array is traversed co-sequentially with the current term’s postings list.

methods. Scoring functions that take into account the proximity of query terms in the document,

including phrase queries, are incompatible with Equation 5.16. In theory, they may still be

implemented within a term-at-a-time query processing framework. However, the per-document

accumulators maintained by the search engine would need to hold some extra information (e.g.,

term positions) in addition to the documents’ scores, thus increasing their size substantially.

Figure 5.4 shows a possible term-at-a-time query processing algorithm for BM25. In the

figure, the score accumulators are kept in the array acc. For each query term ti, the array

is traversed co-sequentially with ti’s postings list, creating a new array acc′ that contains the

updated accumulators. The worst-case time complexity of this algorithm is

Θ

(
n∑

i=1

(Nq/n · i) + Nq · log(k)

)
= Θ(Nq · n + Nq · log(k)), (5.17)

where Nq = Nt1 + · · ·+ Ntn
is the total number of postings for all query terms. The worst case

occurs when Nti
= Nq/n for 1 ≤ i ≤ n.

By comparing Equation 5.17 with Equation 5.12, we see that the term-at-a-time algorithm, at

least in the form presented in Figure 5.4, is actually slightly slower than the document-at-a-time

algorithm (Nq ·n instead of Nq · log(n)), due to the necessity to traverse the entire accumulator

5.1 Query Processing for Ranked Retrieval 147

set for every query term ti. In theory, we could eliminate this bottleneck by replacing the array

implementation for acc with a hash table so that each accumulator update is an O(1) operation.

This would result in an overall complexity of Θ(Nq + Nq · log(k)) = Θ(Nq · log(k)). In practice,

however, the array implementation seems to be superior to the hash-based implementation,

for two reasons. First, an array is very cache-efficient; a hash table, due to the nonsequential

access pattern, could potentially lead to a large number of CPU cache misses. Second, and

more important, real-world implementations following the term-at-a-time approach usually do

not keep the full set of accumulators, but instead employ a strategy known as accumulator

pruning.

Accumulator pruning

As mentioned before, one motivation behind term-at-a-time query processing is that the query

terms’ postings lists may be too large to be completely loaded into memory. Of course, this

implies that the accumulator set acc is also too large to be kept in memory. Thus, the algorithm

in Figure 5.4 is incompatible with its initial motivation. To overcome this inconsistency, we have

to revise the algorithm so that it requires only a fixed amount of memory for its accumulator

set. That is, we have to impose an upper limit amax on the number of accumulators that may

be created.

The two classic accumulator pruning strategies are the Quit and Continue methods due

to Moffat and Zobel (1996). With the Quit strategy, the search engine — whenever it is done

with the current query term — tests whether |acc| ≥ amax. If this is the case, query processing

is terminated immediately, and the current accumulator set represents the final search results.

If Continue is used instead, the search engine may continue to process postings lists and to

update existing accumulators, but may no longer create any new accumulators.

Unfortunately, since a term’s postings list may contain more than amax entries, neither Quit

nor Continue actually enforces a hard limit, and for small values of amax it is in fact quite

likely that the limit is exceeded greatly. Our discussion of accumulator pruning is based on more

recent work conducted by Lester et al. (2005). Lester’s algorithm guarantees that the number

of accumulators created stays within a constant factor of amax. In the variant presented here,

it is guaranteed that the accumulator limit is never exceeded.

Similar to the MaxScore heuristic for document-at-a-time query evaluation, the basic idea

behind accumulator pruning is that we are not interested in the full set of matching documents,

but only in the top k, for some small k. In contrast to MaxScore, however, accumulator

pruning strategies are not guaranteed to return the same result set that an exhaustive evaluation

would generate. They produce only an approximation; the quality of this approximation depends

on the pruning strategy that is used and on the value of amax.

In the algorithm shown in Figure 5.4, the query terms are processed in order of frequency,

from least frequent to most frequent. While this is generally beneficial for unpruned term-at-

a-time query processing, because fewer accumulators have to be copied from acc to acc′, it is

crucial if accumulator pruning is employed. The main insight is the following: If we are allowed

Chapter 5 Query Processing148

only a limited number of accumulators, we should spend them on documents that are most likely

to make it into the top k. All other things being equal, if query term t has a greater weight

than query term t′, then a document containing t is more likely to be among the top k than

a document containing t′. In the context of BM25 (or any other IDF-based ranking formula),

this means that less frequent terms (with shorter postings lists) should be processed first.

In order to define the actual pruning strategy, we have to devise a rule that tells us for a

given posting whether it deserves its own accumulator or not. Suppose the search engine, after

processing the first i – 1 query terms, has piled up a set of acurrent accumulators and is about

to start working on ti. Then we can distinguish three possible cases:

1. acurrent + Nti
≤ amax. In this case we have enough free accumulators for all of ti’s

postings, and no pruning is required.

2. acurrent = amax. In this case the accumulator limit has already been reached. None of

ti’s postings will be allowed to create new accumulators.

3. acurrent < amax < acurrent + Nti
. In this case we may not have sufficient accumulator

quota to create new accumulators for all of ti’s postings. Pruning may be required.

Cases 1 and 2 are straightforward. For case 3, a possible (simplistic) pruning strategy is to

allow new accumulators for the first amax − acurrent postings whose documents do not yet

have accumulators, but not for the remaining ones. The problem with this approach is that

it favors documents that appear early on in the collection. This seems inappropriate, as there

is no evidence that such documents are more likely to be relevant to the given query (unless

documents are sorted according to some query-independent quality measure, such as PageRank).

Ideally, we would like to define a threshold ϑ such that exactly amax − acurrent postings

from ti’s postings list have a score contribution greater than ϑ. Postings whose score exceeds

ϑ would then be allowed to create a new accumulator, but lower-scoring postings would not.

Taken literally, this approach necessitates a two-pass query processing strategy: In the first

pass, score contributions for all of ti’s postings are scored and sorted to obtain the threshold

ϑ. In the second pass, all of ti’s postings are scored again, and compared to the threshold. As

ti’s postings list may be long, the computational cost of this approach can be substantial. We

address this problem in two steps:

1. The necessity to score all of ti’s postings can be eliminated by employing a slightly

different threshold value ϑTF and using it as a proxy for the original threshold ϑ. The

new threshold value is compared directly to each posting’s TF component, not to its

score contribution, thus reducing the overall computational cost.

2. The second pass over ti’s postings can be avoided by using an approximate value of

ϑTF instead of the exact value. The approximate value is computed on the fly and is

updated periodically, based on the TF distribution of the postings that have already

been processed.

5.1 Query Processing for Ranked Retrieval 149

rankBM25 TermAtATimeWithPruning (〈t1, ..., tn〉, k, amax, u) ≡
1 sort 〈t1, ..., tn〉 in increasing order of Nti

2 acc← {}, acc′ ← {} // initialize two empty accumulator sets
3 acc[0].docid←∞ // end-of-list marker
4 for i = 1 to n do
5 quotaLeft← amax − length(acc) // the remaining accumulator quota
6 if Nti ≤ quotaLeft then // Case 1: no pruning required
7 do everything as in Figure 5.4
8 else if quotaLeft = 0 then // Case 2: no unused accumulators left
9 for j = 1 to length(acc) do
10 acc[j].score ← acc[j].score + log(N/Nti) · TFBM25(ti, acc[j].docid)
11 else // Case 3: some accumulators left; pruning may be required
12 tfStats[j]← 0 ∀j // initialize TF statistics used for pruning
13 ϑTF ← 1 // initialize TF threshold for new accumulators
14 postingsSeen ← 0 // the number of postings seen from ti’s postings list
15 inPos← 0 // current position in acc
16 outPos← 0 // current position in acc′

17 for each document d in ti’s postings list do
18 while acc[inPos] < d do // copy accumulators from acc to acc′

19 acc′[outPos ++]← acc[inPos ++]
20 if acc[inPos].docid = d then // term and accumulator coincide
21 acc′[outPos].docid← d
22 acc′[outPos ++].score← acc[inPos ++].score + log(N/Nti) · TFBM25(ti, d)
23 else if quotaLeft > 0 then
24 if fti,d ≥ ϑTF then // fti,d exceeds the threshold; create a new accumulator
25 acc′[outPos].docid← d
26 acc′[outPos ++].score ← log(N/Nti) · TFBM25(ti, d)
27 quotaLeft← quotaLeft − 1
28 tfStats[fti,d]← tfStats[fti,d] + 1
29 postingsSeen← postingsSeen + 1
30 if (postingsSeen mod u = 0) then // recompute ϑTF based on tfStats
31 q ← (Nti − postingsSeen)/postingsSeen
32 ϑTF ← argminx{x ∈ N |

Px
j=1(tfStats[j] · q) ≥ quotaLeft}

33 copy the remaining accumulators from acc to acc′, as in Figure 5.4
34 swap acc and acc′

35 return the top k items of acc // use a heap to select the top k

Figure 5.5 Term-at-a-time query processing with BM25 and accumulator pruning. Input parameters:
the query terms t1, . . . , tn; the number k of documents to be returned; the accumulator limit amax; the
threshold update interval u.

The resulting algorithm is shown in Figure 5.5. In addition to the query terms and the parameter

k that specifies the number of search results to return, the algorithm takes two arguments: the

accumulator limit amax and the update interval u used for the approximation of ϑTF . The

algorithm uses the array tfStats to record the number of postings with a given TF value that,

Chapter 5 Query Processing150

0.15

0.30

0.45

0.60

0.75

0.90

103 104 105 106

Accumulator limit (amax)

(a) Retrieval effectiveness

P@10
MAP

50

100

150

200

250

300

103 104 105 106

Accumulator limit (amax)

(b) Performance (ms per query)

Wall time
CPU time

Figure 5.6 Retrieval effectiveness and query processing performance for term-at-a-time query evaluation with
accumulator pruning. Data set: 10,000 queries from TREC TB 2006, run against a frequency index for GOV2.

when they were encountered, did not yet have a corresponding accumulator. By extrapolating

these statistics to the remaining postings, we can predict how many postings we will see for a

given TF value, thus allowing us to compute an estimate for ϑTF . This computation takes place

in lines 31–32 of the algorithm.

The update interval parameter u is used to limit the computational cost of the periodic

recomputation of ϑTF . From our experience, u = 128 seems to be a good trade-off between

approximation accuracy and computational overhead. As an alternative to a fixed update inter-

val, Lester et al. (2005) suggest exponentially increasing intervals, taking into account the fact

that, as we progress, our approximation of the optimal threshold ϑTF becomes more accurate

and requires less frequent corrections.

Regarding the efficiency of the threshold computation in line 32, it is worth pointing out that

it is not necessary to have an entry for every possible TF value in the tfStats array. Most fti,d

values are very small (less than 4 or 5), so it makes sense to group larger values together, to

avoid maintaining a tfStats array in which most entries are 0. For example, changing line 28 of

the algorithm to

tfStats[min{15, fti,d}]← tfStats[min{15, fti,d}] + 1

has rarely any effect on the value of ϑTF , but allows us to recompute ϑTF in line 32 very

efficiently.

Figure 5.6 shows the retrieval effectiveness and query processing performance of our imple-

mentation of the accumulator pruning algorithm in Figure 5.5. Effectiveness was measured by

retrieving the top k = 10,000 documents for short queries generated for the 99 adhoc topics

from TREC Terabyte 2004 and 2005. Query processing performance was measured by retrieving

the top k = 10 documents for each of the 10,000 efficiency topics from TREC Terabyte 2006.

Retrieval effectiveness is quite stable, even for small values of amax. Mean average precision

(MAP) starts degrading at amax ≈ 105. Precision at 10 documents (P@10) shows signs of

5.1 Query Processing for Ranked Retrieval 151

deterioration only for very aggressive pruning (amax < 104). The performance of the algorithm,

measured in seconds per query, is in the same ballpark as the performance of the document-at-

a-time algorithm (with MaxScore). For amax = 105, both methods require approximately the

same amount of time and achieve roughly the same level of effectiveness. For larger values of

amax, the term-at-a-time method loses to document-at-a-time due to the overhead associated

with traversing the whole accumulator array for every query term.

Interestingly, for aggressive pruning (amax ≤ 104), the term-at-a-time algorithm is actually

faster than the Boolean AND approach (comparing Figure 5.6 with Table 5.1). This is not

entirely unexpected. According to Table 5.1, if the search engine follows a conjunctive query

interpretation (Boolean AND), it has to score 28,000 matching documents per query on average.

Thus, under certain conditions the conjunctive approach may in fact be less efficient than the

disjunctive approach with accumulator pruning. Of course, this comparison is not completely

fair, as conjunctive query evaluation is also amenable to accumulator pruning (see Exercise 5.2).

5.1.3 Precomputing Score Contributions

It should have become clear by now that the computation of the final document scores, for

example, according to the BM25 formula (Equation 5.5 on page 138), is a major bottleneck

of the search engine’s query processing routines. Both MaxScore and accumulator pruning

obtain their performance gains from limiting score computations to documents that are likely

to make it into the top k search results.

For scoring algorithms that follow the bag-of-words paradigm (Equation 5.16), it is not neces-

sary to compute the query term’s score contributions at query time. Instead, we may precompute

each posting’s score contribution during index construction and store it in the index, along with

the docid, leading to postings of the form (docid, score) instead of (docid, tf). Precomputing score

contributions can dramatically reduce the search engine’s CPU cost during query processing. Of

course, if TF values are replaced with precomputed score contributions, it will be impossible to

make any changes to the scoring functions after the index has been built. In many applications

this may not be a problem. But it makes it difficult to experiment with new scoring functions.

A perhaps more serious problem is posed by the space requirements of precomputed scores.

To reduce their space requirements (and, in the case of on-disk indices, the disk I/O overhead),

inverted indices are usually stored in compressed form. The details of how index compression

works are not important here (they are described in Chapter 6), but the basic idea is that small

integer values should be stored using a small number of bits. The vast majority of the TF values

in an inverted index, for example, are very small (less than 4). Thus, they can be compressed

extremely well and require only between 2 and 3 bits per posting in the index. Precomputed

Chapter 5 Query Processing152

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8

Bits per term contribution (B)

(a) Retrieval effectiveness

P@10
MAP

 0

 50

 100

 150

 200

 250

 0 2 4 6 8

Bits per term contribution (B)

(b) Performance (ms per query)

Wall time
CPU time

Figure 5.7 Retrieval effectiveness and query processing performance for document-at-a-time query evaluation
with precomputed term contributions and MaxScore heuristic. Data set: 10,000 queries from TREC TB 2006,
run against a frequency index for GOV2.

term scores, on the other hand, are essentially incompressible. If term scores are represented as

32-bit floating point numbers, they will require between 24 and 32 bits in the index.1

If we want to speed up the scoring process by using precomputed term contributions, then

it is crucial that we discretize the range of possible scores into a predefined set of buckets.

Let B denote the number of bits (uncompressed) that we are willing to reserve for each score

contribution. Then a possible discretization could be

score′ =
⌊

score

scoremax
· 2B

⌋
, (5.18)

where scoremax is the maximum score contribution allowed by the scoring function. In the case

of standard BM25, we have scoremax = k1 +1 = 2.2 (ignoring the IDF component of the scoring

formula).

Because the discretized score′ values are usually not uniformly distributed across all 2B possi-

ble values, they are likely to be amenable to compression, such as Huffman coding (Section 6.2.2),

and can be expected to consume slightly less than B bits each.

Figure 5.7 depicts experimental results (retrieval effectiveness and time per query) for a

document-at-a-time implementation based on precomputed score contributions. It can be seen

that, with as little as 4 bits per precomputed score (uncompressed), we can achieve a retrieval

effectiveness that is on par with the original implementation that computes all term scores on

the fly. At the same time the average time per query is reduced from 188 ms to 148 ms (-21%).

1 The IEEE standard for floating point arithmetic divides a 32-bit floating point number into a 24-bit
significand and an 8-bit exponent. The significand is virtually incompressible.

5.1 Query Processing for Ranked Retrieval 153

Increasing the number of bits per score makes the search engine slower, up to a point where

the revised implementation, using precomputed scores, requires more time per query than the

original implementation (e.g., 207 ms per query for B = 8, up from 188 ms). Note, however, that

the slowdown stems almost exclusively from the increased disk I/O overhead, as the average

CPU time per query remains approximately constant. Thus, the effect will not be observed if

the index is kept in memory instead of on disk.

5.1.4 Impact Ordering

In the inverted index data structure described in Chapter 4, postings are stored in the index in

the order in which they appear in the collection. This way of organizing the postings lists has

the advantage that the index is easy to build and that query operations (such as intersecting

postings lists) can be carried out relatively efficiently. However, the original document order is

not necessarily the best ordering for the postings in a given postings list. In the term-at-a-time

algorithm with accumulator pruning (Figure 5.5), for instance, we had to resort to a few tricks

to efficiently obtain an approximation of the top-scoring postings in ti’s postings list. If the

postings in that list had been sorted by their score contributions, this would have been much

easier; we could have selected the first few postings from the list and ignored the rest.

An index in which the postings in each list are sorted according to their respective score

contributions is called an impact-ordered index. Impact-ordered indices usually contain precom-

puted scores instead of TF values, as the ordering of the postings already implies a certain

scoring function.

When implemented näıvely, impact ordering can have a devastating effect on the complexity

of basic index access functions. For instance, the next method from Chapter 2 no longer has

logarithmic, but linear complexity! To avoid this, postings in an impact-ordered index are

usually not ordered by their exact score contribution, but — similar to what we did in the

previous section — according to a quantized impact value. As before, we can group impact

values into 2B discrete buckets, where B is typically between 3 and 5. The postings in a given

term’s postings list are then sorted by their discretized impact value. Within each bucket,

however, postings are sorted according to docid, as in the standard index organization from

Chapter 4.

Following this hybrid approach, the computational overhead of random access operations,

compared to a strictly document-ordered index, becomes tolerable. And the advantages of

having quick access to a term’s top postings are quite obvious, especially within a term-at-a-time

query processing framework.

5.1.5 Static Index Pruning

The accumulator pruning technique from Section 5.1.2, with or without impact ordering,

achieves its performance gains by ignoring a large portion of the query terms’ postings. For

instance, with an accumulator limit amax = 1,000, the search engine never scores more than

Chapter 5 Query Processing154

1,000 documents. Unfortunately, even though many postings do not contribute anything to the

scoring process, most of them still need to be read from the index and decompressed in order for

the search engine to be able to access the “interesting” postings that do make a contribution.

If we want to squeeze the last bit of query processing performance out of our search engine,

we can try to predict — at indexing time — which postings are likely to be used during query

processing and which are not. Based on this prediction, we can remove from the index all

postings which we don’t think will play an important role in the search process. This strategy

is referred to as static index pruning. It can yield substantial performance improvements due to

the shorter postings lists in the index.

Static index pruning has several obvious limitations. First, when processing queries from

a pruned index, we can no longer guarantee that the search engine returns the top-scoring

documents for a given query. Second, it breaks down if we allow the users to define structural

query constraints or to issue phrase queries. For instance, if a user searches for the phrase “to

be or not to be” in the Shakespeare collection, and the index pruning algorithm has decided

that the occurrence of “not” in act III, scene 2 of Shakespeare’s Hamlet is unimportant, then

the user will not be able to find the scene that she is looking for. Nonetheless, despite being

inappropriate for certain types of queries, index pruning has proven to be quite successful for

traditional bag-of-words query processing algorithms.

Index pruning algorithms usually come in one of two flavors:

• In term-centric index pruning, each term in the index is treated independently. From

each term’s postings list, the pruning algorithm selects the most important postings,

according to some predefined criteria, and discards the rest.

• A document-centric pruning algorithm, in contrast, looks at individual documents. Given

a document, the algorithm tries to predict which query terms are most important and

most representative of that document. If a term is considered important, a posting is

added to the index; otherwise, the term is discarded and treated as if it did not appear

in the document at all.

Term-centric pruning

Term-centric index pruning was first studied by Carmel et al. (2001). In their paper they

examine several different pruning algorithms that are, however, all relatively similar. Here we

limit ourselves to their top-(K,ε) term-centric pruning algorithm.

Consider a term t with associated postings list Lt, and an unknown query q that contains the

term t. Everything else being equal, the probability that a given posting P in Lt corresponds to

one of the top k documents for the query q is monotonic in P ’s score contribution. Therefore,

the term-centric pruning algorithm operates by sorting all postings in Lt according to their

score contribution for the chosen scoring function (e.g., BM25). It selects the top Kt postings

for inclusion in the index, discarding all other elements of Lt.

5.1 Query Processing for Ranked Retrieval 155

 0

 0.2

 0.4

 0.6

 0.8

 40 60 80 100

Pruning rate (%)

(a) Retrieval effectiveness

P@10
MAP

 0

 25

 50

 75

 100

 40 60 80 100

Pruning rate (%)

(b) Performance (ms per query)

Wall time
CPU time

Figure 5.8 Term-centric index pruning with K = 1,000 and ε between 0.5 and 1. Data set for efficiency
evaluation: 10,000 queries from TREC TB 2006. Data set for effectiveness evaluation: TREC topics 701–800.

There are various ways in which the cutoff parameter Kt can be chosen. One possibility is to

use the same value Kt for all terms in the index. Alternatively, an index-wide score contribution

threshold ϑ may be chosen, such that all postings whose score contribution exceeds ϑ are

included in the index, while all other postings are discarded. A third variant is to guarantee

each term at least K postings in the index. If a term t appears in more than K documents, its

postings limit Kt depends on the distribution of score contributions in its postings list. This is

the top-(K,ε) pruning method:

• Choose two parameters K ∈ N and ε ∈ [0, 1].

• If a term t appears in fewer than K documents, store all of t’s postings in the index.

• If a term t appears in more than K documents, compute ϑt = score(Lt[K]) · ε, where

score(Lt[K]) is the score contribution of t’s Kth-highest-scoring posting. Discard all

postings with a score contribution below ϑt. Include the remaining postings in the index.

In general, it is unclear how K and ε should be chosen. However, once one parameter has been

fixed, the other one can be varied freely until the desired index size, performance, or search

result quality is reached.

In our experiments (Figure 5.8) we arbitrarily set K = 1000 and measured both retrieval

effectiveness and query performance for various values of ε between 0.5 and 1. As can be

seen from the figure, for ε = 0.5 (pruning rate: ≈50%) there is no noticeable difference in

result quality between the pruned and the unpruned index (P@10 = 0.500, down from 0.503;

MAP = 0.238, down from 0.260). The average time per query, however, decreases from 188

ms to 118 ms (-37%). For more aggressive pruning parameters, the performance gains are even

more pronounced. However, if more than 70% of all postings are removed from the index, the

quality of the search results begins to suffer markedly.

Chapter 5 Query Processing156

Document-centric pruning

Document-centric index pruning is motivated by document-based pseudo-relevance feedback

methods (see Section 8.6). Pseudo-relevance feedback is a two-pass query processing strategy

in which, in a first pass, the search engine identifies the set of k′ top-scoring documents for

the given query. It then assumes that these k′ documents are all relevant to the query (pseudo-

relevance) and selects a set of terms that it considers most representative of these documents.

The selection is usually based on a statistical analysis of term distributions. The selected terms

are then added to the original query (usually with a reduced weight, so that they do not outweigh

the original query terms), and the augmented query is used for scoring in a second retrieval

pass. It turns out that the set of terms selected by pseudo-relevance feedback often contains the

original query terms. Hence, it is possible to run a query-independent pseudo-relevance feedback

algorithms on individual documents — at indexing time! — to select a set of terms for which

the given document is likely to rank highly.

Inspired by a pseudo-relevance feedback mechanism studied by Carpineto et al. (2001),

Büttcher and Clarke (2006) propose the following document-centric pruning algorithm:

• Select a pruning parameter λ ∈ (0, 1].

• For each document d, sort all n unique terms in d according to the following function:

score(t, d) = pd(t) · log

(
pd(t)

pC(t)

)
, (5.19)

where pd(t) = ft,d/ld is t’s probability of occurrence according to the unigram language

model of the document d, and pC(t) = lt/lC is the term’s probability of occurrence

according to the unigram language model of the text collection C. Select the top �λ · n�
terms for inclusion in the index; discard the rest.

If you are familiar with the concepts of information theory, Equation 5.19 might remind you of

the Kullback-Leibler divergence (KL divergence) between two probability distributions. Given

two discrete probability distributions f and g, their KL divergence is defined as∑
x

f(x) · log

(
f(x)

g(x)

)
. (5.20)

KL divergence is often used to measure how different two probability distributions are. It plays

an important role in various areas of information retrieval. In Section 9.4 it is used to compute

document scores in a language modeling framework for ranked retrieval.

In the context of index pruning, we can use KL divergence to quantify how different a given

document is from the rest of the collection. The pruning criterion from Equation 5.19 can

then be viewed as selecting the terms that make the greatest contribution to the document’s

KL divergence and thus are, in some sense, most representative of what makes the document

5.1 Query Processing for Ranked Retrieval 157

 0

 0.2

 0.4

 0.6

 0.8

 40 60 80 100

Pruning rate (%)

(a) Retrieval effectiveness

P@10
MAP

 0

 25

 50

 75

 100

 40 60 80 100

Pruning rate (%)

(b) Performance (ms per query)

Wall time
CPU time

Figure 5.9 Document-centric index pruning with λ between 0.05 and 0.6. Data set for efficiency evaluation:
10,000 queries from TREC TB 2006. Data set for effectiveness evaluation: TREC topics 701–800.

unique. Note that this pruning criterion is independent of the scoring function employed by the

search engine.

Figure 5.9 shows experimental results obtained for document-centric pruning. You can see

that moderate levels of pruning have virtually no impact on retrieval effectiveness. For instance,

after removing 70% of the postings from the index (λ = 0.3), MAP is still at 0.238 (down from

0.260). P@10 is almost unaffected and is even slightly higher than for an unpruned index (0.508

vs. 0.503). Only if we prune very aggressively (λ < 0.1), we will start to see an impact on early

precision (P@10).

If you compare Figures 5.8 and 5.9, you will see that, at any given pruning rate, the term-

centric method leads to lower response times than the document-centric approach. This can

be explained by the fact that term-centric pruning selects postings for all terms in the index.

Many of those terms are content generation artifacts (e.g., document time stamps) that never

show up in search queries. The document-centric method detects that these terms are not

important within their respective documents (because they usually appear only a single time

in the document). It excludes them from the index, which increases the average length of the

postings lists for the remaining terms. Therefore, at the same pruning level, the document-

centric approach leads to more work for the search engine.

Figure 5.10 shows a head-to-head comparison between term-centric and document-centric

pruning. For moderate performance levels (> 60 ms per query), there is not much of a difference

between the two methods; both achieve almost the same precision as the original unpruned

index. As we push for higher performance, however, the difference becomes quite visible. For

example, at a fixed precision level of P@10=0.45, document-centric pruning is about twice as

fast as the term-centric variant.

Chapter 5 Query Processing158

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

P
re

ci
si

on
@

10

Performance (ms per query)

Document-centric pruning
Term-centric pruning

Figure 5.10 Efficiency-vs.-effectiveness trade-offs for document-centric and term-centric static index
pruning.

Correctness guarantees

Although the static index pruning methods discussed above have interesting properties and allow

the operator of a search engine to make efficiency-versus-effectiveness trade-offs by changing the

parameters of the pruning algorithm, they are often not very attractive in real-world settings.

In the Web search market, for instance, competition is fierce, and even small reductions in

result quality represent a competitive disadvantage that may lead to a reduced market share.

Performance improvements are welcome, but only as long as they don’t have a negative impact

on retrieval effectiveness.

Ntoulas and Cho (2007) present a method that can be used to decide whether the search

results obtained from a pruned index are identical with the search results an unpruned index

would have produced. Their work is based on the assumption that the ranking function employed

by the search engine follows a bag-of-words scoring model (see Equation 5.16 on page 145).

For simplicity, our presentation of Ntoulas’s method is based on a modified version of

Equation 5.16 that lacks the quality component:

score(q, d) =
∑
t∈q

score(t, d). (5.21)

Now suppose that the search engine uses a scoring function that is of the form shown above,

and that it processes queries from a pruned index, with some postings missing. Further suppose

that the term-centric top-(K,ε) pruning mechanism from page 154 was used to prune the index.

Then, for each term t in the index, there is a threshold value ϑt, such that all of t’s postings

5.1 Query Processing for Ranked Retrieval 159

rankBM25 DocumentAtATimeWithCorrectnessGuarantee (〈t1, ..., tn〉, k) ≡
1 m← 0 // m is the total number of matching documents
2 d← min1≤i≤n{nextDoc(ti,−∞)}
3 while d <∞ do
4 results[m].docid← d
5 results[m].score ← 0
6 results[m].numHits← 0
7 for i ← 1 to n do
8 if nextDoc(ti, d− 1) = d then
9 results[m].score ← results[m].score + log(N/Nti) · TFBM25(ti, d)
10 results[m].numHits← results[m].numHits + 1
11 else
12 results[m].score ← results[m].score + ϑti

13 m← m + 1
14 d← min1≤i≤n{nextDoc(ti, d)}
15 sort results[0..(m − 1)] in decreasing order of score
16 if results[i].numHits = n for 0 ≤ i < k then
17 return (results[0..(k − 1)], true) // results are guaranteed to be correct
18 else
19 return (results[0..(k − 1)], false) // results may be incorrect

Figure 5.11 Document-at-a-time query processing based on a pruned index. Depending on whether
the correctness of the top k search results can be guaranteed or not, the function returns either true or
false.

with a term contribution in excess of ϑt are in the index, while all postings with a smaller

contribution have been dropped.

We may use this fact to determine whether the results produced by the pruned index are

the same as the results that an unpruned index would have produced or whether they might

be different. Consider a three-word query q = 〈t1, t2, t3〉 and a document d that, according to

the pruned index, contains t1 and t2, but not t3. From the index alone, it is impossible to tell

whether d actually contains t3 or not, as the posting may have been pruned. However, we do

know that, if d contains t3, then score(t3, d) cannot be larger than ϑt3 . This gives us an upper

bound for d’s final score:

score(q, d) ≤ score(t1, d) + score(t2, d) + ϑt3 . (5.22)

We can take into account the incomplete nature of the pruned index by ranking the document d

not according to its computed score but according to this upper bound. The resulting algorithm,

a revised version of the algorithm in Figure 5.1, is shown in Figure 5.11. In the algorithm, when

a document does not have a hit for query term t, the pruning cutoff ϑt is used in place of the

actual score contribution. At the end of the computation, if we have complete information for

each of the top k results (results[i].numHits = n in line 16), we know that the ranking is correct.

Chapter 5 Query Processing160

The algorithm in Figure 5.11 can be used as part of a two-tiered query processing architecture

in which the first tier consists of a pruned index and the second tier contains the original,

unpruned index. Queries are first sent to the pruned index. If we can guarantee the correctness

of the results produced by the pruned index, we are done. Otherwise, we process the query

again, this time using the unpruned index. Depending on the relative performance of the pruned

index compared to the full index, and on the fraction of queries that can be answered without

consulting the full index, this approach has the potential to reduce the average amount of

work done per query without sacrificing the quality of the search results. However, note that

the algorithm in Figure 5.11 cannot be used in conjunction with document-centric pruning,

because the latter does not provide an upper bound ϑt for the score contribution of pruned

term occurrences. Thus, although document-centric pruning often does not reduce the quality

of the search results, the index does not contain enough information for us to prove it.

5.2 Lightweight Structure

At the start of Chapter 2 we presented a simple abstract data type (ADT) for inverted indices.

We demonstrated how this ADT could be used for phrase searching and for computing simple

relationships involving structural elements, such as identifying all speeches spoken by a partic-

ular character in Shakespeare’s plays (page 45). In that example we explicitly used the methods

of the ADT to find occurrences of the character’s name, and then the speeches containing them.

We now extend and generalize this approach through the presentation of a region algebra.

Region algebras provide operators and functions for combining and manipulating text inter-

vals (or regions) in support of lightweight structure. They represent an intermediate point

between basic document retrieval and the complexity of full XML retrieval (see Chapter 16).

They also provide a method for unifying many of the advanced search features supported by

search engines and digital libraries. A number of region algebras have been described in the lit-

erature, dating back to the Pat region algebra, created for the New Oxford English Dictionary

project in the early 1980s (Gonnet, 1987; Salminen and Tompa, 1994). The particular region

algebra we present in this chapter is representative of the group, but is relatively simple and

builds directly on the techniques introduced in Chapter 2 (Clarke et al., 1995a, 1995b; Clarke

and Cormack, 2000).

5.2.1 Generalized Concordance Lists

Broadly speaking, region algebras work with sets of text intervals. Each interval may be

expressed as a pair [u, v], where u indicates the start of the interval and v indicates its end. Our

particular region algebra places a simple but important requirement on the sets of intervals it

manipulates: No interval in the set may have another interval from the set nested within it. We

refer to a set of intervals with this property as a generalized concordance list, or GC-list.

5.2 Lightweight Structure 161

The GC-list takes its name from a concordance, an alphabetical listing of the words in a

document along with the context in which they appear. Prior to the advent of computer-

based retrieval, paper-based concordances provided a tool for searching major works such as

Shakespeare’s. Essentially, they were an early form of an inverted index.

We use the notation [u, v] � [u′, v′] to indicate that [u, v] is nested in [u′, v′]. Similarly, the

notation [u, v] 	� [u′, v′] indicates that [u, v] is not nested in [u′, v′]. If [u, v] and [u′, v′] are both

part of a set manipulated by our region algebra, then [u, v] 	� [u′, v′] — either u < u′ and v < v′,
or u > u′ and v > v′. For example, the set of intervals

S = {[1, 10], [5, 9], [8, 12], [15, 20]} (5.23)

is not a GC-list because [5, 9] � [1, 10]. We could reduce this set to a GC-list by, for example,

removing [1, 10] to produce

{[5, 9], [8, 12], [15, 20]}. (5.24)

Note that [5, 9] overlaps [8, 12]. Unlike nesting intervals, overlapping intervals are acceptable.

Indeed, overlaps are essential to the correct operation of the region algebra. Note that we could

also reduce S to a GC-list by removing the interval [5, 9]. For reasons that will become apparent

later in this section, eliminating the larger interval is preferred.

We formalize the reduction of a set of intervals to a GC-list as follows: Let S be a set of

intervals. We define the function G(S) as

G(S) = {a | a ∈ S and 	 ∃ b ∈ S such that b � a} (5.25)

Given a set of text intervals, this function eliminates those that have other members of the set

nested within them, thus reducing the set to a GC-list. Therefore, a set S is a GC-list if and

only if G(S) = S and G(S) = G(G(S)). GC-lists arise naturally from our implementation of the

region algebra. While our implementation never explicitly reduces a set of intervals to a GC-list,

the function helps us to provide a concise explanation for the behavior of the algebra.

GC-lists possess a number of important properties. Since intervals cannot nest, no two inter-

vals in a GC-list may start at the same position. Thus, given two intervals [u, v] and [u′, v′],
either u < u′ or u > u′. Similarly, no two intervals may end at the same position; if u < u′,
then v < v′. Thus, ordering the intervals in a GC-list by either their start positions or their

end positions produces the same ordering. Finally, because each position can form the start

position for no more than one interval, the size of a GC-list is bounded by the total length of

the collection.

A schema-independent postings list may be viewed as a GC-list by treating each entry as an

interval of length 1, starting and ending at the same position. Thus, the postings list for “first”

in Figure 2.1 on page 34 may be viewed as the GC-list

“first” = {[2205, 2205], [2268, 2268], ..., [1271487, 1271487]}. (5.26)

Chapter 5 Query Processing162

Table 5.2 Definitions for the binary operators in the region algebra.

Containment Operators

Contained In:

A � B = {a | a ∈ A and ∃ b ∈ B such that a � b}

Containing:

A � B = {a | a ∈ A and ∃ b ∈ B such that b � a}

Not Contained In:

A � B = {a | a ∈ A and � ∃ b ∈ B such that a � b}

Not Containing:

A � B = {a | a ∈ A and � ∃ b ∈ B such that b � a}

Combination Operators

Both Of:

A � B = G({c | ∃ a ∈ A such that a � c and ∃ b ∈ B such that b � c})

One Of:

A � B = G({c | ∃ a ∈ A such that a � c or ∃ b ∈ B such that b � c})

Ordering Operator

Before:

A ... B = G({c | ∃ [u, v] ∈ A and ∃ [u′, v′] ∈ B where v < u′ and [u, v′] � c})

The answer to a phrase query may also be viewed as a GC-list, with the start and end positions

of each phrase forming an interval in the GC-list. For example, the GC-list corresponding to

the phrase “first witch” over the Shakespeare collection is

“first witch” = {[745406, 745407], [745466, 745467], [745501, 745502], ...}. (5.27)

5.2.2 Operators

Our region algebra has seven binary operators, presented in Table 5.2. Each operator is defined

over GC-lists and evaluates to a GC-list. The operators fall into three classes: containment,

combination, and ordering.

The containment operators select the intervals in a GC-list that are contained in, not contained

in, contain, or do not contain the intervals in a second GC-list. The containment operators are

used to formulate queries that refer to the hierarchical characteristics of structural elements in

the collection. The expression on the right-hand side of a containment operator acts as a filter

to restrict the expression on the left-hand side — the result of the operation is a subset of the

GC-list on the left-hand side.

5.2 Lightweight Structure 163

The two combination operators are similar to the standard Boolean operators AND and OR.

The “both of” operator is similar to AND: Each interval in the result contains an interval

from both operands. The G() function is applied to ensure the result is a GC-list. The “one of”

operator merges two GC-lists: Each interval in the result is an interval from one of the operands.

The ordering operator generalizes concatenation. Each interval in the result starts with an

interval from the first operand and ends with an interval from the second operand. The interval

from the first operand will end before the starting position of the interval from the second

operand. The ordering operator may be used, for example, to connect tags that delineate

structural elements, producing GC-lists in which each interval corresponds to one occurrence of

the structural element. Examples showing the use of all seven binary operators are given in the

next section.

In addition to the binary operators, there are two unary projection operators, π1 and π2. If

A is a GC-list, we define

π1(A) = {[u, u] | ∃v with [u, v] ∈ A}, (5.28)

π2(A) = {[v, v] | ∃u with [u, v] ∈ A}. (5.29)

For example,

π1({[5, 9], [8, 12], [15, 20]}) = {[5, 5], [8, 8], [15, 15]}, (5.30)

π2({[5, 9], [8, 12], [15, 20]}) = {[9, 9], [12, 12], [20, 20]}. (5.31)

We also define GC-lists that include all intervals of a fixed size as

[i] = {[u, v] | v − u + 1 = i}. (5.32)

For example,
[10] = {..., [101, 110], [102, 111], [103, 112], ...}. (5.33)

5.2.3 Examples

The region algebra may be used to solve the queries given on page 45 of Chapter 2, as

follows:

1. Lines spoken by any witch.

(“〈LINE〉” ... “〈/LINE〉”)

� ((“〈SPEECH〉” ... “〈/SPEECH〉”)

� ((“〈SPEAKER〉” ... “〈/SPEAKER〉”) � “witch”))

Brackets group the expressions, indicating the order in which the operations are to be

applied. The query first locates speakers that are witches. The lines within their speeches

are then extracted. All intermediate results, as well as the final result, are GC-lists.

Chapter 5 Query Processing164

2. The speaker who says, “To be or not to be”.

(“〈SPEAKER〉” ... “〈/SPEAKER〉”)

� ((“〈SPEECH〉” ... “〈/SPEECH〉”)

� ((“〈LINE〉” ... “〈/LINE〉”) � “to be or not to be”))

Lines containing the quote are located, the corresponding speeches are identified, and

their speakers are extracted. Since this phrase appears only once in Shakespeare’s plays,

the resulting GC-list contains only a single interval.

3. Titles of plays mentioning witches and thunder.

(“〈TITLE〉” ... “〈/TITLE〉”)

� ((“〈PLAY〉” ... “〈/PLAY〉”) � (“witch” � “thunder”))

The query first identifies fragments of text that include both “witch” and “thunder”,

expressing the result as a GC-list. Titles are then extracted from plays containing these

fragments.

In these examples we make reasonable assumptions about the structure of the XML used to

encode Shakespeare’s plays: Elements such as titles, scenes, plays, and lines are surrounded by

appropriate tags; all plays contain a title; all speeches contain a speaker and one or more lines.

In addition, we assume that structural elements do not nest (i.e., speeches don’t contain other

speeches).

A unique property of the region algebra is its ability to assign a meaning to a Boolean query

such as “witch” � “thunder”, without reference to an explicit universe such as plays or lines,

since its solution be may expressed as a GC-list. Over Shakespeare’s plays,

“witch” � “thunder” = {[31463, 36898], [36898, 119010], [125483, 137236], ...}. (5.34)

Intervals in this GC-list overlap, and some intervals extend across multiple plays. Since no

interval may have another nested within it, each interval starts with either the term “witch” or

the term “thunder”, and ends with the other term. Locating plays, scenes, lines, or structural

elements that satisfy the Boolean expression is a matter of filtering one GC-list against another.

The combination operators are sufficient for Boolean expression requiring only AND and OR.

For example, the query

(“witch” � “king”) � (“thunder” � “dagger”)

identifies fragments of text that contain either “witch” or “king” and either “thunder” or “dag-

ger”. Intervals in the resulting GC-list do not have intervals contained within them that also

satisfy the Boolean expression. Any larger interval that satisfies the Boolean expression will have

an interval from the GC-list contained within it. In our definition of G(S) in Equation 5.25,

we chose to remove the larger of two nesting intervals rather than the smaller. The reasoning

5.2 Lightweight Structure 165

underlying this choice may now be more apparent. At least in the case of Boolean expressions,

nothing is gained by explicitly computing these larger intervals.

Boolean NOT requires an explicit universe. For example, a query for plays not mentioning

witches or thunder could be expressed as

(“〈PLAY〉” ... “〈/PLAY〉”) � (“witch” � “thunder”).

Our region algebra may be used as one method for implementing the advanced search features

supported by many search engines and digital libraries. It is fairly common for these IR systems

to support Boolean queries that are restricted to specific fields, such as titles, authors, or

abstracts. These queries naturally map into the facilities of the region algebra. Many Web search

engines support a feature that allows a search to be restricted to a particular site. Including

the query term “site:uwaterloo.ca” restricts the search to pages at the University of Waterloo.

Assuming appropriate tagging and indexing, this query might be translated into the expression

(“〈PAGE〉” ... “〈/PAGE〉”) � ((“〈SITE〉” ... “〈/SITE〉”) � “uwaterloo.ca”).

5.2.4 Implementation

The implementation of our region algebra generalizes the algorithms for phrase searching, prox-

imity ranking, and Boolean queries presented in Chapter 2. As we demonstrated earlier, the

start positions and the end positions of each interval order the elements of a GC-list in exactly

the same way. We exploit this ordering to develop a framework for efficiently implementing the

region algebra. The approach involves indexing into GC-lists using an ADT similar to the one

we defined for inverted indices on page 33. The ordering of intervals in a GC-list is used as the

basis for defining this ADT. Given a GC-list and a position in the collection, we index into the

GC-list to find the interval that is in some sense “closest to” that position. We begin with an

example and follow it with a formal exposition of the framework.

Consider evaluating the expression A ... B (see Figure 5.12). An interval from the resultant

GC-list starts with an interval from A and ends with an interval from B. Suppose [u, v] is the

first interval in A. If [u′, v′] is the first interval from B with u′ > v, then v′ must be the end

of the first interval of A ... B. We index into B to find the first interval with u′ > v. The last

interval from A that ends before u′ starts the first interval of A ... B. We index into A to find

the last interval [u′′, v′′] where v′′ < u′. The interval [u′′, v′] is then the first solution to A ... B.

Indexing first into A, then into B, and again into A, gives us the first interval in A ... B in

three steps. The next solution to A ... B begins after u′′. We index into A to produce the first

interval after u′′. This procedure of successively indexing into A and B can be continued to find

the remaining intervals in A ... B.

The implementation framework consists of four methods that allow indexing into GC-lists

in various ways. Each of the methods represents a variation on the notion of “closest interval”

Chapter 5 Query Processing166

���

� � ���

�� ��

���

��� ��

�����	
�	�
����
�

�����	�������	��	�

���	�������	��	�����
��	��

�����	�������	��	�	���	�

����������	�
����
��

�

�

�����	�������	��	�������	�

�	���	�

��� ���

���

Figure 5.12 Evaluating the GCL expression A ... B.

in a GC-list to a specified position in the collection. We implement the four methods for each

operator in the region algebra, using the methods of its operands.

• The method τ (S, k) returns the first interval in the GC-list S starting at or after the

position k:

τ (S, k) =

⎧⎪⎨⎪⎩
[u, v] if ∃ [u, v] ∈ S such that k ≤ u

and 	 ∃ [u′, v′] ∈ S such that k ≤ u′ < u

[∞,∞] if 	 ∃ [u, v] ∈ S such that k ≤ u

(5.35)

• The method ρ(S, k) returns the first interval in S ending at or after the position k:

ρ(S, k) =

⎧⎪⎨⎪⎩
[u, v] if ∃ [u, v] ∈ S such that k ≤ v

and 	 ∃ [u′, v′] ∈ S such that k ≤ v′ < v

[∞,∞] if 	 ∃ [u, v] ∈ S such that k ≤ v

(5.36)

5.2 Lightweight Structure 167

τ(t, k) ≡
1 if k =∞ then
2 u←∞
3 else if k = −∞ then
4 u← −∞
5 else
6 u← next(t, k − 1)
7 return [u, u]

τ ′(t, k) ≡
8 if k =∞ then
9 v ←∞
10 else if k = −∞ then
11 v ← −∞
12 else
13 v ← prev(t, k + 1)
14 return [v, v]

Figure 5.13 Pseudo-code for τ(t, k) and τ ′(t, k), where t is a term.

• The method τ ′(S, k) is the converse of τ . It returns the last interval in S ending at or

before the position k:

τ ′(S, k) =

⎧⎪⎨⎪⎩
[u, v] if ∃ [u, v] ∈ S such that k ≥ v

and 	 ∃ [u′, v′] ∈ S such that k ≥ v′ > v

[-∞,-∞] if 	 ∃ [u, v] ∈ S such that k ≥ v

(5.37)

• The method ρ′(S, k) is the converse of ρ. It returns the last interval in S starting at or

before the position k:

ρ′(S, k) =

⎧⎪⎨⎪⎩
[u, v] if ∃ [u, v] ∈ S such that k ≥ u

and 	 ∃ [u′, v′] ∈ S such that k ≥ u′ > u

[-∞,-∞] if 	 ∃ [u, v] ∈ S such that k ≥ u

(5.38)

For example, if S = {[5, 9], [8, 12], [15, 20]} and k = 10, we have:

τ ({[5, 9], [8, 12], [15, 20]}, 10) = [15, 20]

ρ({[5, 9], [8, 12], [15, 20]}, 10) = [8, 12]

τ ′({[5, 9], [8, 12], [15, 20]}, 10) = [5, 9]

ρ′({[5, 9], [8, 12], [15, 20]}, 10) = [8, 12]

Just as they do for our inverted index ADT, the symbols ∞ and −∞ act as end-of-file and

beginning-of-file markers.

The methods τ (S, k), ρ(S, k), τ ′(S, k), and ρ′(S, k) are closely related to our inverted index

ADT of Chapter 2. For individual query terms these methods may be defined using that ADT, as

shown in Figure 5.13 for τ (t, k) and τ ′(t, k). Thus, for the inverted index of Figure 2.1 (page 34)

we have

τ (“first”, 745466) = [745501, 745501]. (5.39)

Chapter 5 Query Processing168

τ(A ... B, k) ≡
1 if k =∞ then
2 return [∞,∞]
3 if k = −∞ then
4 return [−∞,−∞]
5 [u, v]← τ (A,k)
6 if [u, v] = [∞,∞] then
7 return [∞,∞]
8 [u′, v′]← τ (B, v + 1)
9 if [u′, v′] = [∞,∞] then
10 return [∞,∞]
11 [u′′, v′′]← τ ′(A, u′ − 1)
12 return [u′′, v′]

τ (A � B, k) ≡
13 if k =∞ then
14 return [∞,∞]
15 if k = −∞ then
16 return [−∞,−∞]
17 [u, v]← τ(A, k)
18 if [u, v] = [∞,∞] then
19 return [∞,∞]
20 [u′, v′]← ρ(B, v)
21 if [u′, v′] = [∞,∞] then
22 return [∞,∞]
23 if u′ ≤ u then
24 return [u, v]
25 else
26 return τ(A � B, u′)

ρ(A � B, k) ≡
27 if k =∞ then
28 return [∞,∞]
29 if k = −∞ then
30 return [−∞,−∞]
31 [u, v]← ρ(A, k)
32 if [u, v] = [∞,∞] then
33 return [∞,∞]
34 [u′, v′]← τ (B, u)
35 if [u′, v′] = [∞,∞] then
36 return [∞,∞]
37 if v′ ≤ v then
38 return [u, v]
39 else
40 return ρ(A � B, v′)

Figure 5.14 Implementation of τ (A ... B, k), τ (A � B, k), and ρ(A � B, k), where A and B are GC-lists.

The definition of ρ(t, k) is similar to that of τ (t, k); the definition of ρ′(t, k) is similar to that

of τ ′(t, k). For fixed-size intervals [i], implementation of the GC-list methods is even more

straightforward, because the solution may be computed directly from k (see Exercise 5.5).

The methods for the binary operators are built upon the methods of their operands.

Figure 5.14 provides some examples. In the implementation of τ(A ... B, k), most of the lines

handle boundary cases associated with ∞ and −∞. The core of the algorithm is expressed by

lines 5, 8, and 11, reflecting the idea illustrated by Figure 5.12. On line 5, the first interval in

A starting at or after k is computed. On line 8, the first interval in B starting at or after the

interval from A is computed. The end position of this interval is the end position of the solution

to τ (A ... B, k). Finally, on line 11 the start position of the solution is computed.

The methods are amenable to implementation by galloping search (see Figure 2.5 on page 42).

To generate all solutions to a query Q, we call τ(Q, k) iteratively:

k ← 0

while k <∞ do

[u, v]← τ (Q, k)

if k 	=∞ then

output [u, v]

k ← u + 1

5.3 Further Reading 169

5.3 Further Reading

At the beginning of Section 5.1, we implied that a query processor for ranked retrieval has

to follow either the conjunctive or the disjunctive Boolean model. However, combinations are

possible. For example, it is possible to initially evaluate the query according to a conjunctive

interpretation and then switch to a disjunctive interpretation if the conjunctive one matches too

few documents. A more general version of this “weak-AND” approach is described by Broder

et al. (2003).

The MaxScore heuristic (Section 5.1.1) is due to Turtle and Flood (1995). A similar algo-

rithm was proposed in earlier work by Smith (1990). More recently, Strohman et al. (2005)

presented an improved version of MaxScore that uses precomputed topdocs lists (you may

think of these lists as a very aggressively pruned index) to obtain a lower bound for the score of

the kth-best search result. This lower bound can then be used to remove query terms from the

heap before a single document is scored. Strohman et al. (2005) report time savings of 23% com-

pared to the original MaxScore algorithm. Zhu et al. (2008) propose a variation of MaxScore

that can be used for ranking functions that have a term proximity component. Their method is

similar to Strohman’s approach but uses a phrase index to compute proximity-aware topdocs.

Impact ordering (Section 5.1.4) was first studied by Persin et al. (1996) under the label

“frequency-sorted indexes”. Refinements of this basic method were explored in a series of

publications by Anh et al. (2001, 2004, 2006). The final paper in this series is of particular

interest, because it demonstrates the suitability of the impact-ordered index organization for

document-at-a-time query processing strategies — something that is not immediately obvious.

The Pat region algebra (Gonnet, 1987; Salminen and Tompa, 1994), initially developed to

meet the needs of the New Oxford English Dictionary project, was later commercialized by Open

Text Corporation as an integral part of their search engine (Open Text Corporation, 2001). Tim

Bray, the sole author of the first version of that engine, went on to become a co-creator of the

XML Standard. Later versions of the engine provided search services for Yahoo! during the

mid-1990s and continue to power the company’s enterprise content management products.

The success of Pat inspired a number of extensions and improvements. The PADRE system

(Hawking and Thistlewaite, 1994) provided a parallel implementation of Pat. Burkowski (1992)

presents containment and set operators for a hierarchical region algebra. The region algebra

presented in this chapter is based on Clarke et al. (1995a, 1995b) and may be viewed as an

extension (and simplification) of Burkowski’s region algebra. Dao et al. (1996) and Jaakkola and

Kilpeläinen (1999) present further extensions in support of recursive structure (e.g., speeches

that contain speeches). Consens and Milo (1995) explore theoretical aspects and limitations

of region algebras. The region algebra described by Navarro and Baeza-Yates (1997) organizes

regions into multiple hierarchies, supporting direct ancestor/child relationships and recursive

structure.

Chapter 5 Query Processing170

Additional information on the efficient implementation of the combination operators can be

found in Clarke and Cormack (2000). Zhang et al. (2001) discuss algorithms for efficiently

implementing containment queries in the context of a relational database system. Young-Lai

and Tompa (2003) describe a bottom-up, one-pass approach to implementation. Boldi and Vigna

(2006) explore efficient implementation through lazy evaluation.

5.4 Exercises

Exercise 5.1 Equation 5.12 on page 142 states that the worst-case complexity of the

document-at-a-time algorithm with heaps is Θ(Nq · log(n) + Nq · log(k)).

(a) Characterize the kind of input (i.e., document score distribution) that represents the

worst case.

(b) Prove that, on average, the complexity of the algorithm is strictly better than

Θ(Nq · log(k)). You may assume that k > n and that document scores are dis-

tributed uniformly, that is, every document is equally likely to have the highest score,

second-highest score, and so forth.

Exercise 5.2 Design a term-at-a-time query processing algorithm for conjunctive queries

(Boolean AND) that supports accumulator pruning.

Exercise 5.3 Figure 5.7(b) shows that the average CPU time per query drops sharply if less

than B = 3 bits are used per precomputed score contribution. This is a side effect of the

MaxScore heuristic employed by the query processing algorithm. Explain why MaxScore is

more effective for smaller values of B.

Exercise 5.4 Given the assumptions of Section 5.2.3, express the following queries in the

region algebra:

(a) Find plays that contain “Birnam” followed by “Dunsinane”.

(b) Find fragments of text that contain “Birnam” and “Dunsinane”.

(c) Find plays in which the word “Birnam” is spoken by a witch.

(d) Find speeches that contain “toil” or “trouble” in the first line, and do not contain

“burn” or “bubble” in the second line.

(e) Find a speech by an apparition that contains “fife” and that appears in a scene along

with the line “Something wicked this way comes”.

Exercise 5.5 Write pseudo-code implementing the four GC-list methods for fixed-length

intervals: τ ([i], k), ρ([i], k), τ ′([i], k), and ρ′([i], k).

5.5 Bibliography 171

Exercise 5.6 Write pseudo-code implementing the GC-list methods for the two projec-

tion operators: τ (π1(A), k), ρ(π1(A), k), τ ′(π1(A), k), ρ′(π1(A), k), τ(π2(A), k), ρ(π2(A), k),

τ ′(π2(A), k), and ρ′(π2(A), k).

Exercise 5.7 Following the pattern of the algorithms shown in Figure 5.14 (page 168), write

pseudo-code for the following methods:

(a) ρ(A ... B, k)

(b) τ(A � B, k)

(c) τ(A � B, k)

(d) τ(A � B, k)

(e) ρ(A � B, k)

(f) τ ′(A � B, k)

Exercise 5.8 Write pseudo-code implementing the four GC-list methods for phrases:

τ(t1...tn, k), ρ(t1...tn, k), τ ′(t1...tn, k), and ρ′(t1...tn, k). (Hint: As a starting point, consider

the implementation of the nextPhrase function in Figure 2.2 on page 36).

Exercise 5.9 (project exercise) Implement the BM25 ranking formula (Equation 8.48 on

page 272), using a document-at-a-time evaluation strategy. Your implementation should use the

MaxScore heuristic to reduce the number of document scores computed.

5.5 Bibliography

Anh, V. N., de Kretser, O., and Moffat, A. (2001). Vector-space ranking with effective early

termination. In Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 35–42. New Orleans, Louisiana.

Anh, V. N., and Moffat, A. (2004). Collection-independent document-centric impacts. In Pro-

ceedings of the 9th Australasian Document Computing Symposium, pages 25–32. Melbourne,

Australia.

Anh, V. N., and Moffat, A. (2006). Pruned query evaluation using pre-computed impacts.

In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 372–379. Seattle, Washington.

Boldi, P., and Vigna, S. (2006). Efficient lazy algorithms for minimal-interval semantics. In

String Processing and Information Retrieval, 13th International Conference, pages 134–149.

Glasgow, Scotland.

Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., and Zien, J. (2003). Efficient query evalu-

ation using a two-level retrieval process. In Proceedings of the 12th International Conference

on Information and Knowledge Management, pages 426–434. New Orleans, Louisiana.

Chapter 5 Query Processing172

Burkowski, F. J. (1992). An algebra for hierarchically organized text-dominated databases.

Information Processing & Management, 28(3):333–348.

Büttcher, S., and Clarke, C. L. A. (2006). A document-centric approach to static index prun-

ing in text retrieval systems. In Proceedings of the 15th ACM International Conference on

Information and Knowledge Management, pages 182–189. Arlington, Virginia.

Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y., and Soffer, A.

(2001). Static index pruning for information retrieval systems. In Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 43–50. New Orleans, Louisiana.

Carpineto, C., de Mori, R., Romano, G., and Bigi, B. (2001). An information-theoretic approach

to automatic query expansion. ACM Transactions on Information Systems, 19(1):1–27.

Clarke, C. L. A., and Cormack, G. V. (2000). Shortest-substring retrieval and ranking. ACM

Transactions on Information Systems, 18(1):44–78.

Clarke, C. L. A., Cormack, G. V., and Burkowski, F. J. (1995a). An algebra for structured text

search and a framework for its implementation. Computer Journal, 38(1):43–56.

Clarke, C. L.A., Cormack, G. V., and Burkowski, F. J. (1995b). Schema-independent retrieval
from heterogeneous structured text. In Proceedings of the 4th Annual Symposium on

Document Analysis and Information Retrieval, pages 279–289. Las Vegas, Nevada.

Consens, M. P., and Milo, T. (1995). Algebras for querying text regions. In Proceedings of
the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pages 11–22. San Jose, California.

Dao, T., Sacks-Davis, R., and Thom, J.A. (1996). Indexing structured text for queries on
containment relationships. In Proceedings of the 7th Australasian Database Conference, pages

82–91. Melbourne, Australia.

Gonnet, G. H. (1987). Pat 3.1 — An Efficient Text Searching System — User’s Manual.
University of Waterloo, Canada.

Hawking, D., and Thistlewaite, P. (1994). Searching for meaning with the help of a PADRE. In

Proceedings of the 3rd Text REtrieval Conference (TREC-3), pages 257–267. Gaithersburg,
Maryland.

Jaakkola, J., and Kilpeläinen, P. (1999). Nested Text-Region Algebra. Technical Report CC-

1999-2. Department of Computer Science, University of Helsinki, Finland.

Lester, N., Moffat, A., Webber, W., and Zobel, J. (2005). Space-limited ranked query eval-

uation using adaptive pruning. In Proceedings of the 6th International Conference on Web

Information Systems Engineering, pages 470–477. New York.

Moffat, A., and Zobel, J. (1996). Self-indexing inverted files for fast text retrieval. ACM

Transactions on Information Systems, 14(4):349–379.

Navarro, G., and Baeza-Yates, R. (1997). Proximal nodes: A model to query docu-

ment databases by content and structure. ACM Transactions on Information Systems,

15(4):400–435.

5.5 Bibliography 173

Ntoulas, A., and Cho, J. (2007). Pruning policies for two-tiered inverted index with correct-

ness guarantee. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 191–198. Amsterdam, The

Netherlands.

Open Text Corporation (2001). Ten Years of Innovation. Waterloo, Canada: Open Text
Coporation.

Persin, M., Zobel, J., and Sacks-Davis, R. (1996). Filtered document retrieval with frequency-

sorted indexes. Journal of the American Society for Information Science, 47(10):749–764.

Salminen, A., and Tompa, F. W. (1994). Pat expressions — An algebra for text search. Acta

Linguistica Hungarica, 41(1–4):277–306.

Smith, M. E. (1990). Aspects of the P-Norm Model of Information Retrieval: Syntactic Query

Generation, Efficiency, and Theoretical Properties. Ph.D. thesis, Cornell University, Ithaca,

New York.

Strohman, T., Turtle, H., and Croft, W. B. (2005). Optimization strategies for complex queries.

In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 219–225. Salvador, Brazil.

Turtle, H., and Flood, J. (1995). Query evaluation: Strategies and optimization. Information

Processing & Management, 31(1):831–850.

Young-Lai, M., and Tompa, F. W. (2003). One-pass evaluation of region algebra expressions.
Information Systems, 28(3):159–168.

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., and Lohman, G. (2001). On supporting contain-

ment queries in relational database management systems. In Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, pages 425–436. Santa Barbara,

California.

Zhu, M., Shi, S., Yu, N., and Wen, J.R. (2008). Can phrase indexing help to process non-
phrase queries? In Proceedings of the 17th ACM Conference on Information and Knowledge

Management, pages 679–688. Napa, California.

6 Index Compression

An inverted index for a given text collection can be quite large, especially if it contains full

positional information about all term occurrences in the collection. In a typical collection of

English text there is approximately one token for every 6 bytes of text (including punctuation

and whitespace characters). Hence, if postings are stored as 64-bit integers, we may expect that

an uncompressed positional index for such a collection consumes between 130% and 140% of

the uncompressed size of the original text data. This estimate is confirmed by Table 6.1, which

lists the three example collections used in this book along with their uncompressed size, their

compressed size, and the sizes of an uncompressed and a compressed schema-independent index.

An uncompressed schema-independent index for the TREC45 collection, for instance, consumes

about 331 MB, or 122% of the raw collection size.1

Table 6.1 Collection size, uncompressed and compressed (gzip --best), and size of schema-
independent index, uncompressed (64-bit integers) and compressed (vByte), for the three example
collections.

Collection Size Index Size

Uncompressed Compressed Uncompressed Compressed

Shakespeare 7.5 MB 2.0 MB 10.5 MB (139%) 2.7 MB (36%)

TREC45 1904.5 MB 582.9 MB 2331.1 MB (122%) 533.0 MB (28%)

GOV2 425.8 GB 79.9 GB 328.3 GB (77%) 62.1 GB (15%)

An obvious way to reduce the size of the index is to not encode each posting as a 64-bit

integer but as a �log(n)�-bit integer, where n is the number of tokens in the collection. For

TREC45 (�log(n)� = 29) this shrinks the index from 2331.1 MB to 1079.1 MB — 57% of

the raw collection size. Compared to the näıve 64-bit encoding, this is a major improvement.

However, as you can see from Table 6.1, it is not even close to the 533 MB that can be achieved

if we employ actual index compression techniques.

Since an inverted index consists of two principal components, the dictionary and the postings

lists, we can study two different types of compression methods: dictionary compression and

postings list compression. Because the size of the dictionary is typically very small compared

1 The numbers for GOV2 are lower than for the other two collections because its documents contain a
nontrivial amount of JavaScript and other data that are not worth indexing.

6.1 General-Purpose Data Compression 175

to the total size of all postings lists (see Table 4.1 on page 106), researchers and practitioners

alike usually focus on the compression of postings lists. However, dictionary compression can

sometimes be worthwhile, too, because it decreases the main memory requirements of the search

engine and allows it to use the freed resources for other purposes, such as caching postings lists

or search results.

The remainder of this chapter consists of three main parts. In the first part

(Sections 6.1 and 6.2) we provide a brief introduction to general-purpose, symbolwise data

compression techniques. The second part (Section 6.3) treats the compression of postings lists.

We discuss several compression methods for inverted lists and point out some differences between

the different types of inverted indices. We also show how the effectiveness of these methods can

be improved by applying document reordering techniques. The last part (Section 6.4) covers

compression algorithms for dictionary data structures and shows how the main memory require-

ments of the search engine can be reduced substantially by storing the in-memory dictionary

entries in compressed form.

6.1 General-Purpose Data Compression

In general, a data compression algorithm takes a chunk of data A and transforms it into another

chunk of data B, such that B is (hopefully) smaller than A, that is, it requires fewer bits to

be transmitted over a communication channel or to be stored on a storage medium. Every

compression algorithm consists of two components: the encoder (or compressor) and the decoder

(or decompressor). The encoder takes the original data A and outputs the compressed data B.

The decoder takes B and produces some output C.

A particular compression method can either be lossy or lossless. With a lossless method, the

decoder’s output, C, is an exact copy of the original data A. With a lossy method, C is not an

exact copy of A but an approximation that is somewhat similar to the original version. Lossy

compression is useful when compressing pictures (e.g., JPEG) or audio files (e.g., MP3), where

small deviations from the original are invisible (or inaudible) to the human senses. However,

in order to estimate the loss of quality introduced by those small deviations, the compression

algorithm needs to have some a priori knowledge about the structure or the meaning of the data

being compressed.

In this chapter we focus exclusively on lossless compression algorithms, in which the decoder

produces an exact copy of the original data. This is mainly because it is not clear what the value

of an approximate reconstruction of a given postings list would be (except perhaps in the case

of positional information, where it may sometimes be sufficient to have access to approximate

term positions). When people talk about lossy index compression, they are often not referring

to data compression methods but to index pruning schemes (see Section 5.1.5).

Chapter 6 Index Compression176

6.2 Symbolwise Data Compression

When compressing a given chunk of data A, we are usually less concerned with A’s actual

appearance as a bit string than with the information contained in A. This information is called

the message, denoted as M . Many data compression techniques treat M as a sequence of symbols

from a symbol set S (called the alphabet):

M = 〈σ1, σ2, . . . , σn〉, σi ∈ S. (6.1)

Such methods are called symbolwise or statistical. Depending on the specific method and/or

the application, a symbol may be an individual bit, a byte, a word (when compressing text),

a posting (when compressing an inverted index), or something else. Finding an appropriate

definition of what constitutes a symbol can sometimes be difficult, but once a definition has

been found, well-known statistical techniques can be used to re-encode the symbols in M in

order to decrease their overall storage requirements. The basic idea behind symbolwise data

compression is twofold:

1. Not all symbols in M appear with the same frequency. By encoding frequent symbols

using fewer bits than infrequent ones, the message M can be represented using a smaller

number of bits in total.

2. The i-th symbol in a symbol sequence 〈σ1, σ2, . . . , σi, . . . , σn〉 sometimes depends on the

previous symbols 〈. . . , σi−2, σi−1〉. By taking into account this interdependence between

the symbols, even more space can be saved.

Consider the task of compressing the text found in the Shakespeare collection (English text

with XML markup), stored in ASCII format and occupying 8 bytes per character. Without any

special effort we can decrease the storage requirements from 8 to 7 bits per character because

the collection contains only 86 distinct characters. But even among the characters that do

appear in the collection, we can see that there is a large gap between the frequencies with which

they appear. For example, the six most frequent and the six least frequent characters in the

Shakespeare collection are:

1. “ ”: 742,018 4. “〈”: 359,452 81. “(”: 2 84. “8”: 2

2. “E”: 518,133 5. “〉”: 359,452 . . . 82. “)”: 2 85. “�”: 1

3. “e”: 410,622 6. “t”: 291,103 83. “5”: 2 86. “7”: 1

If the most frequent character (the whitespace character) is re-encoded using 1 bit less (6 instead

of 7), and the two least frequent characters are re-encoded using 1 bit more (8 instead of 7), a

total of 742,016 bits is saved.

6.2 Symbolwise Data Compression 177

Moreover, there is an interdependence between consecutive characters in the text collection.

For example, the character “u”, appearing 114,592 times in the collection, is located somewhere

in the middle of the overall frequency range. However, every occurrence of the character “q”

is followed by a “u”. Thus, every “u” that is preceded by a “q” can be encoded using 0 bits

because a “q” is never followed by anything else!

6.2.1 Modeling and Coding

Symbolwise compression methods usually work in two phases: modeling and coding. In the

modeling phase a probability distribution M (also referred to as the model) is computed that

maps symbols to their probability of occurrence. In the coding phase the symbols in the message

M are re-encoded according to a code C. A code is simply a mapping from each symbol σ to its

codeword C(σ), usually a sequence of bits. C(σ) is chosen based on σ’s probability according to

the compression model M. If M(σ) is small, then C(σ) will be long; ifM(σ) is large, then C(σ)

will be short (where the length of a codeword σ is measured by the number of bits it occupies).

Depending on how and when the modeling phase takes place, a symbolwise compression

method falls into one of three possible classes:

• In a static method the model M is independent of the message M to be compressed.

It is assumed that the symbols in the message follow a certain predefined probability

distribution. If they don’t, the compression results can be quite disappointing.

• Semi-static methods perform an initial pass over the message M and compute a model

M that is then used for compression. Compared with static methods, semi-static methods

have the advantage that they do not blindly assume a certain distribution. However, the

model M, computed by the encoder, now needs to be transmitted to the decoder as well

(otherwise, the decoder will not know what to do with the encoded symbol sequence) and

should therefore be as compact as possible. If the model itself is too large, a semi-static

method may lose its advantage over a static one.

• The encoding procedure of an adaptive compression method starts with an initial

static model and gradually adjusts this model based on characteristics of the symbols

from M that have already been coded. When the compressor encodes σi, it uses a model

Mi that depends only on the previously encoded symbols (and the initial static model):

Mi = f(σ1, . . . , σi − 1).

When the decompressor needs to decode σi, it has already seen σ1, . . . , σi−1 and thus can

apply the same function f to reconstruct the model Mi. Adaptive methods, therefore,

have the advantage that no model ever needs to be transmitted from the encoder to the

decoder. However, they require more complex decoding routines, due to the necessity

to continuously update the compression model. Because of that, decoding is usually

somewhat slower than with a semi-static method.

Chapter 6 Index Compression178

The probabilities in the compression model M do not need to be unconditional. For example,

it is quite common to choose a model in which the probability of a symbol σ depends on the

1, 2, 3, . . . previously coded symbols (we have seen this in the case of the Shakespeare collection,

where the occurrence of a “q” is enough information to know that the next character is going

to be a “u”). Such models are called finite-context models or first-order, second-order, third-

order, . . . models. A model M in which the probability of a symbol is independent of the

previously seen symbols is called a zero-order model.

Compression models and codes are intimately connected. Every compression model M has a

code (or a family of codes) associated with it: the code (or codes) that minimizes the average

codeword length for a symbol sequence generated according to M. Conversely, every code has

a corresponding probability distribution: the distribution for which the code is optimal. For

example, consider the zero-order compression model M0:

M0(“a”) = 0.5, M0(“b”) = 0.25, M0(“c”) = 0.125, M0(“d”) = 0.125. (6.2)

A code C0 that is optimal with respect to the model M0 has the following property:

|C0(“a”)| = 1, |C0(“b”)| = 2, |C0(“c”)| = 3, |C0(“d”)| = 3 (6.3)

(where |C0(X)| denotes the bit length of C0(X)). The following code meets this requirement:2

C0(“a”) = 0, C0(“b”) = 11, C0(“c”) = 100, C0(“d”) = 101. (6.4)

It encodes the symbol sequence “aababacd” as

C0(“aababacd”) = 00110110100101. (6.5)

An important property of the code C0 is that it is prefix-free, that is, there is no codeword

C0(x) that is a prefix of another codeword C0(y). A prefix-free code is also referred to as a prefix

code. Codes that are not prefix-free normally cannot be used for compression (there are some

exceptions to this rule; see Exercise 6.3). For example, consider the alternative code C1, with

C1(“a”) = 1, C1(“b”) = 01, C1(“c”) = 101, C1(“d”) = 010. (6.6)

Based on the lengths of the codewords, this code also appears to be optimal with respect to

M0. However, the encoded representation of the sequence “aababacd” now is

C1(“aababacd”) = 11011011101010. (6.7)

2 To avoid confusion between the numerals “0” and “1” and the corresponding bit values, we denote the
bit values as 0 and 1, except where it is obvious that the latter meaning is intended.

6.2 Symbolwise Data Compression 179

“a”

0 1

0

“c”

0

“d”

1

“b”

1

Figure 6.1 Binary tree associated with the prefix code C0. Codewords: C0(“a”) = 0, C0(“b”) = 11,
C0(“c”) = 100, C0(“d”) = 101.

When the decoder sees this sequence, it has no way of knowing whether the original symbol

sequence was “aababacd” or “accaabd”. Hence, the code is ambiguous and cannot be used for

compression purposes.

A prefix code C can be thought of as a binary tree in which each leaf node corresponds to a

symbol σ. The labels encountered along the path from the tree’s root to the leaf associated with

σ define the symbol’s codeword, C(σ). The depth of a leaf equals the length of the codeword for

the respective symbol.

The code tree for the code C0 is shown in Figure 6.1. The decoding routine of a compression

algorithm can translate a bit sequence back into the original symbol sequence by following the

edges of the tree, outputting a symbol — and jumping back to the root node — whenever it

reaches a leaf, thus essentially using the tree as a binary decision diagram. The tree represen-

tation of a binary code also illustrates why the prefix property is so important: In the tree for

a code that is not prefix-free, some codewords are assigned to internal nodes; when the decoder

reaches such a node, it does not know whether it should output the corresponding symbol and

jump back to the root, or keep following edges until it arrives at a leaf node.

Now consider a compression model M for a set of symbols {σ1, . . . , σn} such that the

probability of each symbol is an inverse power of 2:

M(σi) = 2−λi ; λi ∈ N for 1 ≤ i ≤ n. (6.8)

Because M is a probability distribution, we have

n∑
i=1

M(σi) =
n∑

i=1

2−λi = 1. (6.9)

Let us try to find an optimal code tree for this distribution. Every node in the tree must be

either a leaf node (and have a codeword associated with it) or an internal node with exactly

two children. Such a tree is called a proper binary tree. If the tree had an internal node with

Chapter 6 Index Compression180

only one child, then it would be possible to improve the code by removing that internal node,

thus reducing the depths of its descendants by 1. Hence, the code would not be optimal.

For the set L = {L1, . . . , Ln} of leaf nodes in a proper binary tree, the following equation

holds:
n∑

i=1

2−d(Li) = 1, (6.10)

where d(Li) is the depth of node Li and is also the length of the codeword assigned to the

symbol associated with Li. Because of the similarity between Equation 6.9 and Equation 6.10,

it seems natural to assign codewords to symbols in such a way that

|C(σi)| = d(Li) = λi = − log2(M(σi)) for 1 ≤ i ≤ n. (6.11)

The resulting tree represents an optimal code for the given probability distribution M. Why

is that? Consider the average number of bits per symbol used by C if we encode a sequence of

symbols generated according to M:

n∑
i=1

Pr[σi] · |C(σi)| = −
n∑

i=1

M(σi) · log2(M(σi)) (6.12)

because |C(σi)| = − log2(M(Si)). According to the following theorem, this is the best that can

be achieved.

Source Coding Theorem (Shannon, 1948)

Given a symbol source S, emitting symbols from an alphabet S according to a probability

distribution PS , a sequence of symbols cannot be compressed to consume less than

H(S) = −
∑
σ∈S

PS(σ) · log2(PS(σ))

bits per symbol on average. H(S) is called the entropy of the symbol source S.

By applying Shannon’s theorem to the probability distribution defined by the modelM, we see

that the chosen code is in fact optimal for the given model. Therefore, if our initial assumption

that all probabilities are inverse powers of 2 (see Equation 6.8) holds, then we know how to

quickly find an optimal encoding for symbol sequences generated according to M. In practice,

of course, this will rarely be the case. Probabilities can be arbitrary values from the interval

[0, 1]. Finding the optimal prefix code C for a given probability distribution M is then a little

more difficult than for the case where M(σi) = 2−λi .

6.2 Symbolwise Data Compression 181

6.2.2 Huffman Coding

One of the most popular bitwise coding techniques is due to Huffman (1952). For a given

probability distribution M on a finite set of symbols {σ1, . . . , σn}, Huffman’s method produces

a prefix code C that minimizes
n∑

i=1

M(σi) · |C(σi)|. (6.13)

A Huffman code is guaranteed to be optimal among all codes that use an integral number of bits

per symbol. If we drop this requirement and allow codewords to consume a fractional number of

bits, then there are other methods, such as arithmetic coding (Section 6.2.3), that may achieve

better compression.

Suppose we have a compression model M with M(σi) = Pr[σi] (for 1 ≤ i ≤ n). Huffman’s

method constructs an optimal code tree for this model in a bottom-up fashion, starting with

the two symbols of smallest probability. The algorithm can be thought of as operating on a set

of trees, where each tree is assigned a probability mass. Initially there is one tree Ti for each

symbol σi, with Pr[Ti] = Pr[σi]. In each step of the algorithm, the two trees Tj and Tk with

minimal probability mass are merged into a new tree Tl. The new tree is assigned a probability

mass Pr[Tl] = Pr[Tj] + Pr[Tk]. This procedure is repeated until there is only a single tree THuff

left, with Pr[THuff] = 1.

Figure 6.2 shows the individual steps of the algorithm for the symbol set S =

{σ1, σ2, σ3, σ4, σ5} with associated probability distribution

Pr[σ1] = 0.18, Pr[σ2] = 0.11, Pr[σ3] = 0.31, Pr[σ4] = 0.34, Pr[σ5] = 0.06. (6.14)

After the tree has been built, codewords may be assigned to symbols in a top-down fashion by

a simple traversal of the code tree. For instance, σ3 would receive the codeword 01; σ2 would

receive the codeword 110.

Optimality

Why are the codes produced by this method optimal? First, note that an optimal prefix code

Copt must satisfy the condition

Pr[x] < Pr[y]⇒ |Copt(x)| ≥ |Copt(y)| for every pair of symbols (x, y) (6.15)

(otherwise, we could simply swap the codewords for x and y, thus arriving at a better code).

Furthermore, because an optimal prefix code is always represented by a proper binary tree, the

codewords for the two least likely symbols must always be of the same length d (their nodes

are siblings, located at the lowest level of the binary tree that represents Copt; if they are not

siblings, we can rearrange the leaves at the lowest level in such a way that the two nodes become

siblings).

Chapter 6 Index Compression182

Step 1: Create an individual tree for each symbol σi.

{σ4} (0.34) {σ3} (0.31) {σ1} (0.18) {σ2} (0.11) {σ5} (0.06)

Step 2: Merge trees for {σ2} and {σ5}.

{σ4} (0.34) {σ3} (0.31) {σ1} (0.18) {σ2, σ5} (0.17)

{σ2} (0.11)

0

{σ5} (0.06)

1

Step 3: Merge trees for {σ1} and {σ2, σ5}.

{σ1, σ2, σ5} (0.35)

{σ1} (0.18)

0

{σ2, σ5} (0.17)

1

{σ2} (0.11)

0

{σ5} (0.06)

1

{σ4} (0.34) {σ3} (0.31)

Step 4: Merge trees for {σ4} and {σ3}.

{σ3, σ4} (0.65)

{σ4} (0.34)

0

{σ3} (0.31)

1

{σ1, σ2, σ5} (0.35)

{σ1} (0.18)

0

{σ2, σ5} (0.17)

1

{σ2} (0.11)

0

{σ5} (0.06)

1

Step 5: Merge trees for {σ3, σ4} and {σ1, σ2, σ5}.

{σ1, σ2, σ3, σ4, σ5} (1.00)

{σ3, σ4} (0.65)

0

{σ4} (0.34)

0

{σ3} (0.31)

1

{σ1, σ2, σ5} (0.35)

1

{σ1} (0.18)

0

{σ2, σ5} (0.17)

1

{σ2} (0.11)

0

{σ5} (0.06)

1

Figure 6.2 Building a Huffman code tree for the symbol set {σ1, σ2, σ3, σ4, σ5} with associated
probability distribution Pr[σ1] = 0.18, Pr[σ2] = 0.11, Pr[σ3] = 0.31, Pr[σ4] = 0.34, Pr[σ5] = 0.06.

6.2 Symbolwise Data Compression 183

We can now prove the optimality of Huffman’s algorithm by induction on the number of

symbols n for which a prefix code is built. For n = 1, the method produces a code tree of height

0, which is clearly optimal. For the general case consider a symbol set S = {σ1, . . . , σn}. Let σj

and σk denote the two symbols with least probability (j < k w.l.o.g.). Their codewords have

the same length d. Thus, the expected codeword length for a sequence of symbols from S is

E[Huff(S)] = d · (Pr[σj] + Pr[σk]) +
∑

x∈(S\{σj ,σk})
Pr[x] · |C(x)| (6.16)

(bits per symbol). Consider the symbol set

S′ = {σ1, . . . , σj−1, σj+1, . . . , σk−1, σk+1, . . . , σn, σ′} (6.17)

that we obtain by removing σj and σk and replacing them by a new symbol σ′ with

Pr[σ′] = Pr[σj] + Pr[σk]. (6.18)

Because σ′ is the parent of σj and σk in the Huffman tree for S, its depth in the tree for S′ is

d− 1. The expected codeword length for a sequence of symbols from S′ then is

E[Huff(S′)] = (d− 1) · (Pr[σj] + Pr[σk]) +
∑

x∈(S′\{σ′})
Pr[x] · |C(x)|. (6.19)

That is, E[Huff(S′)] = E[Huff(S)]− Pr[σj]− Pr[σk].

By induction we know that the Huffman tree for S′ represents an optimal prefix code (because

S′ contains n − 1 elements). Now suppose the Huffman tree for S is not optimal. Then there

must be an alternative, optimal tree with expected cost

E[Huff(S)]− ε (for some ε > 0). (6.20)

By collapsing the nodes for σj and σk in this tree, as before, we obtain a code tree for the

symbol set S′, with expected cost

E[Huff(S)] − ε− Pr[σj]− Pr[σk] = E[Huff(S′)]− ε (6.21)

(this is always possible because the nodes for σj and σk are siblings in the optimal code tree,

as explained before). However, this contradicts the assumption that the Huffman tree for S′ is

optimal. Hence, a prefix code for S with cost smaller than E[Huff(S)] cannot exist. The Huffman

tree for S must be optimal.

Complexity

The second phase of Huffman’s algorithm, assigning codewords to symbols by traversing the

tree built in the first phase, can trivially be done in time Θ(n), since there are 2n − 1 nodes

Chapter 6 Index Compression184

{σ1, σ2, σ3, σ4, σ5} (1.00)

{σ1, σ3} (0.49)

0

{σ1} (0.18)

0

{σ3} (0.31)

1

{σ2, σ4, σ5} (0.51)

1

{σ4} (0.34)

0

{σ2, σ5} (0.17)

1

{σ2} (0.11)

0

{σ5} (0.06)

1

Figure 6.3 Canonical version of the Huffman code from Figure 6.2. All symbols at the same level in
the tree are sorted in lexicographical order.

in the tree. The first phase, building the tree, is slightly more complicated. It requires us to

continually keep track of the two trees Tj , Tk ∈ T with minimum probability mass. This can be

realized by maintaining a priority queue (e.g., a min-heap; see page 141) that always holds the

minimum-probability tree at the beginning of the queue. Such a data structure supports Insert

and Extract-Min operations in time Θ(log(n)). Because, in total, Huffman’s algorithm needs

to perform 2(n− 1) Extract-Min operations and n− 1 Insert operations, the running time

of the first phase of the algorithm is Θ(n log(n)). Hence, the total running time of the algorithm

is also Θ(n log(n)).

Canonical Huffman codes

When using Huffman coding for data compression, a description of the actual code needs to be

prepended to the compressed symbol sequence so that the decoder can transform the encoded

bit sequence back into the original symbol sequence. This description is known as the preamble.

It usually contains a list of all symbols along with their codewords. For the Huffman code from

Figure 6.2, the preamble could look as follows:

〈(σ1, 10), (σ2, 110), (σ3, 01), (σ4, 00), (σ5, 111)〉. (6.22)

Describing the Huffman code in such a way can be quite costly in terms of storage space,

especially if the actual message that is being compressed is relatively short.

Fortunately, it is not necessary to include an exact description of the actual code; a description

of certain aspects of it suffices. Consider again the Huffman tree constructed in Figure 6.2. An

equivalent Huffman tree is shown in Figure 6.3. The length of the codeword for each symbol σi

is the same in the original tree as in the new tree. Thus, there is no reason why the code from

Figure 6.2 should be preferred over the one from Figure 6.3.

Reading the symbols σi from left to right in Figure 6.3 corresponds to ordering them by

the length of their respective codewords (short codewords first); ties are broken according to

6.2 Symbolwise Data Compression 185

the natural ordering of the symbols (e.g., σ1 before σ3). A code with this property is called

a canonical Huffman code. For every possible Huffman code C, there is always an equivalent

canonical Huffman code Ccan.

When describing a canonical Huffman code, it is sufficient to list the bit lengths of the

codewords for all symbols, not the actual codewords. For example, the tree in Figure 6.3 can

be described by

〈 (σ1, 2), (σ2, 3), (σ3, 2), (σ4, 2), (σ5, 3) 〉 . (6.23)

Similarly, the canonicalized version of the Huffman code in Figure 6.1 is

〈 (“a”, 0), (“b”, 10), (“c”, 110), (“d”, 111) 〉 . (6.24)

It can be described by

〈 (“a”, 1), (“b”, 2), (“c”, 3), (“d”, 3) 〉 . (6.25)

If the symbol set S is known by the decoder a priori, then the canonical Huffman code can

be described as 〈1, 2, 3, 3〉, which is about twice as compact as the description of an arbitrary

Huffman code.

Length-limited Huffman codes

Sometimes it can be useful to impose an upper bound on the length of the codewords in a given

Huffman code. This is mainly for performance reasons, because the decoder can operate more

efficiently if codewords are not too long (we will discuss this in more detail in Section 6.3.6).

We know that, for an alphabet of n symbols, we can always find a prefix code in which

no codeword consumes more than �log2(n)� bits. There are algorithms that, given an upper

bound L on the bit lengths of the codewords (L ≥ �log2(n)�), produce a prefix code CL that is

optimal among all prefix codes that do not contain any codewords longer than L. Most of those

algorithms first construct an ordinary Huffman code C and then compute CL by performing some

transformations on the binary tree representing C. Technically, such a code is not a Huffman

code anymore because it lost its universal optimality (it is optimal only among all length-limited

codes). However, in practice the extra redundancy in the resulting code is negligible.

One of the most popular methods for constructing length-limited prefix codes is Larmore and

Hirschberg’s (1990) Package-Merge algorithm. It produces an optimal length-limited prefix

code in time O(nL), where n is the number of symbols in the alphabet. Since L is usually

small (after all, this is the purpose of the whole procedure), Package-Merge does not add

an unreasonable complexity to the encoding part of a Huffman-based compression algorithm.

Moreover, just as in the case of ordinary Huffman codes, we can always find an equivalent

canonical code for any given length-limited code, thus allowing the same optimizations as before.

Chapter 6 Index Compression186

6.2.3 Arithmetic Coding

The main limitation of Huffman coding is its inability to properly deal with symbol distributions

in which one symbol occurs with a probability that is close to 1. For example, consider the

following probability distribution for a two-symbol alphabet S = {“a”, “b”}:

Pr[“a”] = 0.8, Pr[“b”] = 0.2. (6.26)

Shannon’s theorem states that symbol sequences generated according to this distribution cannot

be encoded using less than

−Pr[“a”] · log2(Pr[“a”])− Pr[“b”] · log2(Pr[“b”]) ≈ 0.2575 + 0.4644 = 0.7219 (6.27)

bits per symbol on average. With Huffman coding, however, the best that can be achieved is

1 bit per symbol, because each codeword has to consume an integral number of bits. Thus, we

increase the storage requirements by 39% compared to the lower bound inferred from Shannon’s

theorem.

In order to improve upon the performance of Huffman’s method, we need to move away from

the idea that each symbol is associated with a separate codeword. This could, for instance, be

done by combining symbols into m-tuples and assigning a codeword to each unique m-tuple

(this technique is commonly known as blocking). For the example above, choosing m = 2 would

result in the probability distribution

Pr[“aa”] = 0.64, Pr[“ab”] = Pr[“ba”] = 0.16, Pr[“bb”] = 0.04. (6.28)

A Huffman code for this distribution would require 1.56 bits per 2-tuple, or 0.78 bits per symbol

on average (see Exercise 6.1). However, grouping symbols into blocks is somewhat cumbersome

and inflates the size of the preamble (i.e., the description of the Huffman code) that also needs

to be transmitted from the encoder to the decoder.

Arithmetic coding is a method that solves the problem in a more elegant way. Consider a

sequence of k symbols from the set S = {σ1, . . . , σn}:

〈s1, s2, . . . , sk〉 ∈ Sk. (6.29)

Each such sequence has a certain probability associated with it. For example, if we consider k

to be fixed, then the above sequence will occur with probability

Pr[〈s1, s2, . . . , sk〉] =
k∏

i=1

Pr[si]. (6.30)

Obviously, the sum of the probabilities of all sequences of the same length k is 1. Hence, we may

think of each such sequence x as an interval [x1, x2), with 0 ≤ x1 < x2 ≤ 1 and x2−x1 = Pr[x].

6.2 Symbolwise Data Compression 187

��� ���

� ���	

���� ����

� ���	

�
��
��
��
��
�	

�
��
�
��

�
��
��
��
��
�	

�
��
�
��

�
��
��
��
��
�	

�
��
�
��

��
� ���

���� ����

����� �����

� ���	��
� ���

�����

����

����� ����� ���

Figure 6.4 Arithmetic coding: transforming symbol sequences into subintervals of the interval [0, 1).
A message M (sequence of symbols) is encoded as a binary subinterval of the interval corresponding to
M . Probability distribution assumed for the example: Pr[“a”] = 0.8, Pr[“b”] = 0.2.

These intervals are arranged as subintervals of the interval [0, 1), in lexicographical order of the

respective symbol sequences, and form a partitioning of [0, 1).

Consider again the distribution from Equation 6.26. Under the interval representation, the

symbol sequence “aa” would be associated with the interval [0, 0.64); the sequence “ab” with

the interval [0.64, 0.80); the sequence “ba” with [0.80, 0.96); and, finally, “bb” with [0.96, 1.0).

This method can be generalized to symbol sequences of arbitrary length, as shown in Figure 6.4.

With this mapping between messages and intervals, a given message can be encoded by

encoding the associated interval I instead of the message itself. As it might be difficult to

encode I directly, however, arithmetic coding instead encodes a smaller interval I′ that is

contained in the interval I (i.e., I ′ ⊆ I) and that is of the special form

I ′ = [x, x + 2−q), with x =

q∑
i=1

ai · 2−i (ai ∈ {0, 1}). (6.31)

We call this a binary interval. A binary interval can be encoded in a straightforward fashion, as

a bit sequence 〈a1, a2, . . . , aq〉. For instance, the bit sequence 0 represents the interval [0, 0.5);

the bit sequence 01 represents the interval [0.25, 5); and the bit sequence 010 represents the

interval [0.25, 0.375).

The combination of these two steps — (1) transforming a message into an equivalent interval

I and (2) encoding a binary interval within I as a simple bit sequence — is called arithmetic

coding. When presented the message “aab”, an arithmetic coder would find the corresponding

interval I = [0.512, 0.64) (see Figure 6.4). Within this interval it would identify the binary

Chapter 6 Index Compression188

subinterval

I ′ = [0.5625, 0.625) = [x, x + 2−4), (6.32)

with x = 1 · 2−1 +0 · 2−2 +0 · 2−3 +1 · 2−4. Thus, the message “aab” would be encoded as 1001.

It turns out that 1001 with its 4 bits is actually 1 bit longer than the 3-bit sequence of a

Huffman code for the same probability distribution. On the other hand, the code sequence

for the message “aaa” would require 3 bits with a Huffman code but only a single bit (0) if

arithmetic coding is used. In general, for a message with probability p corresponding to an

interval I = [y, y + p), we need to find a binary interval [x, x + 2−q) with

y ≤ x < x + 2−q ≤ y + p. (6.33)

It can be shown that such an interval always exists for every q with 2−q ≤ p/2. The smallest q

that meets this requirement is

q = �− log2(p)�+ 1. (6.34)

Thus, in order to encode a message

M = 〈s1, s2, . . . , sk〉 (6.35)

with associated probability p =
∏k

i=1 Pr[si], we need no more than �− log2(p)� + 1 bits. For

messages that contain only a few symbols, the “+1” term may sometimes make arithmetic

coding less space-efficient than Huffman coding. For k → ∞, however, the average number of

bits per symbol approaches the theoretical optimum, as given by Shannon’s source coding the-

orem (see Section 6.2.2). Thus, under the assumption that the compression model M perfectly

describes the statistical properties of the symbol sequence to be compressed, arithmetic coding

is asymptotically optimal.

Two convenient properties of arithmetic coding are:

• A different model may be used for each position in the input sequence (subject to the

constraint that it may depend only on information already accessible to the decoder),

thus making arithmetic coding the method of choice for adaptive compression methods.

• The length of the message need not be known to the decoder ahead of time. Instead, it

is possible to add an artificial end-of-message symbol to the alphabet and treat it like

any other symbol in the alphabet (in particular, to continually update its probability in

the compression model so that it consumes less and less probability mass as the message

gets longer).

For the purpose of this chapter, we may safely ignore these rather specific aspects of arithmetic

coding. If you are interested in the details, you can find them in any standard textbook on data

compression (see Section 6.6).

6.2 Symbolwise Data Compression 189

Implementation

It might seem from our description of arithmetic coding that the encoding and decoding proce-

dures require floating-point operations and are susceptible to rounding errors and other problems

that would arise from such an implementation. However, this is not the case. Witten et al. (1987),

for instance, show how arithmetic coding can be implemented using integer arithmetic, at the

cost of a tiny redundancy increase (less than 10−4 bits per symbol).

Huffman coding versus arithmetic coding

The advantage, in terms of bits per symbol, that arithmetic coding has over Huffman codes

depends on the probability distribution M. Obviously, if all symbol probabilities are inverse

powers of 2, then Huffman is optimal and arithmetic coding has no advantage. For an arbitrary

model M, on the other hand, it is easy to see that the redundancy of a Huffman code (i.e., the

number of bits wasted per encoded symbol), compared with the optimal arithmetic code, is at

most 1 bit. This is true because we can trivially construct a prefix code with codeword lengths

|C(σi)| = �− log2(pi)�. Such a code has a redundancy of less than 1 bit per symbol, and because

it is a prefix code, it cannot be better than M’s Huffman code.

In general, the redundancy of the Huffman code depends on the characteristics of the symbol

set’s probability distribution. Gallager (1978), for instance, showed that, for a given compression

modelM, the redundancy of a Huffman code is always less thanM(σmax)+0.0861, where σmax

is the most likely symbol. Horibe (1977) showed that the redundancy is at most 1−2 ·M(σmin),

where σmin is the least likely symbol.

Because the compression rates achieved by Huffman coding are usually quite close to the

theoretical optimum and because decoding operations for Huffman codes can be realized more

efficiently than for arithmetic codes, Huffman coding is often preferred over arithmetic coding.

This is especially true in the context of index compression, where query processing performance,

and not the size of the inverted index, is typically the main criterion when developing a search

engine. Length-limited canonical Huffman codes can be decoded very efficiently, much faster

than arithmetic codes.

6.2.4 Symbolwise Text Compression

What you have just learned about general-purpose symbolwise data compression can be applied

directly to the problem of compressing text. For example, if you want to decrease the storage

requirements of a given text collection, you can write a semi-static, Huffman-based compression

algorithm that compresses the text in a two-pass process. In the first pass it collects frequency

information about all characters appearing in the collection, resulting in a zero-order compres-

sion model. It then constructs a Huffman code C from this model, and in a second pass replaces

each character σ in the text collection with its codeword C(σ).

If you implement this algorithm and run it on an arbitrary piece of English text, you will find

that the compressed version of the text requires slightly more than 5 bits per character. This

Chapter 6 Index Compression190

Table 6.2 Text compression rates (in bits per character) for the three example collections. For Huffman
and arithmetic coding, numbers do not include the size of the compression model (e.g., Huffman tree)
that also needs to be transmitted to the decoder.

Collection Huffman Arithmetic Coding Other

0-order 1-order 2-order 0-order 1-order 2-order gzip bzip2

Shakespeare 5.220 2.852 2.270 5.190 2.686 1.937 2.155 1.493

TREC45 5.138 3.725 2.933 5.105 3.676 2.813 2.448 1.812

GOV2 5.413 3.948 2.832 5.381 3.901 2.681 1.502 1.107

is in line with the conventional wisdom that the zero-order entropy of English text is around 5

bits per character. The exact numbers for our three example collections are shown in Table 6.2.

You can refine this algorithm and make it use a first-order compression model instead of a

zero-order one. This requires you to construct and store/transmit up to 256 Huffman trees, one

for each possible context (where the context is the previous byte in the uncompressed text),

but it pays off in terms of compression effectiveness, by reducing the space requirements to

less than 4 bits per character. This method may be extended to second-order, third-order, . . .

models, resulting in better and better compression rates. This shows that there is a strong

interdependency between consecutive characters in English text (for example, every “q” in the

Shakespeare collection is followed by a “u”). By exploiting this interdependency we can achieve

compression rates that are much better than 5 bits per character.

Regarding the relative performance of Huffman coding and arithmetic coding, the table shows

that the advantage of arithmetic coding over Huffman is very small. For the zero-order model

the difference is less than 0.04 bits per character for all three collections. For the higher-order

models this difference becomes larger (e.g., 0.12–0.33 bits for the second-order model) because

the individual probability distributions in those models become more and more skewed, thus

favoring arithmetic coding.

Note, however, that the numbers in Table 6.2 are slightly misleading because they do not

include the space required by the compression model (the Huffman trees) itself. For example,

with a third-order compression model we may need to transmit 2563 = 16.8 million Huffman

trees before we can start encoding the actual text data. For a large collection like GOV2 this

may be worthwhile. But for a smaller collection like Shakespeare this is clearly not the case.

Practical compression algorithms, therefore, use adaptive methods when working with finite-

context models and large alphabets. Examples are PPM (prediction by partial matching; Cleary

and Witten, 1984) and DMC (dynamic Markov compression; Cormack and Horspool, 1987).

Starting with an initial model (maybe a zero-order one), adaptive methods gradually refine

their compression model M based on the statistical information found in the data seen so far.

In practice, such methods lead to very good results, close to those of semi-static methods, but

with the advantage that no compression model needs to be transmitted to the decoder (making

them effectively better than semi-static approaches).

6.3 Compressing Postings Lists 191

Finally, the table compares the relatively simple compression techniques based on Huffman

coding or arithmetic coding with more sophisticated techniques such as Ziv-Lempel (Ziv and

Lempel, 1977; gzip3) and Burrows-Wheeler (Burrows and Wheeler, 1994; bzip24). At heart,

these methods also rely on Huffman or arithmetic coding, but they do some extra work before

they enter the coding phase. It can be seen from the table that this extra work leads to greatly

increased compression effectiveness. For example, bzip2 (with parameter --best) can compress

the text in the three collections to between 1.1 and 1.8 bits per character, an 80% improvement

over the original encoding with 8 bits per character. This is consistent with the general assump-

tion that the entropy of English text is between 1 and 1.5 bits per character — bounds that

were established more than half a century ago (Shannon, 1951).

6.3 Compressing Postings Lists

Having discussed some principles of general-purpose data compression, we can apply these

principles to the problem of compressing an inverted index, so as to reduce its potentially

enormous storage requirements. As mentioned in Chapter 4 (Table 4.1 on page 106), the vast

majority of all data in an inverted index are postings data. Thus, if we want to reduce the total

size of the index, we should focus on ways to compress the postings lists before dealing with

other index components, such as the dictionary.

The exact method that should be employed to compress the postings found in a given index

index depends on the type of the index (docid, frequency, positional, or schema-independent),

but there is some commonality among the different index types that allows us to use the same

general approach for all of them.

Consider the following sequence of integers that could be the beginning of a term’s postings

list in a docid index:

L = 〈 3, 7, 11, 23, 29, 37, 41, . . .〉 .
Compressing L directly, using a standard compression method such as Huffman coding, is not

feasible; the number of elements in the list can be very large and each element of the list

occurs only a single time. However, because the elements in L form a monotonically increas-

ing sequence, the list can be transformed into an equivalent sequence of differences between

consecutive elements, called Δ-values:

Δ(L) = 〈 3, 4, 4, 12, 6, 8, 4, . . .〉 .

3 gzip (www.gzip.org) is actually not based on the Ziv-Lempel compression method but on the slightly
different DEFLATE algorithm, since the use of the Ziv-Lempel method was restricted by patents during
gzip’s initial development.

4 bzip2 (www.bzip.org) is a freely available, patent-free data compression software based on the Burrows-
Wheeler transform.

Chapter 6 Index Compression192

The new list Δ(L) has two advantages over the original list L. First, the elements of Δ(L)

are smaller than those of L, meaning that they can be encoded using fewer bits. Second, some

elements occur multiple times in Δ(L), implying that further savings might be possible by

assigning codewords to Δ-values based on their frequency in the list.

The above transformation obviously works for docid indices and schema-independent indices,

but it can also be applied to lists from a document-centric positional index with postings of the

form (d, ft,d, 〈p1, . . . , pft,d
〉). For example, the list

L = 〈 (3, 2, 〈157, 311〉), (7, 1, 〈212〉), (11, 3, 〈17, 38, 133〉), . . .〉

would be transformed into the equivalent Δ-list

Δ(L) = 〈 (3, 2, 〈157, 154〉), (4, 1, 〈212〉), (4, 3, 〈17, 21, 95〉), . . .〉 .

That is, each docid is represented as a difference from the previous docid; each within-document

position is represented as a difference from the previous within-document position; and the

frequency values remain unchanged.

Because the values in the three resulting lists typically follow very different probability distri-

butions (e.g., frequency values are usually much smaller than within-document positions), it is

not uncommon to apply three different compression methods, one to each of the three sublists

of the Δ-transformed postings list.

Compression methods for postings in an inverted index can generally be divided into two cat-

egories: parametric and nonparametric codes. A nonparametric code does not take into account

the actual Δ-gap distribution in a given list when encoding postings from that list. Instead,

it assumes that all postings lists look more or less the same and share some common proper-

ties — for example, that smaller gaps are more common than longer ones. Conversely, prior to

compression, parametric codes conduct an analysis of some statistical properties of the list to

be compressed. A parameter value is selected based on the outcome of this analysis, and the

codewords in the encoded postings sequence depend on the parameter.

Following the terminology from Section 6.2.1, we can say that nonparametric codes correspond

to static compression methods, whereas parametric codes correspond to semi-static methods.

Adaptive methods, due to the complexity associated with updating the compression model, are

usually not used for index compression.

6.3.1 Nonparametric Gap Compression

The simplest nonparametric code for positive integers is the unary code. In this code a positive

integer k is represented as a sequence of k− 1 0 bits followed by a single 1 bit. The unary code

is optimal if the Δ-values in a postings list follow a geometric distribution of the form

Pr[Δ = k] =

(
1

2

)k

, (6.36)

6.3 Compressing Postings Lists 193

that is, if a gap of length k + 1 is half as likely as a gap of length k (see Section 6.2.1 for the

relationship between codes and probability distributions). For postings in an inverted index this

is normally not the case, except for the most frequent terms, such as “the” and “and”, that

tend to appear in almost every document. Nonetheless, unary encoding plays an important role

in index compression because other techniques (such as the γ code described next) rely on it.

Elias’s γ code

One of the earliest nontrivial nonparametric codes for positive integers is the γ code, first

described by Elias (1975). The γ codeword for a positive integer k consists of two components.

The second component, the body, contains k in binary representation. The first component, the

selector, contains the length of the body, in unary representation. For example, the codewords

of the integers 1, 5, 7, and 16 are:

k selector(k) body(k)

1 1 1

5 001 101

7 001 111

16 00001 10000

You may have noticed that the body of each codeword in the above table begins with a 1

bit. This is not a coincidence. If the selector for an integer k has a value selector(k) = j,

then we know that 2j−1 ≤ k < 2j. Therefore, the j-th least significant bit in the number’s

binary representation, which happens to be the first bit in the codeword’s body, must be 1.

Of course, this means that the first bit in the body is in fact redundant, and we can save one

bit per posting by omitting it. The γ codewords for the four integers above then become 1 (1),

001 01 (5), 001 11 (7), and 00001 0000 (16).

The binary representation of a positive integer k consists of �log2(k)� + 1 bits. Thus, the

length of k’s codeword in the γ code is

|γ(k)| = 2 · �log2(k)�+ 1 bits. (6.37)

Translated back into terms of gap distribution, this means that the γ code is optimal for integer

sequences that follow the probability distribution

Pr[Δ = k] ≈ 2−2·log2(k)−1 =
1

2 · k2
. (6.38)

δ and ω codes

γ coding is appropriate when compressing lists with predominantly small gaps (say, smaller

than 32) but can be quite wasteful if applied to lists with large gaps. For such lists the δ code, a

Chapter 6 Index Compression194

variant of γ, may be the better choice. δ coding is very similar to γ coding. However, instead of

storing the selector component of a given integer in unary representation, δ encodes the selector

using γ. Thus, the δ codewords of the integers 1, 5, 7, and 16 are:

k selector(k) body(k)

1 1

5 01 1 01

7 01 1 11

16 001 01 0000

(omitting the redundant 1 bit in all cases). The selector for the integer 16 is 001 01 because the

number’s binary representation requires 5 bits, and the γ codeword for 5 is 001 01.

Compared with γ coding, where the length of the codeword for an integer k is approximately

2 · log2(k), the δ code for the same integer consumes only

|δ(k)| = �log2(k)�+ 2 · �log2(�log2(k)�+ 1)�+ 1 bits, (6.39)

where the first component stems from the codeword’s body, while the second component is

the length of the γ code for the selector. δ coding is optimal if the gaps in a postings list are

distributed according to the following probability distribution:

Pr[Δ = k] ≈ 2− log2(k)−2·log2(log2(k))−1 =
1

2k · (log2(k))2
. (6.40)

For lists with very large gaps, δ coding can be up to twice as efficient as γ coding. However,

such large gaps rarely appear in any realistic index. Instead, the savings compared to γ are

typically somewhere between 15% and 35%. For example, the γ codewords for the integers 210,

220, and 230 are 21, 41, and 61 bits long, respectively. The corresponding δ codewords consume

17, 29, and 39 bits (−19%, −29%, −36%).

The idea to use γ coding to encode the selector of a given codeword, as done in δ coding,

can be applied recursively, leading to a technique known as ω coding. The ω code for a positive

integer k is constructed as follows:

1. Output 0.

2. If k = 1, then stop.

3. Otherwise, encode k as a binary number (including the leading 1) and prepend this to

the bits already written.

4. k ← �log2(k)�.
5. Go back to step 2.

For example, the ω code for k = 16 is

10 100 10000 0 (6.41)

6.3 Compressing Postings Lists 195

Table 6.3 Encoding positive integers using various nonparametric codes.

Integer γ Code δ Code ω Code

1 1 1 0

2 01 0 01 0 0 10 0

3 01 1 01 0 1 11 0

4 001 00 01 1 00 10 100 0

5 001 01 01 1 01 10 101 0

6 001 10 01 1 10 10 110 0

7 001 11 01 1 11 10 111 0

8 0001 000 001 00 000 11 1000 0

16 00001 0000 001 01 0000 10 100 10000 0

32 000001 00000 001 10 00000 10 101 100000 0

64 0000001 000000 001 11 000000 10 110 1000000 0

127 0000001 111111 001 11 111111 10 110 1111111 0

128 00000001 0000000 0001 000 0000000 10 111 10000000 0

because 10000 is the binary representation of 16, 100 is the binary representation of 4

(= �log2(16)�), and 10 is the binary representation of 2 (= �log2(�log2(16)�)�). The length

of the ω codeword for an integer k is approximately

|ω(k)| = 2 + log2(k) + log2(log2(k)) + log2(log2(log2(k))) + · · · (6.42)

Table 6.3 lists some integers along with their γ, δ, and ω codewords. The δ code is more space-

efficient than γ for all integers n ≥ 32. The ω code is more efficient than γ for all integers

n ≥ 128.

6.3.2 Parametric Gap Compression

Nonparametric codes have the disadvantage that they do not take into account the specific

characteristics of the list to be compressed. If the gaps in the given list follow the distribution

implicitly assumed by the code, then all is well. However, if the actual gap distribution is different

from the implied one, then a nonparametric code can be quite wasteful and a parametric method

should be used instead.

Parametric compression methods can be divided into two classes: global methods and local

methods. A global method chooses a single parameter value that is used for all inverted lists

in the index. A local method chooses a different value for each list in the index, or even for

each small chunk of postings in a given list, where a chunk typically comprises a few hundred

or a few thousand postings. You may recall from Section 4.3 that each postings list contains a

Chapter 6 Index Compression196

list of synchronization points that help us carry out random access operations on the list. Syn-

chronization points fit naturally with chunkwise list compression (in fact, this is the application

from which they initially got their name); each synchronization point corresponds to the begin-

ning of a new chunk. For heterogeneous postings lists, in which different parts of the list have

different statistical characteristics, chunkwise compression can improve the overall effectiveness

considerably.

Under most circumstances local methods lead to better results than global ones. However,

for very short lists it is possible that the overhead associated with storing the parameter value

outweighs the savings achieved by choosing a local method, especially if the parameter is some-

thing as complex as an entire Huffman tree. In that case it can be beneficial to choose a global

method or to employ a batched method that uses the same parameter value for all lists that

share a certain property (e.g., similar average gap size).

Because the chosen parameter can be thought of as a brief description of a compression model,

the relationship between local and global compression methods is a special instance of a problem

that we saw in Section 6.1 when discussing the relationship between modeling and coding in

general-purpose data compression: When to stop modeling and when to start coding? Choosing

a local method leads to a more precise model that accurately describes the gap distribution in

the given list. Choosing a global method (or a batched method), on the other hand, makes the

model less accurate but also reduces its (amortized) size because the same model is shared by

a large number of lists.

Golomb/Rice codes

Suppose we want to compress a list whose Δ-values follow a geometric distribution, that is, the

probability of seeing a gap of size k is

Pr[Δ = k] = (1− p)k−1 · p, (6.43)

for some constant p between 0 and 1. In the context of inverted indices this is not an unrealistic

assumption. Consider a text collection comprising N documents and a term T that appears

in NT of them. The probability of finding an occurrence of T by randomly picking one of the

documents in the collection is NT /N . Therefore, under the assumption that all documents are

independent of each other, the probability of seeing a gap of size k between two subsequent

occurrences is

Pr[Δ = k] =

(
1− NT

N

)k−1

· NT

N
. (6.44)

That is, after encountering an occurrence of T , we will first see k − 1 documents in which the

term does not appear (each with probability 1− NT

N), followed by a document in which it does

appear (probability NT

N). This gives us a geometric distribution with p = NT

N .

Figure 6.5 shows the (geometric) gap distribution for a hypothetical term with p = 0.01. It

also shows the distribution that emerges if we group Δ-values into buckets according to their bit

6.3 Compressing Postings Lists 197

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

P
ro

ba
bi

lit
y

(%
)

Size of Δ-value

(a) Raw gap size distribution

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

P
ro

ba
bi

lit
y

(%
)

Length of Δ as binary number: ⎣log2(Δ)⎦ +1

(b) Bit length distribution

Figure 6.5 Distribution of Δ-gaps in a hypothetical postings list with NT /N = 0.01 (i.e., term T appears in
1% of all documents). (a) distribution of raw gap sizes; (b) distribution of bit lengths (i.e., number of bits needed
to encode each gap as a binary number).

length len(k) = �log2(k)� + 1, and compute the probability of each bucket. In the figure, 65%

of all Δ-values fall into the range 6 ≤ len(k) ≤ 8. This motivates the following encoding:

1. Choose an integer M , the modulus.

2. Split each Δ-value k into two components, the quotient q(k) and the remainder r(k):

q(k) = �(k − 1)/M�, r(k) = (k − 1) mod M.

3. Encode k by writing q(k)+1 in unary representation, followed by r(k) as a �log2(M)�-bit

or �log2(M)�-bit binary number.

For the distribution shown in Figure 6.5 we might choose M = 27. Few Δ-values are larger than

28, so the vast majority of the postings require less than 3 bits for the quotient q(k). Conversely,

few Δ-values are smaller than 25, which implies that only a small portion of the 7 bits allocated

for each remainder r(k) is wasted.

The general version of the encoding described above, with an arbitrary modulus M , is known

as Golomb coding, after its inventor, Solomon Golomb (1966). The version in which M is a

power of 2 is called Rice coding, also after its inventor, Robert Rice (1971).5

5 Strictly speaking, Rice did not invent Rice codes — they are a subset of Golomb codes, and Golomb’s
research was published half a decade before Rice’s. However, Rice’s work made Golomb codes attractive
for practical applications, which is why Rice is often co-credited for this family of codes.

Chapter 6 Index Compression198

0

0

0

1

1

1

0

2

0

3

1

1

4

0

5

1

Figure 6.6 Codewords of the remainders 0 ≤ r(k) < 6, for the Golomb code with parameter M = 6.

Let us look at a concrete example. Suppose we have chosen the modulus M = 27, and we

want to encode a gap of size k = 345. Then the resulting Rice codeword is

RiceM=27(345) = 001 1011000,

since q(345) = �(345− 1)/27� = 2, and r(345) = (345− 1) mod 27 = 88.

Decoding a given codeword is straightforward. For each posting in the original list, we look

for the first 1 bit in the code sequence. This gives us the value of q(k). We then remove the first

q(k) + 1 bits from the bit sequence, extract the next λ bits (for λ = �log2(M)�), thus obtaining

r(k), and compute k as

k = q(k) · 2λ + r(k) + 1. (6.45)

For efficiency, the multiplication with 2λ is usually implemented as a bit shift.

Unfortunately, the simple encoding/decoding procedure described above works only for Rice

codes and cannot be applied to general Golomb codes where M is not a power of 2. Since

we allocate �log2(M)� bits to each remainder r(k), but there are only M < 2	log2(M)
 possi-

ble remainders, some parts of the code space would be left unused, leading to a suboptimal

code. In fact, if we used �log2(M)� bits for each remainder regardless of the value of M , the

resulting Golomb code would always be inferior to the corresponding Rice code with parameter

M ′ = 2	log2(M)
.
The solution is to reclaim the unused part of the code space by encoding some of the remain-

ders using �log2(M)� bits and others using �log2(M)� bits. Which remainders should receive the

shorter codewords, and which the longer ones? Since Golomb coding is based on the assumption

that the Δ-values follow a geometric distribution (Equation 6.44), we expect that smaller gaps

have a higher probability of occurrence than larger ones. The codewords for the remainders r(k)

are therefore assigned in the following way:

• Values from the interval [0, 2	log2(M)
 −M − 1] receive �log2(M)�-bit codewords.

• Values from the interval [2	log2(M)
 −M, M − 1] receive �log2(M)�-bit codewords.

6.3 Compressing Postings Lists 199

Table 6.4 Encoding positive integers (e.g., Δ-gaps) using parameterized Golomb/Rice
codes. The first part of each codeword corresponds to the quotient q(k). The second part
corresponds to the remainder r(k).

Integer Golomb Codes Rice Codes

M = 3 M = 6 M = 7 M = 4 M = 8

1 1 0 1 00 1 00 1 00 1 000

2 1 10 1 01 1 010 1 01 1 001

3 1 11 1 100 1 011 1 10 1 010

4 01 0 1 101 1 100 1 11 1 011

5 01 10 1 110 1 101 01 00 1 100

6 01 11 1 111 1 110 01 01 1 101

7 001 0 01 00 1 111 01 10 1 110

8 001 10 01 01 01 00 01 11 1 111

9 001 11 01 100 01 010 001 00 01 000

31 00000000001 0 000001 00 00001 011 00000001 10 0001 110

Figure 6.6 visualizes this mechanism for the Golomb code with modulus M = 6. The remain-

ders 0 ≤ r(k) < 2 are assigned codewords of length �log2(6)� = 2; the rest are assigned

codewords of length �log2(6)� = 3. Looking at this approach from a slightly different perspec-

tive, we may say that the codewords for the M different remainders are assigned according to a

canonical Huffman code (see Figure 6.3 on page 184). Table 6.4 shows Golomb/Rice codewords

for various positive integers k and various parameter values M .

Compared with the relatively simple Rice codes, Golomb coding achieves slightly better

compression rates but is a bit more complicated. While the r(k)-codewords encountered by a

Rice decoder are all of the same length and can be decoded using simple bit shifts, a Golomb

decoder needs to distinguish between r(k)-codewords of different lengths (leading to branch

mispredictions) and needs to perform relatively costly integer multiplication operations, since

M is not a power of 2. As a consequence, Rice decoders are typically between 20% and 40%

faster than Golomb decoders.

Finding the optimal Golomb/Rice parameter value

One question that we have not yet addressed is how we should choose the modulus M so as to

minimize the average codeword length. Recall from Section 6.2.1 that a code C is optimal with

respect to a given probability distribution M if the relationship

|C(σ1)| = |C(σ2)|+ 1, (6.46)

Chapter 6 Index Compression200

for two symbols σ1 and σ2, implies

M(σ1) =
1

2
·M(σ2). (6.47)

We know that the Golomb codeword for the integer k + M is 1 bit longer than the codeword

for the integer k (because q(k + M) = q(k) + 1). Therefore, the optimal parameter value M∗

should satisfy the following equation:

Pr[Δ = k + M∗] =
1

2
· Pr[Δ = k] ⇔ (1−NT /N)

k+M∗−1
=

1

2
· (1−NT /N)

k−1

⇔ M∗ =
− log(2)

log(1−NT /N)
. (6.48)

Unfortunately, M∗ is usually not an integer. For Rice coding, we will have to choose between

M = 2�log2(M
∗) and M = 2	log2(M

∗)
. For Golomb coding, we may choose between M = �M∗�
and M = �M∗�. In general, it is not clear, which one is the better choice. Sometimes one

produces the better code, sometimes the other does. Gallager and van Voorhis (1975) proved

that

Mopt =

⌈
log(2−NT /N)

− log(1−NT /N)

⌉
(6.49)

always leads to the optimal code.

As an example, consider a term T that appears in 50% of all documents. We have NT /N = 0.5,

and thus

Mopt = �− log(1.5)/ log(0.5)� ≈ �0.585/1.0� = 1. (6.50)

The optimal Golomb/Rice code in this case, perhaps as expected, turns out to be the unary

code.

Huffman codes: LLRUN

If the gaps in a given list do not follow a geometric distribution — for example, because the

document independence assumption does not hold or because the list is not a simple docid

list — then Golomb codes may not lead to very good results.

We already know a compression method that can be used for lists with arbitrary distribution

and that yields optimal compression rates: Huffman coding (see Section 6.2.2). Unfortunately,

it is difficult to apply Huffman’s method directly to a given sequence of Δ-values. The difficulty

stems from the fact that the set of distinct gaps in a typical postings list has about the same size

as the list itself. For example, the term “aquarium” appears in 149 documents in the TREC45

collection. Its docid list consists of 147 different Δ-values. Encoding this list with Huffman is

unlikely to decrease the size of the list very much, because the 147 different Δ-values still need

to be stored in the preamble (i.e., the Huffman tree) for the decoder to know which Δ-value a

particular codeword in the Huffman-encoded gap sequence corresponds to.

6.3 Compressing Postings Lists 201

Instead of applying Huffman coding to the gap values directly, it is possible to group gaps of

similar size into buckets and have all gaps in the same bucket share a codeword in the Huffman

code. For example, under the assumption that all gaps from the interval [2j, 2j+1 − 1] have

approximately the same probability, we could create buckets B0, B1, . . . with Bj = [2j , 2j+1−1].

All Δ-values from the same bucket Bj then share the same Huffman codeword wj . Their encoded

representation is wj , followed by the j-bit representation of the respective gap value as a binary

number (omitting the leading 1 bit that is implicit from wj).

The resulting compression method is called LLRUN and is due to Fraenkel and Klein (1985).

It is quite similar to Elias’s γ method, except that the selector value (the integer j that defines

the bucket in which a given Δ-value lies) is not encoded in unary, but according to a minimum-

redundancy Huffman code. LLRUN’s advantage over a näıve application of Huffman’s method

is that the bucketing scheme dramatically decreases the size of the symbol set for which the

Huffman tree is created. Δ-values, even in a schema-independent index, are rarely greater than

240. Thus, the corresponding Huffman tree will have at most 40 leaves. With a canonical,

length-limited Huffman code and a limit of L = 15 bits per codeword (see Section 6.2.2 for

details on length-limited Huffman codes), the code can then be described in 4× 40 = 160 bits.

Moreover, the assumption that gaps from the same bucket Bj appear with approximately the

same probability is usually reflected by the data found in the index, except for very small values

of j. Hence, compression effectiveness is not compromised much by grouping gaps of similar size

into buckets and having them share the same Huffman codeword.

6.3.3 Context-Aware Compression Methods

The methods discussed so far all treat the gaps in a postings list independently of each other. In

Section 6.1, we saw that the effectiveness of a compression method can sometimes be improved

by taking into account the context of the symbol that is to be encoded. The same applies here.

Sometimes consecutive occurrences of the same term form clusters (many occurrences of the

same term within a small amount of text). The corresponding postings are very close to each

other, and the Δ-values are small. A compression method that is able to properly react to this

phenomenon can be expected to achieve better compression rates than a method that is not.

Huffman codes: Finite-context LLRUN

It is straightforward to adjust the LLRUN method from above so that it takes into account the

previous Δ-value when encoding the current one. Instead of using a zero-order model, as done

in the original version of LLRUN, we can use a first-order model and have the codeword wj

for the current gap’s selector value depend on the value of the previous gap’s selector, using

perhaps 40 different Huffman trees (assuming that no Δ-value is bigger than 240), one for each

possible predecessor value.

The drawback of this method is that it would require the encoder to transmit the description

of 40 different Huffman trees instead of just a single one, thus increasing the storage requirements

Chapter 6 Index Compression202

encodeLLRUN-2 (〈L[1], . . . , L[n]〉, ϑ, output) ≡
1 let Δ(L) denote the list 〈L[1], L[2] − L[1], . . . , L[n]− L[n− 1]〉
2 Δmax ← maxi{Δ(L)[i]}
3 initialize the array bucketFrequencies[0..1][0..�log2(Δmax)�] to zero
4 c← 0 // the context to be used for finite-context modeling
5 for i ← 1 to n do // collect context-specific statistics
6 b← �log2(Δ(L)[i])� // the bucket of the current Δ-value
7 bucketFrequencies[c][b]← bucketFrequencies[c][b] + 1
8 if b < ϑ then c← 0 else c← 1
9 for i ← 0 to 1 do // build two Huffman trees, one for each context
10 Ti ← buildHuffmanTree(bucketFrequencies[i])
11 c← 0 // reset the context
12 for i ← 1 to n do // compress the postings
13 b← �log2(Δ(L)[i])�
14 write b’s Huffman codeword, according to the tree Tc, to output
15 write Δ(L)[i] to output, as a b-bit binary number (omitting the leading 1)
16 if b < ϑ then c← 0 else c← 1
17 return

Figure 6.7 Encoding algorithm for LLRUN-2, the finite-context variant of LLRUN with two different
Huffman trees. The threshold parameter ϑ defines a binary partitioning of the possible contexts.

of the compressed list. In practice, however, using 40 different models has almost no advantage

over using just a few, say two or three. We refer to this revised variant of the LLRUN method

as LLRUN-k, where k is the number of different models (i.e., Huffman trees) employed by the

encoder/decoder.

Figure 6.7 shows the encoding algorithm for LLRUN-2. The threshold parameter ϑ, provided

explicitly in the figure, can be chosen automatically by the algorithm, by trying all possible

values 0 < ϑ < log2(maxi{Δ(L)[i]}) and selecting the one that minimizes the compressed size

of the list. Note that this does not require the encoder to actually compress the whole list

Θ(log(maxi{Δ(L)[i]}) times but can be done by analyzing the frequencies with which Δ-values

from each bucket Bj follow Δ-values from each other bucket Bj′ . The time complexity of this

analysis is Θ(log(maxi{Δ(L)[i]})2).

Interpolative coding

Another context-aware compression technique is the interpolative coding method invented by

Moffat and Stuiver (2000). Like all other list compression methods, interpolative coding uses

the fact that all postings in a given inverted list are stored in increasing order, but it does so in

a slightly different way.

Consider the beginning of the postings list L for the term “example” in a docid index for the

TREC45 collection:

L = 〈 2, 9, 12, 14, 19, 21, 31, 32, 33 〉 .

6.3 Compressing Postings Lists 203

encodeInterpolative (〈L[1], . . . , L[n]〉, output) ≡
1 encodeGamma (n)
2 encodeGamma (L[1], output)
3 encodeGamma (L[n]− L[1], output)
4 encodeInterpolativeRecursively (〈L[1], . . . , L[n]〉, output)

encodeInterpolativeRecursively (〈L[1], . . . , L[n]〉, output) ≡
5 if n < 3 then
6 return
7 middle← �n/2�
8 firstPossible ← L[1] + (middle− 1)
9 lastPossible← L[n] + (middle− n)
10 k← �log2(lastPossible− firstPossible + 1)�
11 write (L[middle]− firstPossible) to output, as a k-bit binary number
12 encodeInterpolativeRecursively (〈L[1], . . . , L[middle]〉, output)
13 encodeInterpolativeRecursively (〈L[middle], . . . , L[n]〉, output)

Figure 6.8 Compressing a postings list 〈L[1], . . . , L[n]〉 using interpolative coding. The resulting bit
sequence is written to output.

The interpolative method compresses this list by encoding its first element L[1] = 2 and its

last element L[9] = 33 using some other method, such as γ coding. It then proceeds to encode

L[5] = 19. However, when encoding L[5], it exploits the fact that, at this point, L[1] and L[9]

are already known to the decoder. Because all postings are stored in strictly increasing order,

it is guaranteed that

2 = L[1] < L[2] < . . . < L[5] < . . . < L[8] < L[9] = 33.

Therefore, based on the information that the list contains nine elements, and based on the

values of L[1] and L[9], we know that L[5] has to lie in the interval [6, 29]. Because this interval

contains no more than 25 = 32 elements, L[5] can be encoded using 5 bits. The method then

proceeds recursively, encoding L[3] using 4 bits (because, based on the values of L[1] and L[5],

it has to be in the interval [4, 17]), encoding L[2] using 4 bits (because it has to be in [3, 11]),

and so on.

Figure 6.8 gives a more formal definition of the encoding procedure of the interpolative

method. The bit sequence that results from compressing the list L according to interpola-

tive coding is shown in Table 6.5. It is worth pointing out that L[8] = 32 can be encoded using

0 bits because L[7] = 31 and L[9] = 33 leave only one possible value for L[8].

As in the case of Golomb coding, the interval defined by firstPossible and lastPossible in

Figure 6.8 is rarely a power of 2. Thus, by encoding each possible value in the interval

using k bits, some code space is wasted. As before, this deficiency can be cured by encoding

2k − (lastPossible − firstPossible + 1) of all possible values using k − 1 bits and the remaining

Chapter 6 Index Compression204

Table 6.5 The result of applying interpolative coding to the first nine elements of the docid
list for the term “example” (data taken from TREC45).

Postings Postings Compressed Bit Sequence

(orig. order) (visitation order)

(n = 9) (n = 9) 0001001 (γ codeword for n = 9)

2 2 010 (γ codeword for 2)

9 33 000011111 (γ codeword for 31 = 33− 2)

12 19 01101 (13 = 19− 6 as 5-bit binary number)

14 12 1000 (8 = 12− 4 as 4-bit binary number)

19 9 0110 (6 = 9− 3 as 4-bit binary number)

21 14 001 (1 = 14− 13 as 3-bit binary number)

31 31 1010 (10 = 31− 21 as 4-bit binary number)

32 21 0001 (1 = 21− 20 as 4-bit binary number)

33 32 (0 = 32− 32 as 0-bit binary number)

values using k bits. For simplicity, this mechanism is not shown in Figure 6.8. The details can

be found in the material on Golomb coding in Section 6.3.2.

Unlike in the case of Golomb codes, however, we do not know for sure which of the

(lastPossible− firstPossible + 1) possible values are more likely than the others. Hence, it is not

clear which values should receive the k-bit codewords and which values should receive (k−1)-bit

codewords. Moffat and Stuiver (2000) recommend giving the shorter codewords to the values

in the middle of the interval [firstPossible, lastPossible], except when the interval contains only

a single posting (corresponding to n = 3 in the function encodeInterpolativeRecursively),

in which case they recommend assigning the shorter codewords to values on both ends of the

interval so as to exploit potential clustering effects. In experiments this strategy has been shown

to save around 0.5 bits per posting on average.

6.3.4 Index Compression for High Query Performance

The rationale behind storing postings lists in compressed form is twofold. First, it decreases the

storage requirements of the search engine’s index. Second, as a side effect, it decreases the disk

I/O overhead at query time and thus potentially improves query performance. The compression

methods discussed in the previous sections have in common that they are targeting the first

aspect, mainly ignoring the complexity of the decoding operations that need to be carried out

at query time.

When choosing between two different compression methods A and B, aiming for optimal

query performance, a good rule of thumb is to compare the decoding overhead of each method

with the read performance of the storage medium that contains the index (e.g., the computer’s

hard drive). For example, a hard drive might deliver postings at a rate of 50 million bytes

6.3 Compressing Postings Lists 205

(= 400 million bits) per second. If method A, compared to B, saves 1 bit per posting on average,

and A’s relative decoding overhead per posting, compared to that of method B, is less than

2.5 ns (i.e., the time needed to read a single bit from the hard disk), then A should be preferred

over B. Conversely, if the relative overhead is more than 2.5 ns, then B should be preferred.

2.5 ns is not a lot of time, even for modern microprocessors. Depending on the clock frequency

of the CPU, it is equivalent to 2–10 CPU cycles. Therefore, even if method A can save several

bits per posting compared to method B, its decoding routine still needs to be extremely efficient

in order to have an advantageous effect on query performance.

The above rule of thumb does not take into account the possibility that compressed postings

can be decoded in parallel with ongoing disk I/O operations or that postings lists may be

cached in memory, but it serves as a good starting point when comparing two compression

methods in terms of their impact on the search engine’s query performance. As we shall see in

Section 6.3.6, the methods discussed so far do not necessarily lead to optimal query performance,

as their decoding routines can be quite complex and time-consuming. Two methods that were

specifically designed with high decoding throughput in mind are presented next.

Byte-aligned codes

Byte-aligned gap compression is one of the simplest compression methods available. Its popu-

larity is in part due to its simplicity but mostly due to its high decoding performance. Consider

the beginning of the postings list for the term “aligned”, extracted from a docid index for the

GOV2 collection:

L = 〈 1624, 1650, 1876, 1972, . . .〉 ,
Δ(L) = 〈 1624, 26, 226, 96, 384, . . .〉 . (6.51)

In order to avoid expensive bit-fiddling operations, we want to encode each Δ-value using an

integral number of bytes. The easiest way to do this is to split the binary representation of each

Δ-value into 7-bit chunks and prepend to each such chunk a continuation flag — a single bit

that indicates whether the current chunk is the last one or whether there are more to follow.

The resulting method is called vByte (for variable-byte coding). It is used in many applications,

not only search engines. The vByte-encoded representation of the above docid list is

1 1011000 0 0001100 0 0011010 1 1100010 0 0000001 0 1100000 1 0000000 0 0000011 . . .

(spaces inserted for better readability).

For example, the body of the first chunk (1011000) is the representation of the integer 88 as a

7-bit binary number. The body of the second chunk (0001100) is the integer 12 as a 7-bit binary

number. The 0 at the beginning of the second chunk indicates that this is the end of the current

codeword. The decoder, when it sees this, combines the two numbers into 88 + 12× 27 = 1624,

yielding the value of the first list element.

Chapter 6 Index Compression206

encodeVByte (〈L[1], . . . , L[n]〉, outputBuffer) ≡
1 previous← 0
2 for i ← 1 to n do
3 delta← L[i]− previous
4 while delta ≥ 128 do
5 outputBuffer.writeByte(128 + (delta & 127))
6 delta← delta � 7
7 outputBuffer.writeByte(delta)
8 previous← L[i]
9 return

decodeVByte (inputBuffer, 〈L[1], . . . , L[n]〉) ≡
10 current ← 0
11 for i ← 1 to n do
12 shift← 0
13 b← inputBuffer.readByte()
14 while b ≥ 128 do
15 current ← current + ((b & 127) � shift)
16 shift← shift + 7
17 b← inputBuffer.readByte()
18 current← current + (b � shift)
19 L[i]← current
20 return

Figure 6.9 Encoding and decoding routine for vByte. Efficient multiplication and division operations
are realized through bit-shift operations (“�”: left-shift; “�”: right-shift; “&”: bit-wise AND).

The encoding and decoding routines of the vByte method are shown in Figure 6.9. When

you look at the pseudo-code in the figure, you will notice that vByte is obviously not optimized

for maximum compression. For example, it reserves the codeword 00000000 for a gap of size 0.

Clearly, such a gap cannot exist, since the postings form a strictly monotonic sequence. Other

compression methods (γ, LLRUN, ...) account for this fact by not assigning any codeword to

a gap of size 0. With vByte, however, the situation is different, and it makes sense to leave

the codeword unused. vByte’s decoding routine is highly optimized and consumes only a few

CPU cycles per posting. Increasing its complexity by adding more operations (even operations

as simple as +1/−1) would jeopardize the speed advantage that vByte has over the other

compression methods.

Word-aligned codes

Just as working with whole bytes is more efficient than operating on individual bits, accessing

entire machine words is normally more efficient than fetching all its bytes separately when

decoding a compressed postings list. Hence, we can expect to obtain faster decoding routines if

we enforce that each posting in a given postings list is always stored using an integral number

6.3 Compressing Postings Lists 207

Table 6.6 Word-aligned postings compression with Simple-9. After
reserving 4 out of 32 bits for the selector value, there are 9 possible ways
of dividing the remaining 28 bits into equal-size chunks.

Selector 0 1 2 3 4 5 6 7 9

Number of Δ’s 1 2 3 4 5 7 9 14 28

Bits per Δ 28 14 9 7 5 4 3 2 1

Unused bits per word 0 0 1 0 3 0 1 0 0

of 16-bit, 32-bit, or 64-bit machine words. Unfortunately, doing so would defeat the purpose of

index compression. If we encode each Δ-value as a 32-bit integer, we might as well choose an

even simpler encoding and store each posting directly as an uncompressed 32-bit integer.

The following idea leads us out of this dilemma: Instead of storing each Δ-value in a separate

32-bit machine word, maybe we can store several consecutive values, say n of them, in a single

word. For example, whenever the encoder sees three consecutive gaps k1 . . . k3, such that ki ≤ 29

for 1 ≤ i ≤ 3, then it may store all three of them in a single machine word, assigning 9 bits

within the word to each ki, thus consuming 27 bits in total and leaving 5 unused bits that can

be used for other purposes.

Anh and Moffat (2005) discuss several word-aligned encoding methods that are based on

ideas similar to those described above. Their simplest method is called Simple-9. It works by

inspecting the next few Δ-values in a postings sequence, trying to squeeze as many of them

into a 32-bit machine word as possible. Of course, the decoder, when it sees a 32-bit word,

supposedly containing a sequence of Δ-values, does not know how many bits in this machine

word were reserved for each Δ. Therefore, Simple-9 reserves the first 4 bits in each word for a

selector: a 4-bit integer that informs the decoder about the split used within the current word.

For the remaining 28 bits in the same word, there are nine different ways of dividing them into

chunks of equal size (shown in Table 6.6). This is how the method received its name.

For the same Δ-sequence as before (docid list for the term “aligned” in the GOV2 collection),

the corresponding code sequence now is

0001 00011001011000 00000000011001 0010 011100001 001011111 101111111 U, (6.52)

where 0010 (=2) is the selector used for the second machine word and 011100001 is the integer

225 (= 1876− 1650− 1) as a 9-bit binary number. “U” represents an unused bit.

For the example sequence, Simple-9 does not allow a more compact representation than

vByte. This is because the term “aligned” is relatively rare and its postings list has rather large

gaps. For frequent terms with small gaps, however, Simple-9 has a clear advantage over vByte

because it is able to encode a postings list using as little as 1 bit per gap (plus some overhead

for the selectors). Its decoding performance, on the other hand, is almost as high as that of

vByte, because the shift-mask operations necessary to extract the n � 28
n �-bit integers from a

given machine word can be executed very efficiently.

Chapter 6 Index Compression208

Efficiently decoding unaligned codes

Even though the unaligned methods from the previous sections, unlike vByte and Simple-9,

were not designed with the specific target of achieving high decoding performance, most of

them still allow rather efficient decoding. However, in order to attain this goal, it is imperative

that expensive bit-by-bit decoding operations be avoided whenever possible.

We illustrate this through an example. Consider the γ code from Section 6.3.1. After

transforming the postings list

L = 〈 7, 11, 24, 26, 33, 47 〉 (6.53)

into an equivalent sequence of Δ-values

Δ(L) = 〈 7, 4, 13, 2, 7, 14 〉 , (6.54)

the bit sequence produced by the γ coder is

γ(L) = 001 11 001 00 0001 101 01 0 001 11 0001 110. (6.55)

In order to determine the bit length of each codeword in this sequence, the decoder repeatedly

needs to find the first occurrence of a 1 bit, indicating the end of the codeword’s selector

component. It could do this by processing γ(L) in a bit-by-bit fashion, inspecting every bit

individually and testing whether it is 0 or 1. However, such a decoding procedure would not

be very efficient. Not only would each code bit require at least one CPU operation, but the

conditional jumps associated with the decision “Is the current bit a 0 bit?” are likely to result

in a large number of branch mispredictions, which will flush the CPU’s execution pipeline

and slow down the decoding process dramatically (see the appendix for a brief introduction to

the concepts of high-performance computing; or see Patterson and Hennessy (2009) for more

detailed coverage of the topic).

Suppose we know that no element of Δ(L) is larger than 24 − 1 (as is the case in the above

example). Then this implies that none of the selectors in the code sequence are longer than 4

bits. Hence, we may construct a table T containing 24 = 16 elements that tells us the position

of the first 1 bit in the sequence, given the next 4 bits:

T [0000] = 5, T [0001] = 4, T [0010] = 3, T [0011] = 3,

T [0100] = 2, T [0101] = 2, T [0110] = 2, T [0111] = 2,

T [1000] = 1, T [1001] = 1, T [1010] = 1, T [1011] = 1,

T [1100] = 1, T [1101] = 1, T [1110] = 1, T [1111] = 1

(6.56)

(where “5” indicates “not among the first 4 bits”).

We can use this table to implement an efficient decoding routine for the γ code, as shown

in Figure 6.10. Instead of inspecting each bit individually, the algorithm shown in the figure

loads them into a 64-bit bit buffer, 8 bits at a time, and uses the information stored in the

lookup table T , processing up to 4 bits in a single operation. The general approach followed

6.3 Compressing Postings Lists 209

decodeGamma (inputBuffer, T [0..2k − 1], 〈L[1], . . . , L[n]〉) ≡
1 current ← 0
2 bitBuffer← 0
3 bitsInBuffer← 0
4 for i ← 1 to n do
5 while bitsInBuffer + 8 ≤ 64 do
6 bitBuffer← bitBuffer + (inputBuffer.readByte() � bitsInBuffer)
7 bitsInBuffer← bitsInBuffer + 8
8 codeLength ← T [bitBuffer & (2k − 1)]
9 bitBuffer← bitBuffer � (codeLength − 1)
10 mask← (1 � codeLength)− 1
11 current← current + (bitBuffer & mask)
12 bitBuffer← bitBuffer � codeLength
13 bitsInBuffer← bitsInBuffer − 2× codeLength − 1
14 L[i]← current
15 return

Figure 6.10 Table-driven γ decoder. Bit-by-bit decoding operations are avoided through the use of a
bit buffer and a lookup table T of size 2k that is used for determining the length of the current codeword.
Efficient multiplication and division operations are realized through bit-shift operations (“�”: left shift;
“�”: right shift; “&”: bitwise AND).

by the algorithm is referred to as table-driven decoding. It can be applied to γ, δ, Golomb, and

Rice codes as well as the Huffman-based LLRUN method. In the case of LLRUN, however, the

contents of the table T depend on the specific code chosen by the encoding procedure. Thus,

the decoder needs to process the Huffman tree in order to initialize the lookup table before it

can start its decoding operations.

Table-driven decoding is the reason why length-limited Huffman codes (see Section 6.2.2) are

so important for high-performance query processing: If we know that no codeword is longer

than k bits, then the decoding routine requires only a single table lookup (in a table of size

2k) to figure out the next codeword in the given bit sequence. This is substantially faster than

explicitly following paths in the Huffman tree in a bit-by-bit fashion.

6.3.5 Compression Effectiveness

Let us look at the compression rates achieved by the various methods discussed so far. Table 6.7

gives an overview of these rates, measured in bits per posting, on different types of lists (docids,

TF values, within-document positions, and schema-independent) for the three example col-

lections used in this book. For the Shakespeare collection, which does not contain any real

documents, we decided to treat each <SPEECH>· · ·</SPEECH> XML element as a document for

the purpose of the compression experiments.

The methods referred to in the table are: γ and δ coding (Section 6.3.1); Golomb/Rice and

the Huffman-based LLRUN (Section 6.3.2); interpolative coding (Section 6.3.3); and the two

Chapter 6 Index Compression210

Table 6.7 Compression effectiveness of various compression methods for postings lists, evaluated on three
different text collections. All numbers represent compression effectiveness, measured in bits per posting.
Bold numbers indicate the best result in each row.

List Type γ δ Golomb Rice LLRUN Interp. vByte S-9

S
h
a
k
e
sp

. Document IDs 8.02 7.44 6.48 6.50 6.18 6.18 9.96 7.58

Term frequencies 1.95 2.08 2.14 2.14 1.98 1.70 8.40 3.09

Within-doc pos. 8.71 8.68 6.53 6.53 6.29 6.77 8.75 7.52

Schema-indep. 15.13 13.16 10.54 10.54 10.17 10.49 12.51 12.75

T
R

E
C

4
5 Document IDs 7.23 6.78 5.97 6.04 5.65 5.52 9.45 7.09

Term frequencies 2.07 2.27 1.99 2.00 1.95 1.71 8.14 2.77

Within-doc pos. 12.69 11.51 8.84 8.89 8.60 8.83 11.42 10.89

Schema-indep. 17.03 14.19 12.24 12.38 11.31 11.54 13.71 15.37

G
O

V
2

Document IDs 8.02 7.47 5.98 6.07 5.98 5.97 9.54 7.46

Term frequencies 2.74 2.99 2.78 2.81 2.56 2.53 8.12 3.67

Within-doc pos. 11.47 10.45 9.00 9.13 8.02 8.34 10.66 10.10

Schema-indep. 13.69 11.81 11.73 11.96 9.45 9.98 11.91 n/a

performance-oriented methods vByte and Simple-9 (Section 6.3.4). In all cases, postings lists

were split into small chunks of about 16,000 postings each before applying compression. For

the parametric methods (Golomb, Rice, and LLRUN), compression parameters were chosen

separately for each such chunk (local parameterization), thus allowing these methods to take

into account small distributional variations between different parts of the same postings list —

an ability that will come in handy in Section 6.3.7.

As you can see from the table, interpolative coding consistently leads to the best results for

docids and TF values on all three text collections, closely followed by LLRUN and Golomb/Rice.

Its main advantage over the other methods is its ability to encode postings using less than 1 bit

on average if the gaps are predominantly of size 1. This is the case for the docid lists of the most

frequent terms (such as “the”, which appears in 80% of the documents in GOV2 and 99% of

the documents in TREC45), but also for lists of TF values: When picking a random document

D and a random term T that appears in D, chances are that T appears only a single time.

For the other list types (within-document positions and schema-independent), the meth-

ods’ roles are reversed, with LLRUN taking the lead, followed by interpolative coding and

Golomb/Rice. The reason why Golomb/Rice codes perform so poorly on these two list types is

that the basic assumption on which Golomb coding is based (i.e., that Δ-gaps follow a geometric

distribution) does not hold for them.

Under the document independence assumption, we know that the gaps in a given docid list

roughly follow a distribution of the form

Pr[Δ = k] = (1− p)k−1 · p (6.57)

6.3 Compressing Postings Lists 211

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

Bit length of Δ-value: ⎣log2(Δ)⎦ +1

(a) Docid list

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

Bit length of Δ-value: ⎣log2(Δ)⎦ +1

(b) Within-document positions

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

Bit length of Δ-value: ⎣log2(Δ)⎦ +1

(c) Schema-independent list

Figure 6.11 Gap distributions in different postings lists for the term “huffman” in the GOV2 collection. Vertical
axis: Number of Δ-values of the given size. Only the gaps in the docid list follow a geometric distribution.

(see Equation 6.43). For within-document positions and schema-independent lists, this assump-

tion does not hold. If a random term T appears toward the beginning of a document, then it

is more likely to appear again in the same document than if we first see it toward the end of

the document. Therefore, the elements of these lists are not independent of each other, and the

gaps do not follow a geometric distribution.

The occurrence pattern of the term “huffman” in the GOV2 collection is a good example

of this phenomenon. Figure 6.11 shows the gap distribution exhibited by the term’s docid

list, its document-centric positional list, and its schema-independent list. After a logarithmic

transformation, putting all Δ-gaps of the same length len(Δ) = �log2(Δ)� + 1 into the same

bucket, plot (a) shows the curve that is characteristic for a geometric distribution, with a clear

peak around len(Δ) ≈ 10. Plot (b), for the list of within-document positions, also has a peak, but

it is not as clearly distinguished as in (a). Finally, the schema-independent list in plot (c) does not

follow a geometric distribution at all. Instead, we can see two peaks: one corresponding to two

Chapter 6 Index Compression212

Table 6.8 Zero-order LLRUN versus first-order LLRUN. Noteworthy improvements are achieved only
for the two positional indices (within-document positions and schema-independent) built from GOV2. All
other indices either are too small to absorb the storage overhead due to the more complex model, or their
list elements do not exhibit much interdependency.

List type TREC45 GOV2

LLRUN LLRUN-2 LLRUN-4 LLRUN LLRUN-2 LLRUN-4

Within-doc positions 8.60 8.57 8.57 8.02 7.88 7.82

Schema-independent 11.31 11.28 11.28 9.45 9.29 9.23

or more occurrences of “huffman” in the same document (len(Δ) ≈ 6), the other corresponding

to consecutive occurrences in different documents (len(Δ) ≈ 22). Obviously, if a method is

tailored toward geometric distributions, it will not do very well on a postings list that follows a

clearly nongeometric distribution, such as the one shown in Figure 6.11(c). This is why LLRUN’s

performance on positional postings lists (document-centric or schema-independent) is so much

better than that of Golomb/Rice — up to 2.5 bits per posting.

A method that was specifically designed with the interdependencies between consecutive

postings in mind is the LLRUN-k method (Section 6.3.3). LLRUN-k is very similar to LLRUN,

except that it utilizes a first-order compression model, materialized in k different Huffman trees

instead of just a single one. Table 6.8 shows the compression rates attained by LLRUN-k in

comparison with the original, zero-order LLRUN method.

For the two smaller collections, the method does not achieve any substantial savings, because

the slightly better coding efficiency is compensated for by the larger that precedes the actual

codeword sequence. For the two positional indices built from GOV2, however, we do in fact see a

small reduction of the storage requirements of the inverted lists. In the case of within-document

positions, LLRUN-2/LLRUN-4 leads to a reduction of 0.14/0.20 bits per posting (-1.7%/-2.5%);

for the schema-independent index, it saves 0.16/0.22 bits per posting (-1.7%/-2.3%). Whether

these savings are worthwhile depends on the application. For search engines they are usually

not worthwhile, because the 2% size reduction is likely to be outweighed by the more complex

decoding procedure.

6.3.6 Decoding Performance

As pointed out in Section 6.3.4, when motivating byte- and word-aligned compression methods,

reducing the space consumed by the inverted index is only one reason for applying compression

techniques. Another, and probably more important, reason is that a smaller index may also

lead to better query performance, at least if the postings lists are stored on disk. As a rule of

thumb, an index compression method may be expected to improve query performance if the

decoding overhead (measured in nanoseconds per posting) is lower than the disk I/O time saved

by storing postings in compressed form.

6.3 Compressing Postings Lists 213

Table 6.9 Cumulative disk I/O and list decompression overhead for a docid index built
from GOV2. The cumulative overhead is calculated based on a sequential disk throughput of
87 MB/second (b= 1.37 nanoseconds per bit).

Compression Decoding Cumulative Overhead

Compression Method (bits per docid) (ns per docid) (decoding + disk I/O)

γ 4.94 7.67 14.44 ns

Golomb 4.10 10.82 16.44 ns

Rice 4.13 6.45 12.11 ns

LLRUN 4.09 7.04 12.64 ns

Interpolative 4.19 27.21 32.95 ns

vByte 8.77 1.35 13.36 ns

Simple-9 5.32 2.76 10.05 ns

Uncompressed (32-bit) 32.00 0.00 43.84 ns

Uncompressed (64-bit) 64.00 0.00 87.68 ns

Table 6.9 shows compression effectiveness (for docid lists), decoding efficiency, and cumulative

overhead for various compression methods. All values were obtained by running the 10,000

queries from the efficiency task of the TREC Terabyte Track 2006 and decompressing the

postings lists for all query terms (ignoring stopwords). Note that the compression effectiveness

numbers shown in the table (“bits per docid”) are quite different from those in the previous

tables, as they do not refer to the entire index but only to terms that appear in the queries.

This difference is expected: Terms that are frequent in the collection tend to be frequent in the

query stream, too. Since frequent terms, compared to infrequent ones, have postings lists with

smaller Δ-gaps, the compression rates shown in Table 6.9 are better than those in Table 6.7.

To compute the cumulative decoding + disk I/O overhead of the search engine, we assume

that the hard drive can deliver postings data at a rate of 87 MB per second (=̂ 1.37 ns per bit;

see the appendix). vByte, for instance, requires 8.77 bits (on average) per compressed docid,

which translates into a disk I/O overhead of 8.77× 1.37 = 12.01 ns per posting. In combination

with the decoding overhead of 1.35 ns per posting, this results in a cumulative overhead of

13.36 ns per posting.

Most methods play in the same ballpark, exhibiting a cumulative overhead of 10–15 ns per

posting. Interpolative coding with its rather complex recursive decoding routine is an outlier,

requiring a total of more than 30 ns per posting. In comparison with the other techniques,

the byte-aligned vByte proves to be surprisingly mediocre. It is outperformed by three other

methods, including the relatively complex LLRUN algorithm. Simple-9, combining competitive

compression rates with very low decoding overhead, performed best in the experiment.

Of course, the numbers shown in the table are only representative of docid indices. For a

positional or a schema-independent index, for example, the results will look more favorable

for vByte. Moreover, the validity of the simplistic performance model applied here (calculating

Chapter 6 Index Compression214

the total overhead as a sum of disk I/O and decoding operations) may be questioned in the

presence of caching and background I/O. Nonetheless, the general message is clear: Compared

to an uncompressed index (with either 32-bit or 64-bit postings), every compression method

leads to improved query performance.

6.3.7 Document Reordering

So far, when discussing various ways of compressing the information stored in the index’s

postings lists, we have always assumed that the actual information stored in the postings lists

is fixed and may not be altered. Of course, this is an oversimplification. In reality, a document

is not represented by a numerical identifier but by a file name, a URL, or some other textual

description of its origin. In order to translate the search results back into their original context,

which needs to be done before they can be presented to the user, each numerical document

identifier must be transformed into a textual description of the document’s location or context.

This transformation is usually realized with the help of a data structure referred to as the

document map (see Section 4.1).

This implies that the docids themselves are arbitrary and do not possess any inherent semantic

value. We may therefore reassign numerical identifiers as we wish, as long as we make sure that

all changes are properly reflected by the document map. We could, for instance, try to reassign

document IDs in such a way that index compressibility is maximized. This process is usually

referred to as document reordering. To see its potential, consider the hypothetical docid list

L = 〈 4, 21, 33, 40, 66, 90 〉 (6.58)

with γ-code representation

001 00 00001 0001 0001 100 001 11 00001 1010 000001 00010 (6.59)

(46 bits). If we were able to reassign document identifiers in such a way that the list became

L = 〈 4, 6, 7, 45, 51, 120 〉 (6.60)

instead, then this would lead to the γ-code representation

001 00 01 0 1 000001 00110 001 10 0000001 000101 (6.61)

(36 bits), reducing the list’s storage requirements by 22%.

It is clear from the example that we don’t care so much about the average magnitude of the

gaps in a postings list (which is 17.2 in Equation 6.58 but 23.2 in Equation 6.60) but are instead

interested in minimizing the average codeword length, which is a value closely related to the

6.3 Compressing Postings Lists 215

logarithm of the length of each gap. In the above case, the value of the sum

5∑
i=1

�log2(L[i + 1]− L[i])� (6.62)

is reduced from 22 to 18 (−18%).

In reality, of course, things are not that easy. By reassigning document identifiers so as to

reduce the storage requirements of one postings list, we may increase those of another list.

Finding the optimal assignment of docids, the one that minimizes the total compressed size of

the index, is believed to be computationally intractable (i.e., NP-complete). Fortunately, there

are a number of document reordering heuristics that, despite computing a suboptimal docid

assignment, typically lead to considerably improved compression effectiveness. Many of those

heuristics are based on clustering algorithms that require substantial implementation effort

and significant computational resources. Here, we focus on two particular approaches that are

extremely easy to implement, require minimal computational resources, and still lead to pretty

good results:

• The first method reorders the documents in a text collection based on the number of

distinct terms contained in each document. The idea is that two documents that each

contain a large number of distinct terms are more likely to share terms than are a

document with many distinct terms and a document with few distinct terms. Therefore,

by assigning docids so that documents with many terms are close together, we may

expect a greater clustering effect than by assigning docids at random.

• The second method assumes that the documents have been crawled from the Web (or

maybe a corporate Intranet). It reassigns docids in lexicographical order of URL. The

idea here is that two documents from the same Web server (or maybe even from the

same directory on that server) are more likely to share common terms than two random

documents from unrelated locations on the Internet.

The impact that these two document reordering heuristics have on the effectiveness of various

index compression methods is shown in Table 6.10. The row labeled “Original” refers to the

official ordering of the documents in the GOV2 collections and represents the order in which the

documents were crawled from the Web. The other rows represent random ordering, documents

sorted by number of unique terms, and documents sorted by URL.

For the docid lists, we can see that document reordering improves the effectiveness of every

compression method shown in the table. The magnitude of the effect varies between the methods,

because some (e.g., interpolative coding) can more easily adapt to the new distribution than

others (e.g., Golomb coding). However, the general trend is the same for all of them. In some

cases the effect is quite dramatic. With interpolative coding, for example, the average space

consumption can be reduced by more than 50%, from 5.97 to 2.84 bits per posting. This is

mainly because of the method’s ability to encode sequences of very small gaps using less than 1

Chapter 6 Index Compression216

Table 6.10 The effect of document reordering on compression effectiveness (in bits per list
entry). All data are taken from GOV2.

Doc. Ordering γ Golomb Rice LLRUN Interp. vByte S-9

D
o
c
.
ID

s Original 8.02 6.04 6.07 5.98 5.97 9.54 7.46

Random 8.80 6.26 6.28 6.35 6.45 9.86 8.08

Term count 5.81 5.08 5.15 4.60 4.26 9.18 5.63

URL 3.88 5.10 5.25 3.10 2.84 8.76 4.18

T
F

v
a
lu

e
s Original 2.74 2.78 2.81 2.56 2.53 8.12 3.67

Random 2.74 2.86 2.90 2.60 2.61 8.12 3.87

Term count 2.74 2.59 2.61 2.38 2.31 8.12 3.20

URL 2.74 2.63 2.65 2.14 2.16 8.12 2.83

bit on average. The other methods need at least 1 bit for every posting (although, by means of

blocking (see Section 6.2.3), LLRUN could easily be modified so that it requires less than 1 bit

per posting for such sequences).

What might be a little surprising is that document reordering improves not only the com-

pressibility of docids, but also that of TF values. The reason for this unexpected phenomenon is

that, in the experiment, each inverted list was split into small chunks containing about 16,000

postings each, and compression was applied to each chunk individually instead of to the list as

a whole. The initial motivation for splitting the inverted lists into smaller chunks was to allow

efficient random access into each postings list, which would not be possible if the entire list

had been compressed as one atomic unit (see Section 4.3). However, the welcome side effect

of this procedure is that the compression method can choose different parameter values (i.e.,

apply different compression models) for different parts of the same list (except for nonparamet-

ric methods, such as γ coding and vByte). Because the basic idea behind document reordering

is to assign numerically close docids to documents that are similar in content, different parts of

the same inverted lists will have different properties, which leads to better overall compression

rates. When using LLRUN, for example, the average number of bits per TF value decreases

from 2.56 to 2.14 (−16%).

6.4 Compressing the Dictionary

In Chapter 4, we showed that the dictionary for a text collection can be rather large. Not quite

as large as the postings lists, but potentially still too large to fit into main memory. In addition,

even if the dictionary is small enough to fit into RAM, decreasing its size may be a good idea

because it allows the search engine to make better use of its memory resources — for example,

by caching frequently accessed postings lists or by caching search results for popular queries.

6.4 Compressing the Dictionary 217

The goal here is to reduce the size of the dictionary as much as possible, while still providing low-

latency access to dictionary entries and postings lists. Because dictionary lookups represent one

of the main bottlenecks in index construction, and because the merge-based indexing algorithm

presented in Section 4.5.3 is largely independent of the amount of main memory available to the

indexing process, there is usually no reason to apply dictionary compression at indexing time.

We therefore restrict ourselves to the discussion of compression techniques that can be used for

the query-time dictionary, after the index has been built.

Recall from Figure 4.1 (page 107) that a sort-based in-memory dictionary is essentially an

array of integers (the primary array) in which each integer is a pointer to a variable-size term

descriptor (i.e., dictionary entry), an element of the secondary array. Each term descriptor

contains the term itself and a file pointer indicating the location of the term’s inverted list in

the postings file. Dictionary entries in this data structure are accessed through binary search on

the primary array, following the pointers into the secondary array to perform string comparisons.

The pointers in the primary array usually consume 32 bits each (assuming that the secondary

array is smaller than 232 bytes).

A sort-based dictionary contains three sources of memory consumption: the pointers in the

primary array, the file pointers in the term descriptors, and the terms themselves. We can

take care of all three components at the same time by combining multiple consecutive term

descriptors into groups and compressing the contents of each group, taking into account the

fact that all data in the secondary array are sorted.

Dictionary groups

The fundamental insight is that it is not necessary (and in fact not beneficial) to have a pointer

in the primary array for every term in the dictionary. Suppose we combine g consecutive terms

into a group (g is called the group size) and keep a pointer only for the first term in each group

(called the group leader). If g = 1, then lookups are realized in the way we are used to — by

performing a binary search on the list of all |V| term descriptors. For g > 1, a lookup requires a

binary search on the �|V|/g� group leaders, followed by a sequential scan of the remaining g− 1

members of the group identified through binary search.

The revised version of the sort-based dictionary data structure is shown in Figure 6.12 (for

a group size of g = 3). When searching for the term “shakespeareanism” using the dictionary

shown in the figure, the implementation would first identify the group led by “shakespeare”

as potentially containing the term. It would then process all terms in that group in a linear

fashion, in order to find the dictionary entry for “shakespeareanism”. Conceptually, this lookup

procedure is quite similar to the dictionary interleaving technique discussed in Section 4.4.

Let us calculate the number of string comparisons performed during a lookup for a single

term T . For simplicity, we assume that T appears in the dictionary, that the dictionary contains

a total of |V| = 2n terms, and that the group size is g = 2m, for some positive integers m and

n (with m < n and n� 1).

Chapter 6 Index Compression218

�	
�����
��

		

����

�	
�����
��
�

		
	���

�	
�����
��
����

		
	��	�

�	
�����
��
��

		
	����

������ ��
���

�������������	������
��	������������������

�������������

�	
�����
���

		
	��	�

��	���������������

�	
�����
��
��

		
	����

Figure 6.12 Sort-based dictionary with grouping: reducing the pointer overhead in the primary array
by combining dictionary entries into groups.

• If g = 1, then a lookup requires approximately n− 1 string comparisons on average. The

“-1” stems from the fact that we can terminate the binary search as soon as we encounter

T . There is a 50% chance that this happens after n comparisons, a 25% chance that it

happens after n−1 comparisons, a 12.5% chance that it happens after n−2 comparisons,

and so forth. Thus, on average we need n− 1 string comparisons.

• For g > 1, we have to distinguish between two cases:

1. The term is one of the |V|/g group leaders. The probability of this event is 1/g,

and it requires n−m− 1 string comparisons on average.

2. The term is not a group leader. The probability of this happening is (g−1)/g. It

requires (n−m) + g/2 string comparisons on average, where the first summand

corresponds to a full binary search on the |V|/g group leaders (which cannot be

terminated early because T is not a group leader), while the second summand

corresponds to the linear scan of the g−1 non-leading members of the final group.

The scan is terminated as soon as the matching term is found.

Combining 1 and 2, the expected number of comparison operations is

1

g
(n−m− 1) +

g − 1

g

(
n−m +

g

2

)
= log2(|V|)− log2(g)− 1

g
+

g − 1

2
.

Table 6.11 lists the average number of comparisons for a dictionary of size |V| = 220, using

various group sizes. It shows that choosing g = 2 does not increase the number of comparisons

per lookup at all. Selecting g = 8 increases them by about 7%. At the same time, however, it

substantially reduces the pointer overhead in the primary array and improves the dictionary’s

cache efficiency, because fewer memory pages have to be accessed.

6.4 Compressing the Dictionary 219

Table 6.11 Average number of string comparisons for a single-term lookup on
a sort-based dictionary containing |V| = 220 terms.

Group size 1 2 4 8 16 32 64

String comparisons 19.0 19.0 19.3 20.4 23.4 30.5 45.5

Front coding

Once we have combined dictionary entries into groups, we can compress the term descriptors

by using the set of group leaders as synchronization points. Because the term descriptors within

a given group have to be traversed sequentially anyway, regardless of whether we store them

compressed or uncompressed, we may as well compress them in order to reduce the storage

requirements and the amount of data that needs to be accessed during a lookup.

Term strings in a sort-based dictionary are usually compressed by using a technique known

as front coding. Because the terms are sorted in lexicographical order, consecutive terms almost

always share a common prefix. This prefix can be quite long. For example, all five terms shown

in Figure 6.12 share the prefix “shakespeare”.

In front coding we omit the prefix that is implicitly given by the term’s predecessor in the

dictionary and store only the length of the prefix. Thus, the front-coded representation of a

term is a triplet of the form

(prefixLength, suffixLength, suffix). (6.63)

For ease of implementation, it is common to impose an upper limit of 15 characters on the

length of both prefix and suffix, as this allows the dictionary implementation to store both

prefixLength and suffixLength in a single byte (4 bits each). Cases in which the suffix is longer

than 15 characters can be handled by storing an escape code (prefix, suffix) = (∗, 0) and encoding

the string in some other way.

The front-coded representation of the terms shown in Figure 6.12 is

〈 “shakespeare”, (11, 2, “an”), (13, 3, “ism”) 〉, 〈 “shakespeareans”, (11, 1, “s”), . . . 〉.

As mentioned earlier, the first element of each group is stored in uncompressed form, serving

as a synchronization point that can be used for binary search.

In a last step, after compressing the term strings, we can also reduce the file pointer overhead

in the dictionary. Because the lists in the postings file are sorted in lexicographical order, in

the same order as the terms in the dictionary, the file pointers form a monotonically increasing

sequence of integers. Thus, we can reduce their storage requirements by applying any of the Δ-

based list compression techniques described in Section 6.3. For example, using the byte-aligned

Chapter 6 Index Compression220

Table 6.12 The effect of dictionary compression on a sort-based dictionary for GOV2, containing
49.5 million entries. Dictionary size and average term lookup time are given for different group
sizes and different compression methods.

Group Size No Compression Front Coding Front Coding Front Coding

+vByte +vByte+LZ

1 term 1046 MB /2.8 μs n/a n/a n/a

2 terms 952 MB /2.7 μs 807 MB/ 2.6 μs 643 MB /2.6 μs 831 MB/ 3.1 μs

4 terms 904 MB /2.6 μs 688 MB/ 2.5 μs 441 MB /2.4 μs 533 MB/ 2.9 μs

16 terms 869 MB /2.7 μs 598 MB/ 2.2 μs 290 MB /2.3 μs 293 MB/ 4.4 μs

64 terms 860 MB /3.9 μs 576 MB/ 2.4 μs 252 MB /3.2 μs 195 MB/ 8.0 μs

256 terms 858 MB /9.3 μs 570 MB/ 4.8 μs 243 MB /7.8 μs 157 MB/ 29.2 μs

vByte method, the compressed representation of the dictionary group led by “shakespeare” is

〈 (〈101, 96, 54, 83, 1〉, “shakespeare”), (〈2, 38〉, 11, 2, “an”), (〈98, 3〉, 13, 3, “ism”) 〉
≡ 〈 (443396197, “shakespeare”), (4866, 11, 2, “an”), (482, 13, 3, “ism”) 〉, (6.64)

where the first element of each dictionary entry is the Δ-encoded file pointer (vByte in the first

line, simple Δ-value in the second line). As in the case of front coding, the file pointer of each

group leader is stored in uncompressed form.

The effect of the methods described above, on both dictionary size and average lookup time,

is shown in Table 6.12. By arranging consecutive dictionary entries into groups but not apply-

ing any compression, the size of the dictionary can be decreased by about 18% (858 MB vs.

1046 MB). Combining the grouping technique with front coding cuts the dictionary’s storage

requirements approximately in half. If, in addition to grouping and front coding, file pointers

are stored in vByte-encoded form, the dictionary can be shrunk to approximately 25% of its

original size.

Regarding the lookup performance, there are two interesting observations. First, arranging

term descriptors in groups improves the dictionary’s lookup performance, despite the slightly

increased number of string comparisons, because reducing the number of pointers in the pri-

mary array makes the binary search more cache-efficient. Second, front-coding the terms makes

dictionary lookups faster, regardless of the group size g, because fewer bytes need to be shuffled

around and compared with the term that is being looked up.

The last column in Table 6.12 represents a dictionary compression method that we have

not described so far: combining grouping, front coding, and vByte with a general-purpose Ziv-

Lempel compression algorithm (as implemented in the zlib6 compression library) that is run

on each group after applying front coding and vByte. Doing so is motivated by the fact that

6 www.zlib.net

6.4 Compressing the Dictionary 221

Table 6.13 Total size of in-memory dictionary when combining dictionary compression with
the interleaved dictionary organization from Section 4.4. Compression method: FC+vByte+LZ.
Underlying index data structure: frequency index (docids + TF values) for GOV2.

Index Block Size (in bytes)

512 1,024 2,048 4,096 8,192 16,384 32,768

G
ro

u
p

S
iz

e 1 term 117.0 MB 60.7 MB 32.0 MB 17.1 MB 9.3 MB 5.1 MB 9.9 MB

4 terms 68.1 MB 35.9 MB 19.2 MB 10.4 MB 5.7 MB 3.2 MB 1.8 MB

16 terms 43.8 MB 23.4 MB 12.7 MB 7.0 MB 3.9 MB 2.3 MB 1.3 MB

64 terms 32.9 MB 17.8 MB 9.8 MB 5.4 MB 3.1 MB 1.8 MB 1.0 MB

256 terms 28.6 MB 15.6 MB 8.6 MB 4.8 MB 2.7 MB 1.6 MB 0.9 MB

even a front-coded dictionary exhibits a remarkable degree of redundancy. For example, in a

front-coded dictionary for the TREC collection (containing 1.2 million distinct terms) there are

171 occurrences of the suffix “ation”, 7726 occurrences of the suffix “ing”, and 722 occurrences

of the suffix “ville”. Front coding is oblivious to this redundancy because it focuses exclusively

on the terms’ prefixes. The same is true for the Δ-transformed file pointers. Because many

postings lists (in particular, lists that contain only a single posting) are of the same size, we will

end up with many file pointers that have the same Δ-value. We can eliminate this remaining

redundancy by applying standard Ziv-Lempel data compression on top of front coding + vByte.

Table 6.12 shows that this approach, although it does not work very well for small group sizes,

can lead to considerable savings for g ≥ 64 and can reduce the total size of the dictionary by

up to 85% compared to the original, uncompressed index.

Combining dictionary compression and dictionary interleaving

In Section 4.4, we discussed a different way to reduce the memory requirements of the dictionary.

By interleaving dictionary entries with the on-disk postings lists and keeping only one dictionary

entry in memory for every 64 KB or so of index data, we were able to substantially reduce the

dictionary’s memory requirements: from a gigabyte down to a few megabytes. It seems natural

to combine dictionary compression and dictionary interleaving to obtain an even more compact

representation of the search engine’s in-memory dictionary.

Table 6.13 summarizes the results that can be obtained by following this path. Depending on

the index block size B (the maximum amount of on-disk index data between two subsequent

in-memory dictionary entries — see Section 4.4 for details) and the in-memory dictionary group

size g, it is possible to reduce the total storage requirements to under 1 MB (B=32,768; g=256).

The query-time penalty resulting from this approach is essentially the I/O overhead caused by

having to read an additional 32,768 bytes per query term: less than 0.5 ms for the hard drives

used in our experiments.

Chapter 6 Index Compression222

Even more remarkable, however, is the dictionary size resulting from the configuration B=512,

g=256: less than 30 MB. Choosing an index block size of B=512 does not lead to any measurable

degradation in query performance, as 512 bytes (=1 sector) is the minimum transfer unit of

most hard drives. Nevertheless, the memory requirements of the dictionary can be decreased

by more than 97% compared to a data structure that does not use dictionary interleaving or

dictionary compression.

6.5 Summary

The main points of this chapter are:

• Many compression methods treat the message to be compressed as a sequence of symbols

and operate by finding a code that reflects the statistical properties of the symbols in

the message by giving shorter codewords to symbols that appear more frequently.

• For any given probability distribution over a finite set of symbols, Huffman coding

produces an optimal prefix code (i.e., one that minimizes the average codeword length).

• Arithmetic coding can attain better compression rates than Huffman coding because it

does not assign an integral number of bits to each symbol’s codeword. However, Huffman

codes can usually be decoded much faster than arithmetic codes and are therefore given

preference in many applications (e.g., search engines).

• Compression methods for inverted lists are invariably based on the fact that postings

within the same list are stored in increasing order. Compression usually takes place after

transforming the list into an equivalent sequence of Δ-values.

• Parametric methods usually produce smaller output than nonparametric methods. When

using a parametric method, the parameter should be chosen on a per-list basis (local

parameterization).

• If the Δ-gaps in a postings list follow a geometric distribution, then Golomb/Rice codes

lead to good compression results.

• If the Δ-gaps are very small, then interpolative coding achieves very good compression

rates, due to its ability to encode postings using less than 1 bit on average (arith-

metic coding has the same ability but requires more complex decoding operations than

interpolative coding).

• For a wide range of gap distributions, the Huffman-based LLRUN method leads to

excellent results.

• Front coding has the ability to reduce the memory requirements of the search engine’s

dictionary data structure significantly. In combination with dictionary interleaving, it

can reduce the size of the in-memory dictionary by more than 99% with virtually no

degradation in query performance.

6.6 Further Reading 223

6.6 Further Reading

An excellent overview of general-purpose data compression (including text compression) is given

by Bell et al. (1990) and, more recently, by Sayood (2005) and Salomon (2007). An overview

of compression techniques for postings lists in inverted files is provided by Witten et al. (1999).

Zobel and Moffat (2006) present a survey of research carried out in the context of inverted files,

including an overview of existing approaches to inverted list compression.

Huffman codes were invented by David Huffman in 1951, while he was a student at MIT.

One of his professors, Robert Fano, had asked his students to come up with a method that

produces an optimal binary code for any given (finite) message source. Huffman succeeded and,

as a reward, was exempted from the course’s final exam. Huffman codes have been studied

extensively over the past six decades, and important results have been obtained regarding their

redundancy compared to the theoretically optimal (arithmetic) codes (Horibe, 1977; Gallager,

1978; Szpankowski, 2000).

Arithmetic codes can overcome the limitations of Huffman codes that are caused by the

requirement that an integral number of bits be used for each symbol. Arithmetic coding was

initially developed by Rissanen (1976) and Rissanen and Langdon (1979), and by Martin (1979)

under the name range encoding, but did not experience widespread adoption until the mid-1980s,

when Witten et al. (1987) published their implementation of an efficient arithmetic coder. Many

modern text compression algorithms, such as DMC (Cormack and Horspool, 1987) and PPM

(Cleary and Witten, 1984), are based upon variants of arithmetic coding.

γ, δ, and ω codes were introduced by Elias (1975), who also showed their universality (a

set of codewords is called universal if, by assigning codewords Ci to symbols σi in such a way

that higher-probability symbols receive shorter codewords, the expected number of bits per

encoded symbol is within a constant factor of the symbol source’s entropy). Golomb codes were

proposed by Golomb (1966) in a very entertaining essay about “Secret Agent 00111” playing

a game of roulette. Interpolative coding is due to Moffat and Stuiver (2000). In addition to

the method’s application in inverted-file compression, they also point out other applications,

such as the efficient representation of the (i.e., description of the code used by the encoder) in

Huffman coding or the encoding of move-to-front values used in compression algorithms based

on the Burrows-Wheeler transform.

Byte-aligned compression methods such as vByte (Section 6.3.4) were first explored aca-

demically by Williams and Zobel (1999) but had been in use long before. Trotman (2003), in

the context of on-disk indices, explores a number of compression effectiveness versus decod-

ing performance trade-offs, showing that variable-byte encoding usually leads to higher query

performance than bitwise methods. Scholer et al. (2002) come to the same conclusion but also

show that a byte-aligned compression scheme can sometime even lead to improvements over an

uncompressed in-memory index. In a recent study, Büttcher and Clarke (2007) show that this

is true even if the search engine’s index access pattern is completely random.

Chapter 6 Index Compression224

Reordering documents with the goal of achieving better compression rates was first studied

by Blandford and Blelloch (2002), whose method is based on a clustering approach that tries to

assign nearby docids to documents with similar content. In independent research, Shieh et al.

(2003), present a similar method that reduces document reordering to the traveling salesperson

problem (TSP). The idea to improve compressibility by sorting documents according to their

URLs is due to Silvestri (2007).

6.7 Exercises

Exercise 6.1 Consider the symbol set S = {“a”, “b”} with associated probability distribution

Pr[“a”] = 0.8, Pr[“b”] = 0.2. Suppose we group symbols into blocks of m = 2 symbols when

encoding messages over S (resulting in the new distribution Pr[“aa”] = 0.64, Pr[“ab”] = 0.16,

etc.). Construct a Huffman tree for this new distribution.

Exercise 6.2 Show that the γ code is prefix-free (i.e., that there is no codeword that is a

prefix of another codeword).

Exercise 6.3 Give an example of an unambiguous binary code that is not prefix-free. What

is the probability distribution for which this code is optimal? Construct an optimal prefix-free

code for the same distribution.

Exercise 6.4 Write down the decoding procedure for ω codes (see Section 6.3.1).

Exercise 6.5 Find the smallest integer n0 such that the ω code for all integers n ≥ n0 is

shorter than the respective δ code. Be prepared for n0 to be very large (> 2100).

Exercise 6.6 What is the expected number of bits per codeword when using a Rice code

with parameter M = 27 to compress a geometrically distributed postings list for a term T with

NT /N = 0.01?

Exercise 6.7 Consider a postings list with geometrically distributed Δ-gaps and average gap

size N/NT = 137 (i.e., p = 0.0073). What is the optimal parameter M∗ in the case of Golomb

coding? What is the optimal Rice parameter M∗
Rice? How many bits on average are wasted

if the optimal Rice code is used instead of the Golomb code? How many bits on average are

wasted by using the optimal Golomb instead of arithmetic coding?

Exercise 6.8 In Section 6.2.2 we discussed how to construct a Huffman tree in time

Θ(n log(n)), where n = |S| is the size of the input alphabet. Now suppose the symbols in

S have already been sorted by their respective probability when they arrive at the encoder.

Design an algorithm that builds a Huffman tree in time Θ(n).

6.8 Bibliography 225

Exercise 6.9 The Simple-9 compression method from Section 6.3.4 groups sequences of Δ-

values into 32-bit machine words, reserving 4 bits for a selector value. Consider a similar method,

Simple-14, that uses 64-bit machine words instead. Assuming that 4 bits per 64-bit word are

reserved for the selector value, list all possible splits of the remaining 60 bits. Which of the

two methods do you expect to yield better compression rates on a typical docid index? Char-

acterization the type of docid lists on which Simple-9 will lead to better/worse results than

Simple-14.

Exercise 6.10 One of the document reordering methods from Section 6.3.7 assigns numer-

ical document identifiers according to the lexicographical ordering of the respective URLs. Is

there another method, also based on the documents’ URLs, that might achieve even better

compression rates? Consider the individual components of a URL and how you could use them.

Exercise 6.11 (project exercise) Add index compression to your existing implementation

of the inverted index data structure. Implement support for the byte-aligned vByte method

from Section 6.3.4 as well as your choice of γ coding (Section 6.3.1) or Simple-9 (Section 6.3.4).

Your new implementation should store all postings lists in compressed form.

6.8 Bibliography

Anh, V. N., and Moffat, A. (2005). Inverted index compression using word-aligned binary codes.

Information Retrieval, 8(1):151–166.

Bell, T. C., Cleary, J. G., and Witten, I. H. (1990). Text Compression. Upper Saddle River,

New Jersey: Prentice-Hall.

Blandford, D. K., and Blelloch, G. E. (2002). Index compression through document reordering.
In Data Compression Conference, pages 342–351. Snowbird, Utah.

Burrows, M., and Wheeler, D. (1994). A Block-Sorting Lossless Data Compression Algorithm.

Technical Report SRC-RR-124. Digital Systems Research Center, Palo Alto, California.

Büttcher, S., and Clarke, C. L. A. (2007). Index compression is good, especially for ran-

dom access. In Proceedings of the 16th ACM Conference on Information and Knowledge

Management, pages 761–770. Lisbon, Portugal.

Cleary, J. G., and Witten, I. H. (1984). Data compression using adaptive coding and partial

string matching. IEEE Transactions on Communications, 32(4):396–402.

Cormack, G. V., and Horspool, R. N. S. (1987). Data compression using dynamic Markov

modelling. The Computer Journal, 30(6):541–550.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203.

Chapter 6 Index Compression226

Fraenkel, A. S., and Klein, S. T. (1985). Novel compression of sparse bit-strings. In Apostolico,

A., and Galil, Z., editors, Combinatorial Algorithms on Words, pages 169–183. New York:
Springer.

Gallager, R. G. (1978). Variations on a theme by Huffman. IEEE Transactions on Information

Theory, 24(6):668–674.

Gallager, R. G., and Voorhis, D. C. V. (1975). Optimal source codes for geometrically distributed

integer alphabets. IEEE Transactions on Information Theory, 21(2):228–230.

Golomb, S. W. (1966). Run-length encodings. IEEE Transactions on Information Theory,

12:399–401.

Horibe, Y. (1977). An improved bound for weight-balanced tree. Information and Control,
34(2):148–151.

Larmore, L. L., and Hirschberg, D. S. (1990). A fast algorithm for optimal length-limited

Huffman codes. Journal of the ACM, 37(3):464–473.

Martin, G. N. N. (1979). Range encoding: An algorithm for removing redundancy from a digi-

tised message. In Proceedings of the Conference on Video and Data Recording. Southampton,

England.

Moffat, A., and Stuiver, L. (2000). Binary interpolative coding for effective index compression.

Information Retrieval, 3(1):25–47.

Patterson, D. A., and Hennessy, J. L. (2009). Computer Organization and Design: The

Hardware/Software Interface (4th ed.). San Francisco, California: Morgan Kaufmann.

Rice, R. F., and Plaunt, J. R. (1971). Adaptive variable-length coding for efficient compression of

spacecraft television data. IEEE Transactions on Commununication Technology, 19(6):889–

897.

Rissanen, J. (1976). Generalized Kraft inequality and arithmetic coding. IBM Journal of

Research and Development, 20(3):198–203.

Rissanen, J., and Langdon, G. G. (1979). Arithmetic coding. IBM Journal of Research and
Development, 23(2):149–162.

Salomon, D. (2007). Data Compression: The Complete Reference (4th ed.). London, England:

Springer.

Sayood, K. (2005). Introduction to Data Compression (3rd ed.). San Francisco, California:

Morgan Kaufmann.

Scholer, F., Williams, H. E., Yiannis, J., and Zobel, J. (2002). Compression of inverted indexes

for fast query evaluation. In Proceedings of the 25th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 222–229. Tampere,

Finland.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical

Journal, 27:379–423, 623–656.

Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical

Journal, 30:50–64.

6.8 Bibliography 227

Shieh, W. Y., Chen, T. F., Shann, J. J. J., and Chung, C. P. (2003). Inverted file compres-

sion through document identifier reassignment. Information Processing & Management,
39(1):117–131.

Silvestri, F. (2007). Sorting out the document identifier assignment problem. In Proceedings of

the 29th European Conference on IR Research, pages 101–112. Rome, Italy.

Szpankowski, W. (2000). Asymptotic average redundancy of Huffman (and other) block codes.

IEEE Transactions on Information Theory, 46(7):2434–2443.

Trotman, A. (2003). Compressing inverted files. Information Retrieval, 6(1):5–19.

Williams, H. E., and Zobel, J. (1999). Compressing integers for fast file access. The Computer

Journal, 42(3):193–201.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Compressing and

Indexing Documents and Images (2nd ed.). San Francisco, California: Morgan Kaufmann.

Witten, I. H., Neal, R. M., and Cleary, J.G. (1987). Arithmetic coding for data compression.

Commununications of the ACM, 30(6):520–540.

Ziv, J., and Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343.

Zobel, J., and Moffat, A. (2006). Inverted files for text search engines. ACM Computing Surveys,
38(2):1–56.

7 Dynamic Inverted Indices

In Chapter 4, when we discussed how to construct an inverted index from a given text collection,

many of our arguments were based on the assumption that the collection is static and does not

change during the index construction process nor after the index has been built. Obviously,

this assumption does not always hold. In many applications the collection may be expected

to change over time. Examples of those dynamic text collections include file systems, digital

libraries, and the Web.

Dynamic text collections typically allow three types of operations: document insertions, dele-

tions, and modifications. When building an inverted index for a dynamic text collection, the

volatile nature of the data needs to be taken into account and appropriate strategies need to be

employed to keep the index consistent with the text in the collection. Such index maintenance

strategies are the topic of this chapter.

In the first part of the chapter (Section 7.1) we discuss how to deal with semi-static doc-

ument collections. A semi-static collection allows insertions and deletions (treating document

modifications as deletions followed by insertions), but the updates do not have to be reflected

by the index immediately. Instead, a small delay of perhaps a few hours or even a few days

is tolerable. Web search engines typically treat large portions of the Web as a semi-static text

collection; it may take several days or weeks for a new Web page to be included in the search

engine’s index (although popular pages, such as www.whitehouse.gov, are usually re-indexed

more frequently).

The second part (Section 7.2) is concerned with incremental text collections. An incremental

collection allows new documents to be added to the collection. Existing documents, however,

may never be modified or removed. We examine several index update strategies for incremental

text collections and show that splitting the index into a set of independent subindices (“index

partitions”) allows the search engine to update its index structures very efficiently, while not

impacting query performance unreasonably. The method can be used to keep the index up to

date even if documents are arriving at very high rates.

In the third and final part of this chapter, we discuss index update policies for non-incremental

dynamic text collections that support the full range of update operations: insertions, deletions,

and modifications. In Section 7.3 we show how to implement a lazy deletion procedure that does

not remove obsolete postings from the index immediately but merely marks them as deleted;

garbage collection is executed periodically to clean up the index and remove all garbage postings.

Section 7.4 discusses how the search engine’s index structures need to be modified if the engine

has to support document modifications (e.g., append operations). We point out some of the

difficulties that arise under such circumstances. Our discussion sheds some light on why search

7.1 Batch Updates 229

engines typically do not support document modifications directly but instead treat them as a

combination of deletion and re-insertion — even though this approach can be rather inefficient

when applied to very long documents.

As in Chapter 4, the basic assumption throughout this chapter is that memory resources are

scarce compared to the total size of the index and that the majority of the index data needs to

be kept on disk. In the context of large-scale search engines with plentiful memory resources,

this may limit the applicability of the techniques discussed here, although the general set of

problems encountered is usually quite similar in both cases (disk-based and in-memory).

7.1 Batch Updates

In some applications, it may be tolerable if changes to the text collection are not immediately

reflected by the index. Instead, the indexing process may wait for a while, accumulating new

documents, before it adds all new data to the index in a single batch update operation. This is

the typical index update behavior in Web search, where days or even weeks may pass before a

new Web page makes it into the index of one of the major Web search engines. Batch updates

to an existing index can be realized in two different ways:

• A new index is built from scratch. When the indexing process is finished, the old index

is deleted and replaced by the new one. This procedure is referred to as the Rebuild

update strategy.

• An index is built from the text found in the newly inserted documents. After the index

has been created, it is merged with the original index, resulting in a new index that

supersedes the old one. This procedure is referred to as the Remerge update strategy.

The merge operations in the Remerge strategy can be carried out in essentially the same

way as the final merge operation in merge-based index construction (see Section 4.5.3).

Which strategy is the better choice, Rebuild or Remerge? From a developer’s point of

view, Rebuild is more attractive because it is easier to implement. However, Rebuild needs

to parse and re-index all documents in the collection, regardless of whether they have already

been indexed. With Remerge, we can reuse some of the existing index data, thus giving the

method a potential performance advantage over Rebuild.

If the batch update consists exclusively of document insertions (no deletions), then it is

obvious that the Remerge policy leads to better performance than Rebuild. However, if the

update is not strictly incremental but consists of both insertions and deletions, then the situation

is not so clear. Remerge, in this case, would spend some time reading and decoding postings

that belong to deleted documents and will not be included in the new index. Rebuild, on the

other hand, would never encounter those postings, which gives it a potential advantage over

Remerge.

Chapter 7 Dynamic Inverted Indices230

Suppose the original index, Iold, contains postings for dold documents and all these documents

are about the same size. Suppose further that the batch update consists of ddelete deletions and

dinsert insertions. Thus, after applying all updates in the batch, the new index, Inew , will

contain postings for

dnew = dold − ddelete + dinsert (7.1)

documents. The time it takes Rebuild to construct Inew depends only on dnew . Employing the

merge-based index construction method from Chapter 4, it can build Inew in

timerebuild(dold, ddelete, dinsert) = c · dnew

= c · (dold − ddelete + dinsert) , (7.2)

for some system-specific constant c.

How long does it take to build Inew if the Remerge strategy is used instead? The answer

depends on the relative performance of indexing and merging operations in the search engine.

From Table 4.7 (page 130), we know that the final merge operation in merge-based index

construction takes about 25% of the total time required to build a full-text index for GOV2.

The remaining 75% are spent on parsing documents and constructing subindices. Therefore, we

may assume that the total time required to build a new index for the collection, using Remerge,

is approximately

timeremerge(dold, ddelete, dinsert) = c · dinsert +
c

4
· (dold + dinsert) , (7.3)

where the first summand corresponds to constructing an index Iinsert for the dinsert incoming

documents and the second summand corresponds to merging Iold with Iinsert, resulting in the

new index Inew .

Equation 7.3 does not take into account that the merge operation carried out here is slightly

more time-consuming than the one from Section 4.5.3 because it also needs to garbage-collect

postings that refer to deleted documents instead of just merging postings lists. For the sake of

simplicity, however, let us assume that this overhead is negligible, and that merging is in fact

about four times as fast as re-indexing (a proper discussion of the effect of deletions on update

performance can be found in Section 7.3). Under this assumption, Rebuild and Remerge

exhibit the same performance if

timerebuild(dold, ddelete, dinsert) = timeremerge(dold, ddelete, dinsert) (7.4)

⇔ dold − ddelete + dinsert = dinsert +
1

4
· (dold + dinsert) (7.5)

⇔ ddelete =
3

4
· dold −

1

4
· dinsert . (7.6)

7.2 Incremental Index Updates 231

Suppose the collection, although changing over time, is in steady state, that is, the number

of insertions equals the number of deletions (dinsert = ddelete). In practice this is often the case

because many collections, even though they might experience a large number of updates, grow

very slowly compared to their total size. Equation 7.6 then reduces to

ddelete =
3

5
· dold . (7.7)

Hence, the Rebuild strategy is more efficient than Remerge if at least 60% of all documents

from the old index have been deleted and no longer appear in the new index. If the deletion

rate is smaller than 60%, then Remerge will be the better choice.

In most applications, the relative number of deletions between two consecutive batch updates

is much smaller than 60%. This is not necessarily because text collections are changing so slowly,

but because a search engine whose results predominantly refer to documents that don’t exist

anymore is not of great utility to its users. To ensure user satisfaction, a rapidly changing text

collection requires more frequent index updates. Thus, in practice, Remerge almost always

leads to better results than Rebuild.

Given that every search engine with a merge-based indexing procedure (see Section 4.5.3)

automatically has the ability to merge two inverted files, there is no real reason to choose

Rebuild over Remerge. Since Remerge is so much faster than Rebuild, it allows for shorter

index update cycles and thus a greater index freshness. Admittedly, the need to integrate

support for document deletions into the merge operation makes a Remerge update slightly more

complex than the final merge operation in merge-based indexing. The necessary adjustments,

however, are not overly complicated. A method that can be used to remove garbage postings

from an existing index is discussed in Section 7.3.

7.2 Incremental Index Updates

While the batch update strategies discussed in the previous section may be appropriate for

certain applications, in many search environments it is critical that the search engine’s index

always reflects the current contents of the text collection. Examples include Internet news search,

file system search, and proprietary search systems used by Internet merchants such as Amazon1

and eBay2. In all these cases the index needs to be updated immediately after a change to the

text collection has been detected; batch update is no longer an appropriate strategy. In this

section we show how this goal can be reached if the text collection is strictly incremental, that

is, if new documents can be added but existing documents will never be modified or removed

from the collection.

1 www.amazon.com
2 www.ebay.com

Chapter 7 Dynamic Inverted Indices232

�����
�����		��

�����

���

��������	
�������������

����������	���������

���
�����	
�

���������

�

���������

�

��	������������

��	������������

��	������������

��	��������������

������������

��	����	� �	�

���������

�

��	���
����������	
�

!����	"�����

Figure 7.1 Transforming off-line merge-based index construction into an on-line index maintenance
strategy (No Merge). The postings list for each query term is fetched from the in-memory index
currently being built and from the on-disk index partitions created earlier. The final inverted list is
constructed by concatenating the sublists.

Consider again the structure of the in-memory index constructed by the hash-based in-

memory indexing procedure from Section 4.5.1. The backbone of this index is an in-memory

hash table that maps from term strings to the memory addresses of the corresponding postings

lists. Although this data structure was originally motivated by the specific requirements of the

indexing process, it may just as well be used for query processing.

Suppose that, while the search engine is building an index, perhaps after creating n on-disk

index partitions, we want it to process a keyword query composed of m query terms. This can

easily be realized by repeating the following procedure for each of the m terms:

1. Fetch the term’s postings list fragment from each of the n on-disk index partitions.

2. Use the in-memory hash table to fetch the term’s in-memory list fragment.

3. Concatenate all n + 1 fragments to form the term’s postings list.

This procedure is shown in Figure 7.1. It requires a total of m ·n random disk accesses. We refer

to it as the No Merge index update strategy, for reasons that will become clear very soon.

Although No Merge can be used to transform an off-line index construction method for static

text collections into an on-line method that allows document insertions to be interleaved with

7.2 Incremental Index Updates 233

search queries, it is often not a very attractive strategy, due to the large number of disk seeks

required to process a search query (one seek for every query term and every index partition). If

the number of partitions is large, then No Merge’s query performance can be extremely low.

Nonetheless, the method may serve as a baseline for other, more sophisticated strategies.

In the remainder of this section, we discuss several index update policies for incremental text

collections. These policies are all based upon the same general idea that forms the foundation

of the No Merge policy: to index incoming documents as if they were part of a static text

collection, and to process queries by concatenating the query terms’ postings lists found in the

on-disk and in the in-memory index. Unlike No Merge, however, they aim to keep the amount

of fragmentation in the on-disk index low, by rearranging small list fragments into larger lists.

7.2.1 Contiguous Inverted Lists

The most drastic way to guarantee a low degree of fragmentation in the on-disk postings lists

is to not allow the creation of a new on-disk list fragment for a term for which a list fragment

already exists in the index. This can be done in two fundamentally different ways: in-place

update and remerge update.

Remerge update

Reconsider the Remerge strategy from Section 7.1. Remerge can be used not only for batch

update operations arising in the context of semi-static document collections but also as an

update policy for incremental collections. The search engine’s indexing module processes incom-

ing documents in the same way it would in the static case. In contrast to the static case, however,

whenever the indexer runs out of memory, a fresh on-disk index is created by merging the exist-

ing on-disk index with the data accumulated in main memory. The general procedure is shown

in Figure 7.2.

Merging the old index data with the in-memory data requires the engine to read the existing

on-disk index and write the new index at the same time. By reading/writing all data in larger

chunks, perhaps several megabytes at a time, the number of nonsequential disk operations

(switching between the old index and the new one) can be kept very low and the whole update

operation can be carried out very efficiently.

In the context of real-time (non-batch) updates, Remerge is sometimes referred to as Imme-

diate Merge to distinguish it from other merge-based update strategies that do not always

perform a merge operation when the indexing process runs out of main memory.

In order to quantify the performance difference between Immediate Merge and No Merge,

and to show how important it is to store on-disk postings lists in a contiguous fashion, we had our

search engine index the 25.2 million documents in the GOV2 collection with a memory budget

of roughly 800 MB (enough to build an in-memory index for 250,000 documents). Whenever the

system ran out of memory, an on-disk index update was carried out, merging the in-memory

index with the existing on-disk index, followed by a sequence of 1,000 search queries.

Chapter 7 Dynamic Inverted Indices234

buildIndex ImmediateMerge (M) ≡
1 Imem ← ∅ // initialize in-memory index
2 currentPosting ← 1
3 while there are more tokens to index do
4 T ← next token
5 Imem.addPosting(T, currentPosting)
6 currentPosting ← currentPosting + 1
7 if Imem contains more than M − 1 tokens then
8 if Idisk exists then
9 Idisk ←mergeIndices({Imem, Idisk})
10 else
11 Idisk ← Imem

12 Imem ← ∅ // reset in-memory index
13 return

Figure 7.2 On-line index construction with Immediate Merge. The procedure mergeIndices
appears in Figure 4.13 (page 129).

Figure 7.3 shows the average time per query for the two index update strategies. As expected,

Immediate Merge, due to its strictly contiguous on-disk postings lists, exhibits better query

performance than No Merge. What might be somewhat surprising, however, is the large

margin by which it beats its competitor. After the whole collection had been indexed, No

Merge was more than seven times slower than Immediate Merge (690 ms for Immediate

Merge vs. 5,100 ms for No Merge).

What is the reason for this enormous difference? With a memory budget sufficient to index

250,000 documents, No Merge accumulates a total of 100 on-disk index partitions for GOV2,

resulting in approximately 100 random disk seeks per query term. With a random access cost of

approximately 12 ms (disk seek plus rotational latency) and an average of 3.5 terms per query,

we expect a total overhead of

12 ms · 100 · 3.5 = 4,200 ms (7.8)

per query — a factor-of-7 slowdown compared to the 690 ms per query achieved by Immediate

Merge. This calculation shows that there are some fundamental limitations to the usefulness

of No Merge. Even if we increased the search engine’s memory budget by a factor of 5, we

would still end up with 20 index partitions and a random access overhead of around 800 ms

per query. Conversely, if the indexing process’s memory budget is decreased, query performance

becomes truly unbearable, as shown in Figure 7.3 for M = 100,000 documents.

Unfortunately, despite its clear advantage over the No Merge policy, Immediate Merge

is not the final answer to the index update problem. Whenever the indexing process runs out of

memory, it reads the entire index from disk, merges it with the in-memory data, and writes the

7.2 Incremental Index Updates 235

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

)

Documents indexed (× 106)

No Merge (M = 100k docs)
No Merge (M = 250k docs)
Imm. Merge (M = 250k docs)

Figure 7.3 Average query performance for Immediate Merge and No Merge as a function of index
size. Document collection: GOV2 (25.2 million documents). Query set: Random queries from TREC
Terabyte 2006, evaluated using proximity ranking (Section 2.2.2).

new index back to disk. Over time, this strategy leads to a number of disk read/write operations

that is quadratic in the size of the collection.

Suppose the indexing process may buffer M postings in memory and is building an index for

a collection containing N tokens. When it runs out of memory for the first time, M postings

are transferred to disk. When it runs out of memory the second time, those M postings are

loaded into memory, merged with the in-memory index, and 2M postings are written back to

disk. Thus, for the N tokens in the collection, the total number of postings transferred from/to

disk is

�N/M∑
k=1

(k − 1)M + kM = M ·
�N/M∑

k=1

(2k − 1) (7.9)

= M ·
(⌊

N

M

⌋)2

∈ Θ

(
N2

M

)
. (7.10)

If the available amount of main memory is small compared to the total size of the collection,

then this quadratic complexity renders Immediate Merge impractical, as shown by Figure 7.4,

which depicts the cumulative index update cost for both No Merge and Immediate Merge

as the index grows. Even with a moderately generous memory budget of 800 MB (=̂ 250,000

documents), Immediate Merge is roughly six times slower than No Merge.

Chapter 7 Dynamic Inverted Indices236

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25

C
um

ul
at

iv
e

up
da

te
 c

os
t (

ho
ur

s)

Documents indexed (× 106)

Imm. Merge (M = 100k docs)
Imm. Merge (M = 250k docs)
No Merge (M = 250k docs)

Figure 7.4 Cumulative index update cost for Immediate Merge and No Merge as a function of
index size. Data set: GOV2 (25.2 million documents).

In-place update

In-place index update strategies try to overcome Immediate Merge’s limitations by not requir-

ing the search engine to read the entire index from disk every time it runs out of memory. Instead,

whenever a postings list is written to disk during an on-disk index update, some free room is

left at the end of the list. When additional postings for the same term have to be transferred to

disk at a later point in time, they can simply be appended to the existing list. If the amount of

free space available at the end of a list is insufficient for the incoming postings, the entire list is

relocated to a new position in the on-disk index, where there is enough space for old and new

postings. An example of this general procedure is shown in Figure 7.5.

Individual in-place update strategies differ mainly in the way they pre-allocate space at the

end of a given list. The most common allocation scheme (with which you may already be familiar

from Section 4.5.1) is called proportional pre-allocation. Suppose a postings list L of size b bytes

is transferred to disk (or relocated to a new position). Then the total space the search engine

reserves for L is k · b bytes. That is, (k − 1) · b bytes at the end of the list will be available

for future postings. Common pre-allocation factors are k = 1.5 and k = 2. Compared with

other pre-allocation policies, such as reserving a constant number of bytes at the end of each

list, proportional pre-allocation has the advantage that the total number of bytes read/written

from/to disk during relocation operations is linear in the final size of the list (Exercise 7.2). In the

remainder of this section, we refer to the in-place update policy with proportional pre-allocation

simply as Inplace.

Because the total number of bytes that Inplace transfers from/to disk for a given list is

linear in the size of the list, we may conclude that the total number of bytes transferred from/to

disk for the entire inverted index is linear in the size of the index. This seems to imply that

7.2 Incremental Index Updates 237

��������	
����

��

���������	

��

��

��

��������
�����

�������
����
�������
 !����"

�������
����
������
 !����"

 ��� � ���

Figure 7.5 In-place index update with pre-allocation. At the end of the on-disk list for term T3, there
is not enough room for the new postings. The list has to be relocated.

Inplace achieves a better update performance than Immediate Merge with its quadratic disk

complexity. However, this is not so. In-place update strategies exhibit a highly nonsequential

disk access pattern that involves costly random-access disk operations. Thus, the raw amount

of data transferred to/from disk is not indicative of the overall update performance.

Consider again the example shown in Figure 7.5. The postings list for term T3 needs to be

relocated because there is insufficient space for the new postings from the in-memory index.

Relocating the list requires two random disk accesses: one to read the original list from its old

location and one to write the augmented list (including the postings from the in-memory index)

to the new location. With the hard drives used in our experiments (see Appendix A), performing

a single random disk access carries approximately the same cost as reading or writing 1 MB of

data sequentially.

Because most postings lists are very short (Zipf’s law), Inplace’s nonsequential index access

pattern has disastrous effects on its update performance. For instance, updating a set of 100,000

very short postings lists in-place takes about 20 minutes (assuming one disk seek per list).

Updating them in a sequential read/write operation (as part of a merge update) can be done

in a few seconds.

The index maintenance literature is rich in optimizations to the basic Inplace strategy; see,

for instance, Shieh and Chung (2005) or Lester et al. (2006). We leave the discussion of those

efforts to the existing literature and instead focus our attention on a more principled way of

reducing the overall update overhead: by combining Inplace and Immediate Merge into a

single, hybrid update strategy.

Chapter 7 Dynamic Inverted Indices238

Hybrid index maintenance

Comparing Inplace and Immediate Merge, we can say that the main limitation of Inplace

is the relatively large number of disk seeks, whereas the main limitation of Immediate Merge

is the requirement to read/write the entire on-disk index whenever the search engine runs out

of memory. It is possible to devise an update policy that combines the advantages of both

approaches by choosing either Inplace or Immediate Merge, not for the entire index but

individually for every postings list.

Consider an individual on-disk postings list L. Suppose that L’s total size after the i-th index

update cycle (i.e., when the search engine runs out of memory for the i-th time) is si bytes.

After the (i+1)-th update cycle, it is si+1 bytes. Now suppose the search engine’s on-disk index

is stored on a hard drive with a sequential read/write throughput of b bytes per second and

a random disk access requires r seconds on average. If L is updated according to Immediate

Merge, then the update overhead during the (i + 1)-th update cycle is

Di+1 =
si + si+1

b
, (7.11)

where the two summands stem from the necessity to read the old list and write the new one. If

an in-place update policy is employed instead, the update overhead is

Di+1 = 2r +
si+1 − si

b
, (7.12)

assuming that two disk seeks are necessary to update the list (in a hybrid index maintenance

policy, each in-place update requires two disk seeks instead of one because it interrupts a

sequential merge operation). Equating 7.11 and 7.12 yields:

si = r · b . (7.13)

That is, as soon as an on-disk postings list is bigger than r ·b bytes, it is more efficient to update

it in-place than to use Remerge. For a typical consumer hard drive, this corresponds roughly

to si = 0.5 MB. For shorter lists Immediate Merge is more efficient. For longer lists Inplace

is the more appropriate strategy.

The idea is formalized by the algorithm shown in Figure 7.6. The algorithm maintains two

on-disk indices: Imerge and Iinplace. Initially all postings lists are stored in Imerge. Whenever a

list reaches the predefined threshold ϑ (the hardware-specific Remerge versus Inplace break-

even point), it is transferred from Imerge to Iinplace. The algorithm uses the variable L to keep

track of all long lists stored in the in-place index section.

Because this update strategy combines the advantages of Remerge and Inplace, it is usually

referred to as hybrid index maintenance. The specific method shown in the figure is called

Hybrid Immediate Merge with contiguous postings lists (HIMC). It is analyzed by Büttcher

and Clarke (2008), who show that its theoretical complexity depends on the term distribution

7.2 Incremental Index Updates 239

buildIndex HybridImmediateMerge (M) ≡
1 let Imerge denote the primary on-disk index (merge-maintained, initially empty)
2 let Iinplace denote the secondary on-disk index (updated in-place, initially empty)
3 Imem ← ∅ // initialize in-memory index
4 currentPosting ← 1
5 L ← ∅ // the set of long lists is empty initially
6 while there are more tokens to index do
7 T ← next token
8 Imem.addPosting(T, currentPosting)
9 currentPosting ← currentPosting + 1
10 if Imem contains more than M − 1 postings then
11 // merge Imem and Imerge by traversing their lists in lexicographical order
12 I ′

merge ← ∅ // create new on-disk index
13 for each term T ∈ Imem ∪ Imerge do
14 if (T ∈ L) ∨ (Imem.getPostings(T).size + Imerge.getPostings(T).size > ϑ) then
15 Iinplace.addPostings(T, Imerge.getPostings(T))
16 Iinplace.addPostings(T, Imem.getPostings(T))
17 L ← L ∪ {T}
18 else
19 I ′

merge.addPostings(T, Imerge.getPostings(T))
20 I ′

merge.addPostings(T, Imem.getPostings(T))
21 Imerge ← I ′

merge // replace the old on-disk index with the new one
22 Imem ← ∅ // re-initialize the in-memory index

Figure 7.6 On-line index construction according to Hybrid Immediate Merge with contiguous
postings lists (HIMC). Input parameter: long-list threshold ϑ.

in the text collection and is

Θ

(
N1+1/α

M

)
, (7.14)

where N is the size of the collection, M is the indexing process’s memory budget, and α

is the Zipf parameter of the collection being indexed. For text collections around the size of

GOV2, HIMC’s index update overhead is about 50% lower than that of Immediate Merge.

Their query performance, on the other hand, is almost exactly the same, since both methods

maintain strictly contiguous on-disk postings lists.

7.2.2 Noncontiguous Inverted Lists

Hybrid index maintenance is a significant improvement over the basic Immediate Merge

strategy. However, if memory resources are scarce, its update performance is still somewhat

unsatisfactory and can easily become the main bottleneck of the search engine. Unfortunately,

if we insist that all on-disk postings lists be stored contiguously, then this is the best that can

be achieved. In order to obtain better update performance, we need to move away from the idea

that all postings lists are stored in a contiguous fashion.

Chapter 7 Dynamic Inverted Indices240

buildIndex LogarithmicMerge (M) ≡
1 I0 ← ∅ // initialize in-memory index
2 currentPosting ← 1
3 while there are more tokens to index do
4 T ← next token
5 I0.addPosting(T, currentPosting)
6 currentPosting ← currentPosting + 1
7 if I0 contains more than M − 1 tokens then
8 // construct I, the set of index partitions to be merged
9 I ← {I0}
10 g ← 1
11 while Ig exists do // anticipate collisions
12 I ← I ∪ {Ig}
13 g ← g + 1
14 Ig ←mergeIndices(I)
15 delete every I ∈ I
16 I0 ← ∅ // reset in-memory index
17 return

Figure 7.7 On-line index construction with Logarithmic Merge (anticipatory version). The
procedure mergeIndices appears in Figure 4.13 (page 129).

Index partitioning

Index update strategies that maintain multiple on-disk inverted files, where each inverted file

contains a small part of any given inverted list, are called index-partitioning schemes. Dividing

the on-disk index into a set of independent index partitions can greatly improve the search

engine’s update performance. On the downside, however, because each postings list is no longer

stored in a contiguous region of the hard drive, query performance may be a bit lower. By

ensuring that the number of index partitions remains small, it is often possible to keep the

degradation at an acceptable level.

Logarithmic merging

One of the most common index-partitioning algorithms is Logarithmic Merge. It is the stan-

dard index maintenance policy in several open-source text retrieval systems, including Lucene

and Wumpus. Logarithmic Merge maintains a set of index partitions. Each partition car-

ries a label g, the generation number of that partition. Whenever the search engine’s indexing

process runs out of memory, it creates a new on-disk index partition from the data found in the

in-memory index. This new inverted file receives the provisional label “1”. The search engine

then inspects all index partitions created so far and checks whether there are two with the same

label g′. If that is the case, it merges these two partitions into a new one with the label g′ + 1.

This procedure is repeated until there are no more such collisions (i.e., until there is at most

one index partition for any given label g).

7.2 Incremental Index Updates 241

Table 7.1 Sequence of nonempty index partitions maintained by Logarith-

mic Merge. The variable M denotes the number of postings that may be
buffered in main memory. The column labeled “Postings Written” shows the
cumulative number of postings written to disk after each merge operation.

Tokens Read Index Partitions Postings Written

1 2 3 4 5 #

0×M · · · · · 0 0

1×M � · · · · 1 1×M

2×M · � · · · 1 3×M

3×M � � · · · 2 4×M

4×M · · � · · 1 8×M

5×M � · � · · 2 9×M

6×M · � � · · 2 11×M

7×M � � � · · 3 12×M

8×M · · · � · 1 20×M

The basic strategy outlined above can be improved slightly by anticipating collisions. For

example, when merging two partitions of generation g′, and there already exists a partition of

generation g′ + 1, we can simply include it in the first merge operation so that there is no need

for a second merge that results from the collision caused by the first one. Instead of merging two

partitions of generation g′ and then merging two partitions of generation g′ + 1, we perform a

single three-way merge operation, merging two partitions of generation g′ and one of generation

g′ + 1, resulting in a new partition of generation g′ + 2.

This procedure is formalized in Figure 7.7, which shows the anticipatory version of Loga-

rithmic Merge. In the algorithm, Ig refers to the on-disk index partition of generation g.

I0 refers to the in-memory index.

Before we analyze the update complexity of Logarithmic Merge, let us look at a concrete

example. Suppose the search engine may buffer up to M postings in main memory. It starts

indexing a given text collection. After it has accumulated M postings, it builds an inverted

file from the in-memory index data. This newly created index partition receives the label “1”.

The search engine continues to index documents. When it runs out of memory the second time

(after 2M postings), it creates another partition. The new partition cannot receive the label “1”

because there is already a partition with that label. Therefore, it is merged with the existing

partition, yielding a new partition, with label “2”. When the search engine runs out of memory

the third time (after 3M postings), it creates a new index partition with label “1”. Because

at that point no other partition with label “1” exists, there is no need to perform a merge

operation and the system may continue indexing documents. The continuation of this process

is shown in Table 7.1.

Chapter 7 Dynamic Inverted Indices242

What is the total number of postings written to disk by the index maintenance operations

carried out by the basic (i.e., non-anticipatory) Logarithmic Merge policy? Suppose we are

building an index for a text collection containing N = 2kM tokens, for some positive integer

k. When the indexing process is done, there will be a single index partition Ik+1 of generation

k + 1. Ik+1 was created by merging two index partitions of generation k. Each partition of

generation k, in turn, was created by merging two partitions of generation k − 1, and so forth.

Every merge operation resulting in a partition of generation i requires the search engine

to write 2i−1M postings to disk. Therefore, the total number of postings written to disk by

Logarithmic Merge is

2kM + 2 · (2k−1M + 2 · (2k−2M + · · ·)) (7.15)

=

k+1∑
i=1

2k+1−i 2i−1 M (7.16)

= (k + 1) · 2kM (7.17)

=

(
log2

(
N

M

)
+ 1

)
·N (7.18)

because k = log2(N/M).

The number of postings read from disk is upper-bounded by the number of postings written

(nothing is read twice). Hence, the total disk complexity of the basic Logarithmic Merge

strategy, measured by the number of postings transferred from/to disk, is

DLogMerge(N) ∈ Θ

(
N · log

(
N

M

))
. (7.19)

The anticipatory version of Logarithmic Merge leads only to a constant-factor improvement

over the basic version and thus has the same asymptotic complexity (see Exercise 7.3).

Figure 7.8 shows the update and query performance of Logarithmic Merge and its com-

petitors for an update buffer size of approximately 250,000 documents. Logarithmic Merge

performs well in both aspects. Its cumulative indexing overhead is only about 40% higher than

that of No Merge. Its average query response time, on the other hand, stays close to that of

Immediate Merge throughout the experiment.

The sudden “jumps” in both plots in Figure 7.8 are due to merge operations. Since the

buffer load in the experiment is 250,000 documents, Logarithmic Merge performs a complete

remerge whenever 2k · 250,000 documents have been added to the index (e.g., after 4 million,

8 million, 16 million documents). This remerge results in an on-disk index composed of only

a single partition. In terms of query performance, then, for a short period of time there is no

difference between Logarithmic Merge and Immediate Merge, as both methods have a

fragmentation-free index.

7.3 Document Deletions 243

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25

C
um

ul
at

iv
e

up
da

te
 c

os
t (

ho
ur

s)

No Merge (M = 250k docs)
Log. Merge (M = 250k docs)
Imm. Merge (M = 250k docs)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 5 10 15 20 25

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e

(s
ec

)

No Merge (M = 250k docs)
Log. Merge (M = 250k docs)
Imm. Merge (M = 250k docs)

Figure 7.8 Overall performance of Logarithmic Merge, compared to No Merge and Immediate Merge.
Data set: GOV2 (25.2 million documents). Horizontal axis: Number of documents indexed (×106).

7.3 Document Deletions

Although support for incremental updates might be sufficient for some applications, in many

realistic environments the search engine also needs to be able to deal with deletions. On the

Internet, for example, it is quite common that existing Web pages disappear after a while. Such

documents should no longer show up in the result list produced by the search engine. If the

rate at which deletions occur is relatively small, and if it is tolerable that a small fraction of

the search results refers to documents that are no longer available, then the Rebuild strategy

from Section 7.1 can be an appropriate index maintenance policy. However, even then it might

be advisable to exclude deleted documents from the search results shown to the user. If a

search engine keeps referring its users to nonexistent documents, the users may quickly become

frustrated and stop using that search engine.

7.3.1 Invalidation List

One possible way to ensure that deleted documents do not appear in the search results is to

remove all corresponding postings from the index. Unfortunately, this would require reading

each postings list, decompressing it, removing the obsolete postings, recompressing the list, and

writing it back to disk. As in the case of incremental updates, it is not feasible to perform

such an operation after every deletion. Instead, information about deleted documents can be

accumulated in the search engine and maintained as an invalidation list used to filter out obsolete

postings during the search process, or to filter out deleted documents before presenting the final

search results to the user.

Chapter 7 Dynamic Inverted Indices244

If the search engine is based on a document-oriented index, such as a docid index or a

frequency index, then the invalidation list is simply a list of docids. If a schema-independent

index is used instead, then the invalidation list is a sequence of (start, end) tuples indicating the

start and end offsets of the deleted documents in the index address space.

Suppose an index has been created for five documents D1, . . . , D5, containing 100, 200,

150, 100, and 200 tokens, respectively. Now D2 and D5 are deleted from the index. Then

the invalidation list, in a schema-independent index representation, is

I = 〈 (101, 300), (551, 750) 〉 . (7.20)

Applying I to a postings list or to a set of search results is not very complicated. If the structural

query operators from Section 5.2 have been implemented, then it is as simple as replacing each

postings list P in the query tree with its filtered version P (I) = (P 	� I), where “ 	�” denotes a

not-contained-in relationship (see Table 5.2 on page 162 for the exact definition).

In practice, this approach works reasonably well, especially if the “	�” operator is designed

for lazy evaluation and allows efficient random access operations on the filtered list P (I). If,

however, the search engine always eagerly computes the entire list P (I), regardless of whether

it is actually needed for query processing, advanced operators such as the next method from

Figure 2.5 (page 42) are likely to lose their advantage over simple linear index access strategies.

Although the general idea behind the invalidation list approach is rather simple, details of the

implementation can have a great impact on the actual performance of the method — as is often

the case. For example, even though we have claimed above that the invalidation list I should be

applied to each individual postings list P , it is sometimes beneficial to reorder the query tree

and apply I only after combining the postings lists Pi for all query terms Ti. Consider the query

“to be or not to be”, run against the Shakespeare collection. The phrase occurs only a single

time in the collection (act 3, scene 1), whereas the individual terms appear between 2,425 times

(“or”) and 19,898 times (“to”). Thus, instead of finding the above phrase by intersecting the

filtered postings lists P
(I)
i , filtering against I over and over again, it might be more efficient to

intersect the unfiltered lists Pi and perform only a single application of “(. . . 	� I)” at the very

end of the computation.

The question of how to apply the invalidation list to a given query is closely tied to opti-

mization problems in traditional (i.e., relational) database systems, in which the optimal query

execution plan, among other factors, depends on the selectivity on each predicate in the query

(see Garćıa-Molina et al. (2002) for an introduction to relational database systems). Translated

back into the context of text retrieval, this means that, if a term tends to appear a lot in deleted

documents, the invalidation list I should be applied directly to the term’s postings list.

If queries are processed according to a Boolean AND of the query terms, then it may be

sufficient to apply I to only one of the query terms because the application to the other terms

is implicit from the semantics of the AND operator. For Boolean-OR queries, Büttcher and

Clarke (2005b) suggest, as a rule of thumb, that it is usually advisable to apply the restriction

as high in the query tree as possible. However, the optimal choice may very well be different

from application to application and even from query to query.

7.3 Document Deletions 245

collectGarbage (P, I) ≡
1 (startDeleted, endDeleted) ← nextInterval(I,−∞)
2 for i ← 1 to |P | do
3 if P [i] > endDeleted then
4 // find the next interval that may potentially contain P [i]
5 (startDeleted, endDeleted) ← nextInterval(I, P [i]− 1)
6 if P [i] < startDeleted then
7 output P [i]
8 else
9 // garbage-collect the current posting

nextInterval (I, current) ≡
10 intervalEnd ← next(I.end, current)
11 // cI.end now contains the cached position in the postings list I.end
12 // (see Figure 2.5 for details)
13 if intervalEnd =∞ then
14 intervalStart ←∞
15 else
16 intervalStart ← I.start[cI.end])
17 return (intervalStart, intervalEnd)

Figure 7.9 Garbage-collecting obsolete postings from a schema-independent postings list. The
function collectGarbage takes two arguments: a postings list P and an invalidation list I =
(I.start[], I.end[]) corresponding to deleted index ranges. It outputs the list of postings that are not
covered by I . The helper function nextInterval returns the first interval in I ending after the index
position current. It uses the function next shown in Figure 2.5 (page 42).

7.3.2 Garbage Collection

The invalidation list approach outlined above is viable only if the number of obsolete postings

(i.e., postings referring to deleted documents) is small compared to the total number of postings

in the index. Since inverted lists are usually organized in blocks of postings, with compression

applied to each block as a whole (see Sections 4.3 and 6.3.2), it is likely that many obsolete

postings have to be loaded into memory and decompressed during query processing, simply

because they are in the same postings block as the non-obsolete postings needed to process the

query. If the number of deleted documents keeps growing over time, the performance impact due

to obsolete postings will become larger and larger, up to a point where the resulting degradation

in query performance is no longer tolerable. Therefore, at some point all obsolete postings will

have to be removed from the index, leading to a fresh index that contains only postings for

documents that still exist. This process is referred to as garbage collection.

Garbage collection is usually performed in a list-by-list fashion. From an abstract point of

view, it is not much different from query processing: We may simply apply the invalidation list

I to each postings list P in the original index, which gives us a filtered list P ′ that is then

added to the new, garbage-free index. However, there is a slight difference. Because we know

Chapter 7 Dynamic Inverted Indices246

that the new index created by the garbage collection process will contain all postings from the

original index (except for the deleted ones, of course), there is no need for a lazy evaluation of

the “ 	�” operator. Instead, each postings list P in the old index may be filtered eagerly against

the invalidation list I, one posting at a time. Figure 7.9 shows a possible implementation of the

per-list garbage collection procedure, utilizing the galloping-search-based implementation of the

next index access method from Chapter 2 for fast intersection of the postings list P with the

invalidation list I.

How often should the garbage collector be invoked? That depends primarily on how much of a

query slowdown is tolerable by the application. For example, if a 10% drop in query performance

is acceptable, then there is no good reason for running the garbage collector on an index that

contains only 5% garbage postings. In general, it is advisable not to invoke the garbage collector

too often. Garbage collection is very costly, even more so than an ordinary remerge operation.

In addition to just reading the old index into memory and writing the new one back to disk,

the system has to decompress postings and compute list intersections, which can easily add

30–40% to the already rather high cost of a normal remerge update. Hence, in order to keep the

overall cost low, all garbage collection activity should be integrated into regular index merge

operations, so that merger and garbage collector can share the cost of transferring the index

from disk into memory and back to disk.

In practical implementations the garbage collection strategy is usually defined through a

threshold parameter ρ. Whenever a merge operation needs to be carried out and the relative

amount of garbage postings in the input indices exceeds the threshold ρ, that is, if

#garbage postings in the input indices

#postings in the input indices
> ρ,

then the garbage collector is included in the merge operation.

Apart from its impact on query performance, the threshold ρ also affects the performance of

the search engine’s index update operations. If ρ is too small, the garbage collector is invoked

too often and update performance suffers. Conversely, if ρ is too large, merge operations might

entail too many garbage postings, which may reduce the system’s update performance as well.

Figure 7.10 shows the outcome of an experiment in which we had the search engine index 50%

(= 12.6 million documents) of the GOV2 collection. After the index had been built, interleaved

insert/delete commands were sent to the engine, gradually increasing the size of the indexed

collection, at a ratio of 9 deletions for every 10 insertions. The system’s merge strategy was set

to Immediate Merge, with in-memory buffers large enough to accumulate postings for 250,000

documents. The total index update overhead was measured for different threshold values ρ.

The experimental results confirm our expectation that eagerly collecting all garbage postings

in every single remerge operation yields suboptimal update performance. In fact, setting ρ = 0 in

the experiment led to an index update overhead that was almost 20% higher than that achieved

by ρ = 0.1. The third value tested, ρ = 0.25, led to an update performance somewhere in

between, having the advantage of less frequent invocations of the garbage collector but shuffling

around an excessive amount of obsolete postings during the remerge operations.

7.3 Document Deletions 247

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15

C
um

ul
at

iv
e

up
da

te
 c

os
t (

ho
ur

s)

Documents inserted/deleted (× 106)

ρ = 0.00
ρ = 0.10
ρ = 0.25

Figure 7.10 Non-incremental index updates with a delete/insert ratio of 0.9 (i.e., 9 deletions for
every 10 insertions). Data set: GOV2. Memory limit: M = 250,000 documents. Remerge operations
that include the garbage collector are indicated by a “•” symbol.

How can we find the threshold value that minimizes the overall update cost? We know that

the cost of an ordinary merge operation without garbage collection is approximately linear in

the number of postings in the input index and the output index:

Cmerge(Iin, Iout) = c · (#postings(Iin) + #postings(Iout)), (7.21)

for some system-specific constant c. Including the garbage collector increases the merge cost by

30–40%, as mentioned above. However, the main complexity of the garbage collection procedure

stems from filtering the input lists against the invalidation list and thus is largely independent

of the size of the output index Iout. We may therefore assume that the cost of a merge operation

with integrated garbage collection is approximately

Cmerge+gc(Iin, Iout) = c · (1.6 ·#postings(Iin) + #postings(Iout)), (7.22)

for the same constant c as before.

Let us ignore the update cost caused by legitimate postings not corresponding to deleted

documents and focus solely on the effect of garbage postings in the index. For a regular merge

operation, the overhead caused by garbage postings is directly proportional to their quantity in

the index:

Omerge(Iin, Iout) = c · (#garbage(Iin) + #garbage(Iout)). (7.23)

Since, without garbage collection, we have #garbage(Iin) = #garbage(Iout), it follows:

Omerge(Iin, Iout) = 2c ·#garbage(Iin). (7.24)

Chapter 7 Dynamic Inverted Indices248

For a merge operation with garbage collection, the overhead is

Omerge+gc(Iin, Iout) = c · (#garbage(Iin) + 0.6 ·#postings(Iin)) (7.25)

because the system first needs to read the garbage postings (in addition to all legitimate post-

ings) and then filter all postings, legitimate and garbage, against the invalidation list. This

causes a 60% overhead.

Now suppose the garbage threshold ρ is chosen in such a way that the garbage collector is

integrated in every n-th merge operation. Further suppose that we start with a fresh index

containing P postings and no garbage, that the search engine accumulates M postings between

each two subsequent remerge operations, and that the rate of document deletions, relative to

the number of insertions, is g (e.g., g = 0 means no deletions at all; g = 1 means the system is

in steady state, where the total number of documents in the index remains constant over time).

Then the number of garbage postings participating in the k-th merge operation (k ≤ n) is

k · g ·M . Hence, the total garbage-related update overhead of a sequence of n merge operations,

the first n− 1 without garbage collection and the last one with garbage collection, is

Ototal(n) =

n−1∑
k=1

(2kgM) + ngM + 0.6 · (P + nM) (7.26)

= (n− 1)ngM + ngM + 0.6 · (P + nM) (7.27)

= n2gM + 0.6 · nM + 0.6 · P (7.28)

(omitting the constant c, which is the same for all terms in the equation). The average overhead

for each of the n merge operations is

Oavg(n) =
Ototal(n)

n
= ngM + 0.6 ·M + 0.6 · P

n
. (7.29)

Finding the optimal value n that minimizes Oavg(n) is equivalent to finding the one that makes

the derivative d
dn (Oavg(n)) become zero:

d

dn
(Oavg(n)) = 0 ⇔ gM − 0.6 · P

n2
= 0 ⇔ n =

√
0.6 · P
gM

. (7.30)

We can now compute the optimal threshold value ρopt according to the inequality

(nopt − 1) · gM

P + (nopt − 1) ·M < ρopt <
nopt · gM

P + nopt ·M
. (7.31)

For example, if nothing is ever deleted (g = 0), we obtain nopt = ∞ and ρopt = undefined,

that is, the garbage collector should never be invoked. If we have P = 50 ·M and g = 0.9,

as in the experiment shown in Figure 7.10, then the optimal values are nopt =
√

33.3 ≈ 6 and

7.3 Document Deletions 249

0.082 < ρopt < 0.096. The value ρ = 0.1, which performed best in the experiment, triggered the

garbage collector for every seventh remerge operation, which was close to optimal.

It is worth pointing out that ρopt, since nopt grows only as fast as
√

P , gets smaller as the

index gets larger and P becomes the dominant term in Equation 7.31. Therefore, a constant

garbage threshold ρ is advisable only if the size of the index is expected to stay approximately

constant over time.

A two-tiered garbage collection policy

So far, we have discussed garbage collection only in the context of Immediate Merge as the

main update policy. Of course, garbage collection can also be integrated into update schemes

that maintain more than one index partition, such as Logarithmic Merge, but doing so is

slightly more complicated.

If the index is maintained according to Immediate Merge, then we can be confident that

every now and then a remerge operation will take place that involves all postings in the index.

Before that operation starts, the search engine may compute the ratio of garbage postings

versus all postings in the index, based on its internal deletion log. If the ratio exceeds the

garbage collection threshold ρ, then the garbage collector is included in the merge operation.

Suppose the system is in steady state and the rate at which documents are deleted is approx-

imately the same as the rate at which new documents are inserted. Then we know that the

engine will accumulate about M garbage postings between two consecutive merge operations

(where M is the system’s memory capacity, measured in postings). If M is small compared to

the total size of the index N , say N > 10M , then we know that the index’s garbage ratio cannot

grow by more than 10% between two remerge events. This allows us to keep the total amount

of garbage well under control.

If an index-partitioning scheme is used, individual merge operations no longer necessarily

involve the whole index. Hence, it is possible that garbage postings keep piling up in one of

the older partitions that are rarely included in a merge. Let us assume that Logarithmic

Merge is used as the update strategy and that the engine has just finished a merge operation,

creating a new index partition Ig of generation g that contains 2g−1M postings. The engine will

index 2g−1M tokens before the postings in Ig participate in their next merge event. Because the

index is in steady state, 2g−1M postings will have become obsolete by that point. Under the

assumption that the obsolete postings are uniformly distributed across the whole index, 2g−2M

of them will be in Ig . Hence, the relative amount of garbage in Ig is 50%, and the relative

amount of garbage in the whole index is somewhere between 33% and 50%, depending on how

eagerly garbage postings are removed from the younger index partitions I1, . . . , Ig−1. For many

applications this is too much.

The above problem can be addressed by defining two threshold values ρ and ρ′ (0 ≤ ρ < ρ′).
Whenever the system merges a set S of index partitions, it may take one of three possible

actions:

Chapter 7 Dynamic Inverted Indices250

1. If the relative amount of garbage in S exceeds ρ, then the garbage collector is included

in the merge operation.

2. If the relative amount of garbage in the entire index exceeds ρ′, then instead of merging

only S, the system merges all partitions in the index, collects all the garbage it can find,

and produces a fresh index without any fragmentation or garbage.

3. If neither of the above conditions is met, then the engine performs an ordinary merge

operation on the index partitions in S, without removing any garbage.

This two-tiered garbage collection policy ensures that no excessive amounts of garbage pile up in

the older index partitions. On the downside, it eliminates some of the performance advantages

of index partitioning schemes such as Logarithmic Merge because full remerge operations

now have to be carried out more often than before.

As a final note, it needs to be pointed out that the näıve version of Logarithmic Merge

described in Section 7.2.2, even with a two-tiered garbage collection policy, will not work very

well in the presence of deletions. The whole concept of index generations breaks down if the

output partition of a merge operation can be smaller than the input partitions, which may hap-

pen when there are many garbage postings in the index. The algorithm in Figure 7.7 (page 240)

needs to be modified so that it considers the size of the individual partitions (as opposed to their

generation number) when deciding which partitions to include in the next merge operation.

7.4 Document Modifications

The third type of update operation is document modification. Most search engines do not employ

any special strategies to deal with this type of update but instead treat each modification as a

deletion followed by the re-insertion of the new version of the document. If each document is

small compared to the total size of the collection, this approach usually leads to acceptable per-

formance. However, it breaks down when applied to relatively small modifications to relatively

large documents.

As an illustrative example, consider the log files maintained by a UNIX-like operating system

(e.g., /var/log/messages in Linux). When searching over these log files, it is often useful to

perform search operations that can match multiple log entries at the same time — for instance,

to identify recurring patterns such as unauthorized intrusion attempts. Although the log file

as a whole can be very large, potentially tens or hundreds of megabytes, each update involves

only a single line, typically a few dozen or maybe a few hundred bytes. Re-indexing the entire

file after every update is clearly not feasible. Treating each line in the log file as a separate

document, on the other hand, is not a good solution, either; it prevents us from specifying

search constraints that involve multiple consecutive lines. It would be convenient to have an

index update mechanism that reflects the nature of the update operation applied to the file.

7.5 Discussion and Further Reading 251

Unfortunately, this is extremely difficult to accomplish using the established index mainte-

nance framework outlined in the previous sections of this chapter. For instance, suppose that

we are dealing with a positional index containing postings of the form

(d, ft,d, 〈p1, . . . , pft,d
〉) (7.32)

and that the search engine employs the Logarithmic Merge update strategy from

Section 7.2.2. If the search engine’s reaction to a file append operation is simply to index

the new tokens and write the corresponding postings to disk when it runs out of memory, then

we will end up with multiple postings for the same (term, document) pair, each in a different

index partition. This causes complications for query processing and index updates:

• If the search engine maintains n independent index partitions, then a call to the next

method (see page 33) requires n random access operations instead of just one because

each of the n partitions may contain a fragment of the result posting.

• The garbage collection mechanism from Section 7.3.2 can no longer be carried out on

a single index partition, as the postings that correspond to the deleted documents may

be scattered across the entire index. This implies that each invocation of the garbage

collector must trigger a remerge of the entire index.

Büttcher (2007, ch. 6) presents an update method based on a schema-independent index with

dynamic address space translation that can partially address the above problems. However,

it comes at the cost of an increased memory consumption and a reduced query processing

performance and is therefore not always desirable.

Because it is not clear how to deal with the problem of arbitrary document modifications (or

even simple append operations of the type described above) in a satisfactory way, it is often

simply ignored. Most desktop search systems, for example, index only the first few kilobytes of

each file/document and ignore the rest. This allows them to treat each file modification as a

combination of a deletion and an insertion without having to re-index many megabytes of text.

7.5 Discussion and Further Reading

The first comparative evaluation of in-place and remerge index maintenance found in the liter-

ature is given by Cutting and Pedersen (1990), who find that remerge update usually performs

better. Their implementation of in-place update, however, based on an on-disk B-tree with

in-memory caching for recently accessed tree nodes, is quite different from in-place update

schemes used today. Lester et al. (2004, 2006), more than a decade later and using more up-

to-date implementations of the various update schemes, conduct a performance comparison of

Inplace, Rebuild, and Remerge. Their experiments confirm Cutting and Pedersen’s finding

that in-place update is competitive only if memory resources are extremely scarce and on-disk

index updates have to be carried out often.

Chapter 7 Dynamic Inverted Indices252

Zobel et al. (1993) discuss a storage management scheme for variable-length records and

its application to in-place index maintenance. Shieh and Chung (2005) describe a variant

of Inplace in which the pre-allocation factor is term-dependent and is computed based on

historical data on inverted Inplace implementation with constant pre-allocation factor.

The hybrid index maintenance strategy from Section 7.2.1, dividing the index into an in-

place-updated section and a merge-maintained section, is due to Büttcher and Clarke (2006,

2008). It is similar in spirit to the pulsing method described by Cutting and Pedersen (1990).

Related dual-structure index organizations are explored by Shoens et al. (1994) and Tomasic

et al. (1994).

Logarithmic merging is studied by Büttcher and Clarke (2005a) and, in its more general

form, known as geometric partitioning, by Lester et al. (2005). Both studies find that the

method can reduce the search engine’s index maintenance overhead dramatically, at the cost

of a minor query slowdown, usually less than 20%. They conclude that logarithmic merging is

often an appropriate choice in the wide indexing-time-versus-query-time performance trade-off

spectrum. A hybridization of Logarithmic Merge is discussed by Büttcher et al. (2006).

Despite their great potential, index-partitioning schemes such as logarithmic merging can play

out their full advantage only if the index is a pure inverted index. In some applications, such

as Web search, the index will also contain some auxiliary information that is used for ranking

purposes: anchor text, PageRank scores, and so on (see Chapter 15). In that case, adding a

document D1 may affect the index data for a document D2 because D1 may contain a link

to D2. A document insertion then is no longer a local event affecting only a single document

but must be assumed to have global consequences, leaving Inplace/Rebuild/Remerge as

the only feasible solutions. Alternatively, one might decide to ignore the application-specific

components of the index for the sake of improved performance and update anchor information

and PageRank scores only once in a while. However, the effect that such an approach would

have on the search engine’s effectiveness and on the happiness of its users has not been studied.

Ways to deal with document deletions are discussed by Chiueh and Huang (1998) and by

Büttcher and Clarke (2005a). Chiueh and Huang’s approach is especially interesting; they pro-

pose to integrate the garbage collector not only into the search engine’s merge operations but

also into the query processing logic: Whenever a query term’s postings list is fetched from the

index, it is filtered against the current invalidation list and the garbage-free list is put back into

the index.

Lim et al. (2003) discuss a method that can be used to speed up index maintenance in the

presence of content-preserving changes to the document collection (i.e., document modifica-

tions). They show that their landmark-diff method can reduce the index maintenance overhead

by about 50% compared to a Rebuild baseline. However, given that a large portion of the total

index construction cost stems from reading and tokenizing the input data (see Section 4.5.3),

and given that the performance numbers in their paper do not include the time needed to pro-

duce the diff between the old and the new version of each document, it is unclear how the

method would perform in practice.

7.6 Exercises 253

In our discussion of index maintenance strategies, we have ignored the implications of blocking

index updates. For example, the Immediate Merge algorithm in Figure 7.2 performs a merge

operation whenever it runs out of memory. While this merge operation is going on, no postings

can be added to the index. In the case of GOV2, merging the in-memory index with the existing

on-disk index can take up to one hour — hardly fast enough to qualify as real-time. Strohman

(2005) describes a set of techniques (e.g., background disk I/O) that can be used to support

true real-time update and query operations.

As a final note, it is worth pointing out that the performance of all index maintenance mecha-

nisms described in this chapter is tightly coupled with the index compression techniques applied

to the index. Merge operations, for instance, can easily take twice as long when carried out on an

uncompressed or poorly compressed index, due to the increased disk I/O. Better compression

rates translate directly into better update performance. For garbage collection, on the other

hand, where a good portion of the complexity stems from decompressing and recompressing

postings lists, it is important to choose a compression method that allows very efficient encod-

ing and decoding; compression rates are not as important. In particular, nonparametric codes

such as vByte (Section 6.3.4) should usually be preferred over parametric ones such as LLRUN

(Section 6.3.2) because the former require only a single pass over the input data when encoding

a given list.

7.6 Exercises

Exercise 7.1 Suppose the search engine employs an in-place update strategy to maintain its

on-disk index. The in-memory buffers are large enough to hold 10 million postings and the

search engine is indexing a text collection with Zipf parameter α = 1.33 (GOV2). How many

on-disk inverted lists need to be created or updated when the search engine runs out of memory?

If each list update requires one disk seek, and each disk seek takes 10 ms, how long does it take

to perform the disk seeks necessary to update all those lists?

Exercise 7.2 Suppose the search engine employs the Inplace strategy with proportional pre-

allocation (pre-allocation factor: k = 2). Prove that, for any given list, the total number of bytes

transferred from/to disk is less than 5× s, where s is the list’s size in bytes. You may assume

that all postings have constant size (e.g., 4 bytes).

Exercise 7.3 Section 7.2.2 states the index construction complexity of the basic Logarith-

mic Merge policy as Θ(N · log(N/M)). Prove that the anticipatory version of Logarithmic

Merge, performing multiway merge operations to avoid collisions, is also Θ(N · log(N/M)).

Exercise 7.4 (project exercise) Implement the Immediate Merge index maintenance

strategy from Section 7.2.1. After finishing the implementation, your search engine should be

able to process search queries over a newly added document immediately after the document

has been added to the index, without having to wait for the next remerge operation.

Chapter 7 Dynamic Inverted Indices254

7.7 Bibliography

Büttcher, S. (2007). Multi-User File System Search. Ph.D. thesis, University of Waterloo,

Waterloo, Canada.

Büttcher, S., and Clarke, C. L. A. (2005a). Indexing Time vs. Query Time Trade-offs in Dynamic
Information Retrieval Systems. Technical Report CS-2005-31. University of Waterloo,

Waterloo, Canada.

Büttcher, S., and Clarke, C. L. A. (2005b). A security model for full-text file system search in
multi-user environments. In Proceedings of the 4th USENIX Conference on File and Storage

Technologies, pages 169–182. San Francisco, California.

Büttcher, S., and Clarke, C. L.A. (2006). A hybrid approach to index maintenance in dynamic
text retrieval systems. In Proceedings of the 28th European Conference on Information

Retrieval, pages 229–240. London, England.

Büttcher, S., and Clarke, C. L. A. (2008). Hybrid index maintenance for contiguous inverted
lists. Information Retrieval, 11(3):175–207.

Büttcher, S., Clarke, C. L. A., and Lushman, B. (2006). Hybrid index maintenance for growing

text collections. In Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 356–363. Seattle, Washington.

Chiueh, T., and Huang, L. (1998). Efficient Real-Time Index Updates in Text Retrieval Systems.

Technical report. SUNY at Stony Brook, Stony Brook, New York.

Cutting, D. R., and Pedersen, J. O. (1990). Optimization for dynamic inverted index mainte-

nance. In Proceedings of the 13th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 405–411. Brussels, Belgium.

Garćıa-Molina, H., Ullman, J., and Widom, J. (2002). Database Systems: The Complete Book.

Upper Saddle River, New Jersey: Prentice Hall.

Lester, N., Moffat, A., and Zobel, J. (2005). Fast on-line index construction by geometric

partitioning. In Proceedings of the 14th ACM Conference on Information and Knowledge

Management, pages 776–783. Bremen, Germany.

Lester, N., Zobel, J., and Williams, H. E. (2004). In-place versus re-build versus re-merge: Index

maintenance strategies for text retrieval systems. In Proceedings of the 27th Conference on

Australasian Computer Science, pages 15–22. Dunedin, New Zealand.

Lester, N., Zobel, J., and Williams, H. E. (2006). Efficient online index maintenance for

contiguous inverted lists. Information Processing & Management, 42(4):916–933.

Lim, L., Wang, M., Padmanabhan, S., Vitter, J. S., and Agarwal, R. (2003). Dynamic mainte-
nance of web indexes using landmarks. In Proceedings of the 12th International Conference

on World Wide Web, pages 102–111. Budapest, Hungary.

Shieh, W. Y., and Chung, C. P. (2005). A statistics-based approach to incrementally update
inverted files. Information Processing & Management, 41(2):275–288.

7.7 Bibliography 255

Shoens, K.A., Tomasic, A., and Garćıa-Molina, H. (1994). Synthetic workload performance

analysis of incremental updates. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 329–338. Dublin,

Ireland.

Strohman, T. (2005). Dynamic Collections in Indri. Technical Report IR-426. University of
Massachusetts Amherst, Amherst, Massachusetts.

Tomasic, A., Garćıa-Molina, H., and Shoens, K. (1994). Incremental updates of inverted lists for

text document retrieval. In Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, pages 289–300. Minneapolis, Minnesota.

Zobel, J., Moffat, A., and Sacks-Davis, R. (1993). Storage management for files of dynamic

records. In Proceedings of the 4th Australian Database Conference, pages 26–38. Brisbane,
Australia.

III Retrieval and Ranking

8 Probabilistic Retrieval

In this chapter and the next we examine a number of IR models that have had substantial

influence on both research and practice. In this chapter we present what is known as the

probabilistic model. In Chapter 9 we cover what is known as the language modeling approach and

related approaches. In the context of information retrieval, the word “model” has at least two

distinct and important meanings (Ponte and Croft, 1998). In one sense it means “an abstraction

of the retrieval task itself” (e.g., the vector space model). As we shall see, it may also be used

in the sense of “statistical model”, in reference to models of relevance or models of document

content.

Although many IR models might be described as probabilistic, the term is usually associated

with the methods arising from the work of Stephen Robertson, Karen Spärck Jones, and their

colleagues at the City University London, at the University of Cambridge, and at Microsoft

Research, Cambridge, beginning in the early 1970s. Over that period they developed the prob-

abilistic retrieval model through a series of innovations that have led to its current status as

one of the most successful IR models. The model has been adopted by other research groups

who have incorporated its retrieval formulae into their experimental IR systems and have often

proposed and evaluated extensions of their own.

The organization of this chapter closely follows the historical development of the model, high-

lighting each significant extension and innovation in turn. A substantial portion of the chapter

builds toward Equation 8.48, the BM25 formula, which currently represents one of the best

performing (and best-known) retrieval formulae within the field. Although the BM25 formula

may be used without understanding the details of its development, we cover this development

in considerable detail not only for its own sake but also as a worked example of the reasoning

processes underlying much of IR theory.

The chapter concludes with an overview of relevance feedback, a query expansion technique

closely associated with the probabilistic and vector space models. We also introduce an impor-

tant extension to the BM25 formula, known as BM25F, which applies differential weights to

terms appearing in different document elements, thus recognizing that the presence of a query

term in a document’s title may be a stronger indicator of relevance than that term’s presence

in the document’s body.

8.1 Modeling Relevance 259

8.1 Modeling Relevance

The probabilistic model takes as its starting point the Probability Ranking Principle introduced

in Section 1.2.3:

If an IR system’s response to each query is a ranking of the documents in the collection

in order of decreasing probability of relevance, the overall effectiveness of the system to

its user will be maximized.

As we indicated in Section 1.2.3, this principle oversimplifies the retrieval problem in a number

of important ways by ignoring issues such as novelty, specificity and exhaustivity. Nonetheless,

it directly supplies us with the outline of a retrieval algorithm: Given a query, determine the

probability of relevance for each document in the collection and sort the documents accordingly.

Implementing this algorithm immediately leads us to what Spärck Jones et al. (2000a) call the

“Basic Question”, which we state in a slightly modified form:

What is the probability that a user will judge this document relevant to this query?

We now turn to the problem of estimating this probability.

Following the approach taken by Lafferty and Zhai (2003) in their discussion of the prob-

abilistic model, we translate the Basic Question into statistical notation by introducing three

random variables: D for documents, Q for queries, and the binary random variable R for the

user’s judgment of relevance. For the random variable D you might view its sample space,

or set of outcomes, as a collection of documents indexed by a search engine. You might then

imagine a group of users typing queries into the same search engine, with the sample space for

Q being any query that the search engine allows a user to express. The engine might require

these queries to be term vectors, but for now we do not assume this limitation. Finally, the

binary random variable R takes on the value either 1 or 0, relevant or not relevant. Using this

notation, we translate the Basic Question into the problem of estimating the probability of a

positive relevance judgment, which we express as follows:

p(R = 1 |D = d, Q = q). (8.1)

This formula may be viewed as a probability mass function over documents and queries. As

a notational convenience consistent with the practice in the research literature, we often simply

write “D” to stand for “D = d” and “Q” to stand for “Q = q”; this gives

p(R = 1 |D, Q). (8.2)

Similarly, we write “r” to mean “R = 1” and “r̄” to mean “R = 0”. Thus, we have

p(r |D, Q) = 1− p(r̄ |D, Q). (8.3)

Chapter 8 Probabilistic Retrieval260

Bayes’ Theorem, a fundamental theorem in probability theory, states that

p(A |B) =
p(B |A) p(A)

p(B)
. (8.4)

Applying Bayes’ Theorem to Equation 8.3 gives

p(r |D, Q) =
p(D, Q |r) p(r)

p(D, Q)
, and (8.5)

p(r̄ |D, Q) =
p(D, Q | r̄) p(r̄)

p(D, Q)
. (8.6)

Now, rather than continue to work directly with probabilities, we switch to a log-odds, or

logit, formulation that will simplify the presentation and manipulation of equations. Given a

probability p, the logit of p is defined as

logit(p) = log

(
p

1− p

)
, (8.7)

where the base of the logarithm may be chosen arbitrarily. Continuing the practice we follow

throughout the book when choosing a specific base for an example or experiment, we choose a

base of 2.

Log-odds has a number of useful properties. As p varies from 0 to 1, logit(p) varies from −∞
to ∞. If the odds are even (i.e., p = 0.5), then logit(p) = 0. Given two probabilities p and q,

logit(p) > logit(q) if and only if p > q. Thus log-odds and probability are rank-equivalent — rank-

ing by one produces the same ordering as ranking by the other. Rank-equivalent transformations

such as this one (also called rank-preserving or order-preserving transformations) represent a

valuable tool for simplifying the development of IR models.

Taking the log-odds of Equation 8.2 and applying Bayes’ Theorem (Equations 8.5 and 8.6)

gives the following:

log
p(r |D, Q)

1− p(r |D, Q)
= log

p(r |D, Q)

p(r̄ |D, Q)
(8.8)

= log
p(D, Q |r) p(r)

p(D, Q | r̄) p(r̄)
. (8.9)

An immediate benefit of switching to log-odds is that the term p(D, Q) cancels out, and does

not need to be estimated.

We may expand the joint probabilities in Equation 8.8 into conditional probabilities using

the equality p(D, Q |R) = p(D |Q, R) · p(Q |R). Expanding the joint probabilities in this way

8.2 The Binary Independence Model 261

and applying Bayes’ Theorem a second time gives

log
p(D, Q |r) p(r)

p(D, Q | r̄) p(r̄)
= log

p(D |Q, r) p(Q |r) p(r)

p(D |Q, r̄) p(Q | r̄) p(r̄)
(8.10)

= log
p(D |Q, r) p(r |Q)

p(D |Q, r̄) p(r̄ |Q)
(8.11)

= log
p(D |Q, r)

p(D |Q, r̄)
+ log

p(r |Q)

p(r̄ |Q)
. (8.12)

The term “log(p(r |Q)/p(r̄ |Q))” is independent of D. You might consider it an indicator of

query difficulty. In any case it may be safely ignored for ranking purposes — another order-

preserving transform — leaving us with the ranking formula

log
p(D |Q, r)

p(D |Q, r̄)
. (8.13)

This formula sits at the heart of the probabilistic retrieval model, and we will return to it several

times as we examine various methods for estimating its value.

8.2 The Binary Independence Model

For our first attempt to estimate a value for Equation 8.13, we consider only the presence and

absence of terms in documents and queries. We re-define the random variable D, representing

documents, into a vector of binary random variables D = 〈D1, D2, ...〉 with one dimension for

each term in the vocabulary V and with Di = 1 indicating term presence and Di = 0 indicating

term absence. Similarly, we refine the random variable Q, representing queries, into a vector

of binary random variables Q = 〈Q1, Q2, ...〉 with Qi = 1 indicating term presence and Qi = 0

indicating term absence.

We now make two strong assumptions. The first is an independence assumption:

Assumption T: Given relevance, terms are statistically independent.

In other words, given a positive relevance judgment, the presence or absence of one term does

not depend on the presence or absence of any other terms. Similarly, given a negative relevance

judgment, the presence or absence of one term does not depend on the presence or absence of any

other terms. Naturally, if we do not condition on relevance, terms are not independent because

there are usually multiple terms for which the probability of presence depends on relevance.

This assumption does not accurately reflect reality. For example, the presence of the term

“shakespeare” in a document increases the probability that the terms “william”, “hamlet”,

“stratford” and so on will also occur in the document. Nonetheless, the assumption does greatly

simplify the problem of estimating a value for Equation 8.13. Independence assumptions such

Chapter 8 Probabilistic Retrieval262

as this one are common in information retrieval. Methods developed under these assumptions

often provide good performance despite their unrealistic nature.

As a result of this assumption we may rewrite the probabilities appearing in Equation 8.13 as

the product of probabilities for the individual random variables associated with the dimensions

of D:

p(D |Q, r) =

| V |∏
i=1

p(Di |Q, r) and (8.14)

p(D |Q, r̄) =

| V |∏
i=1

p(Di |Q, r̄). (8.15)

Equation 8.13 then becomes

log
p(D |Q, r)

p(D |Q, r̄)
=

| V |∑
i=1

log
p(Di |Q, r)

p(Di |Q, r̄)
. (8.16)

Our second strong assumption links the appearance of a term in the query to the probability

of its appearance in a relevant document, thus clarifying the role of the query as a bridge

between a user’s need and a document’s relevance.

Assumption Q: The presence of a term in a document depends on relevance only when

that term is present in the query.

To formalize this assumption we need to fix the query, giving Q = q = 〈q1, q2, ...〉, where each

qi is either 0 or 1. As a result of Assumption Q, if qi = 0 then

p(Di |Q, r) = p(Di |Q, r̄),

and therefore

log
p(Di |Q, r)

p(Di |Q, r̄)
= 0.

The effect of this assumption is to change the summation in Equation 8.16 from a summation

over all terms in the vocabulary to a summation over all terms in the query. Because conditioning

on the query is now redundant, we can drop it and our ranking formula then becomes∑
t∈q

log
p(Dt |r)
p(Dt | r̄)

, (8.17)

where Dt is the random variable corresponding to term t in the vector 〈d1, d2, ...〉.

8.2 The Binary Independence Model 263

Like Assumption T, Assumption Q does not accurately reflect reality. If we are interested in

the marriage of William Shakespeare and enter the query

〈 “william”, “shakespeare”, “marriage” 〉,

a relevant document is much more likely to contain the term “hathaway” than one that is

nonrelevant, even though this term does not appear in the query. Nonetheless, from a practical

standpoint a summation over query terms appears more tractable than a summation over all

terms in the vocabulary, and we greet this development with a certain amount of relief.

We now fix D = d = 〈d1, d2, ...〉, where each di is either 0 or 1, thus making explicit the values

of the random variables. Extending our earlier notation, we then write Dt = dt to represent the

value of the random variable from 〈d1, d2, ...〉 corresponding to the term t:∑
t∈q

log
p(Dt = dt |r)
p(Dt = dt | r̄)

(8.18)

We then subtract from Equation 8.18 its own value when no query terms appear in the document

and all Dt are 0: ∑
t∈q

log
p(Dt = dt |r)
p(Dt = dt | r̄)

−
∑
t∈q

log
p(Dt = 0 |r)
p(Dt = 0 | r̄) (8.19)

Because the value of Equation 8.18 when all query terms are absent is a constant, and because

the subtraction of a constant value has no impact on ranking, the subtraction of this value

represents another order-preserving transform. A little rearranging then gives:∑
t∈(q∩d)

log
p(Dt = 1 |r) p(Dt = 0 | r̄)
p(Dt = 1 | r̄) p(Dt = 0 |r) −

∑
t∈(q\d)

log
p(Dt = 0 |r) p(Dt = 0 | r̄)
p(Dt = 0 | r̄) p(Dt = 0 |r) , (8.20)

where the summation on the left is over all terms appearing in both the query and the document,

and the summation on the right is over terms appearing in the query but not in the document.

Because the term on the right is 0, the equation becomes∑
t∈(q∩d)

log
p(Dt = 1 |r) p(Dt = 0 | r̄)
p(Dt = 1 | r̄) p(Dt = 0 |r) . (8.21)

This refinement of Equation 8.13 under assumptions T and Q, and considering only the presence

and absence of terms, is known as the Binary Independence Model.

Chapter 8 Probabilistic Retrieval264

8.3 The Robertson/Spärck Jones Weighting Formula

For simplicity we now make a substantial shift in notation, clearing away the clutter of

Equation 8.21 and rewriting it as ∑
t∈(q∩d)

wt, (8.22)

where wt is a weight associated with each term. If we let pt = p(Dt = 1 |r) and p̄t = p(Dt = 1 | r̄),
then wt becomes

wt = log
pt (1− p̄t)

p̄t (1− pt)
(8.23)

because p(Dt = 0 |r) = 1− p(Dt = 1 |r) = 1− pt and p(Dt = 0 | r̄) = 1− p(Dt = 1 | r̄) = 1− p̄t.

Estimates for pt and p̄t may be determined if we have estimates for the expected number of

relevant documents in the collection and the expected number of relevant documents containing

t. These estimates might be obtained, for example, by sampling the collection and making

a relevance judgment for each document in the sample. Although such an effort would be

impossibly onerous to undertake for every query, it might not be unreasonable when we plan to

execute a query many times, perhaps because the collection changes on a regular basis.

For a given query let Nr be the expected number of relevant documents in the collection and

let Nt,r be the expected number of relevant documents containing the term t. We may then

estimate pt and p̄t as

pt =
Nt,r

Nr
and p̄t =

Nt −Nt,r

N −Nr
, (8.24)

where N is the number of documents in the collection and Nt is the number of documents

containing t. Substituting into Equation 8.23 gives the weight

wt = log
Nt,r (N −Nt −Nr + Nt,r)

(Nr −Nt,r) (Nt −Nt,r)
. (8.25)

When we have actual counts of relevant and nonrelevant documents available, this formula is

often written

wt = log
(nt,r + 0.5) (N −Nt − nr + nt,r + 0.5)

(nr − nt,r + 0.5) (Nt − nt,r + 0.5)
, (8.26)

where nr represents the count of relevant documents and nt,r represents the count of relevant

documents containing t. The value 0.5, which appears throughout the equation, smooths the

counts so that, for example, counts of 0 do not lead to an unreasonable (i.e., infinite) weight.

As mentioned in Chapter 1, this type of simple smoothing is common in information retrieval,

as well as in other statistical natural language processing applications.

You may find Equations 8.25 and 8.26 reminiscent of the inverse document frequency (IDF)

formula introduced in Chapter 2 (Equation 2.13) because the number of documents N appears in

the numerator and the number of documents containing the term Nt appears the denominator.

8.3 The Robertson/Spärck Jones Weighting Formula 265

To push this observation a little further, we rewrite Equation 8.23 into a form with two terms,

one related to relevance and one related to nonrelevance:

wt = log
pt

1− pt
+ log

1− p̄t

p̄t
(8.27)

= log
Nt,r

Nr −Nt,r
+ log

N −Nr −Nt + Nt,r

Nt −Nt,r
. (8.28)

The term on the left is the log-odds of a relevant document containing the term t. If we assume

that both Nr and Nt,r are small relative to both N and Nt, which may not be unreasonable for

relatively common terms over a large collection, we can approximate the term on the right by

setting Nr = Nt,r = 0, giving

wt = logit(pt) + log
N −Nt

Nt
. (8.29)

The resemblance to IDF becomes stronger. Croft and Harper (1979), who derived this formula,

note that if pt = 0.5 and Nt is small relative to N , then the standard IDF formula approximates

this formula. Robertson and Walker (1997) note that if we set pt = 1/(1 + ((N −Nt)/N)) then

the formula becomes

wt = log
N

Nt
, (8.30)

the standard IDF formula.

Equation 8.23 is called the Robertson/Spärck Jones weighting formula. Depending on avail-

able relevance information, we may use any of Equations 8.25, 8.26, or 8.30 to estimate its

value. Robertson and Walker (1997) suggest additional blended variants for use when minimal

relevance information is available. Throughout the remainder of the chapter, the appearance of

wt implies any or all of these variants.

When no relevance information is available, it is generally acceptable to assume that wt

represents the standard IDF formula. It is also acceptable to use Equation 8.26 by setting

nr = nt,r = 0, but care must be taken to make certain that the weight is not negative (see

Exercise 8.2). If the weight would be negative, a weight of 0 should be used instead.

When relevance information is available, it is normal practice to use Equation 8.26 even when

we do not have accurate estimates for Nt,r and Nr. For example, after executing a query a

search engine might ask the user to identify a small number of relevant documents. If the user

identifies three relevant documents, two of which contain the term t, we would set nr = 3 and

nt,r = 2. Once again, care should be taken to avoid negative weights.

Thus we come full circle back to IDF, a formulation that in Chapter 2 we justified only

through intuition and experimentation. Although we traced a rocky path littered with unrealistic

independence assumptions and crude approximations, we have now reached IDF through a

theoretical route that has its starting point at the Probability Ranking Principle. This experience

Chapter 8 Probabilistic Retrieval266

is typical of IR research. Successful retrieval approaches are often created and validated through

a combination of theory and experiment with one supporting the other.

Unfortunately, in terms of the development of an effective ranking formula we have made little

progress. Direct application of Equation 8.22 with no available relevance information amounts

to nothing more than the vector space model of Chapter 2, with the TF factor set to a constant

value of 1 and no document length normalization.

However, as a simple example we return to the document collection of Table 2.1 (page 50).

We apply Equation 8.22, using the IDF estimate for wt, to rank the collection with respect to

the query 〈“quarrel”,“sir”〉. The collection contains N = 5 documents. Of these documents two

contain the term “quarrel” and four contain the term “sir”, giving IDF values as follows:

wquarrel = log(5/2) ≈ 1.32, wsir = log(5/4) ≈ 0.32. (8.31)

Using these weights, we assign a score of 1.64 to both document 1 and document 2, a score of

0.32 to both document 3 and document 5, and a score of zero to document 4. Because these

scores reflect only term presence, documents 1 and 2 are tied, even though document 2 contains

more occurrences of “sir”.

8.4 Term Frequency

In Chapter 2 we list a number of simple document features used by basic ranking methods

to compare documents and determine an appropriate ranking. These features include term

frequency, term proximity, and document length. Thus far, our development of the probabilistic

model has considered only term presence, essentially a weakened form of term frequency. In order

to extend the model to fully accommodate term frequency, we must return to Equation 8.13

and reconsider our representation of documents by the random variable D.

At the start of Section 8.2 we refined our definition of the random variable D into a vector

of binary random variables D = 〈D1, D2, ...〉, where each random variable Di represents the

presence or absence of a specific term. Returning to this point, we can retrace our steps with

a revised definition for D as a vector of random variables D = 〈F1, F2, ...〉, where each Fi

represents the within-document term frequency for the corresponding term. As we did in that

section, we also define Ft as notation for the random variable from this vector corresponding to

the term t.

Following a path similar to that taken through Section 8.2, leaving Assumptions T and Q

unchanged, and making minor adjustments to the argument in order to accommodate our switch

from term presence to term frequency, brings us to the following analogue of Equation 8.21:∑
t∈q

log
p(Ft = ft |r) p(Fi = 0 | r̄)
p(Ft = ft | r̄) p(Fi = 0 |r) , (8.32)

8.4 Term Frequency 267

where ft represents the number of times t appears in the document (see Exercise 8.3). For this

equation to be usable we must estimate values for p(Ft = ft |r) and p(Ft = ft | r̄), the term

frequency probabilities given relevance and nonrelevance. In order to estimate these values, we

must in turn consider the relationship between term frequency and relevance.

When writing a document about a particular topic, an author will generally choose terms

related to that topic. As a result, when a term is associated with a particular topic, we might

expect that term to appear more frequently in a document about the topic than in a document

not about the topic. On the other hand that term will still occasionally appear in documents

not related to the topic.

Bookstein and Swanson (1974) attempt to capture this relationship between topics and terms

with a notion that Robertson et al. (1981) and Robertson and Walker (1994) call eliteness. A

document is said to be elite in term t when it is somehow “about” the topic associated with the

term. By turning this relationship around it may thus be possible for us to infer a probability of

eliteness from term frequency — the greater the term frequency, the more likely that the term

is elite in the document. Thus, the relationship between relevance and term frequency flows

through this notion of eliteness. Roughly, documents about a topic are more likely to be elite

in the terms related to that topic and therefore these terms are more likely to appear in these

documents.

For each term we define a binary random variable Et corresponding to each Ft and represent-

ing eliteness of the term t. Et = 1 indicates that a document is elite in t, and Et = 0 indicates

that the document is not elite in t. Much as we did for relevance, we define e as shorthand

for Et = 1 and ē as shorthand for Et = 0. We omit the subscript t in this shorthand notation

because the term being referenced is usually obvious. The relationship between relevance and

term frequency may then be formalized as follows:

p(Ft = ft |r) = p(Ft = ft |e) · p(e |r) + p(Ft = ft | ē) · p(ē |r) and

p(Ft = ft | r̄) = p(Ft = ft |e) · p(e | r̄) + p(Ft = ft | ē) · p(ē | r̄).
(8.33)

Substituting these expansions into the term of Equation 8.32 gives∑
t∈q

log
(p(Ft = ft |e)p(e |r) + p(Ft = ft | ē)p(ē |r))(p(Ft = 0 |e)p(e | r̄) + p(Ft = 0 | ē)p(ē | r̄))
(p(Ft = ft |e)p(e | r̄) + p(Ft = ft | ē)p(ē | r̄))(p(Ft = 0 |e)p(e |r) + p(Ft = 0 | ē)p(ē |r)) .

We now turn to the problem of estimating the individual probabilities in this equation.

8.4.1 Bookstein’s Two-Poisson Model

We can make our somewhat vague notion of eliteness more concrete by positing a specific

distribution for terms in documents as a mixture of two Poisson distributions, with one Poisson

distribution corresponding to documents that are elite in the term and the other corresponding

to documents that are not elite in the term. This two-Poisson distribution was suggested by

Chapter 8 Probabilistic Retrieval268

Bookstein (see Harter, 1975, page 199) and was subsequently developed and validated by Harter

(1975), Bookstein and Swanson (1974), Bookstein and Kraft (1977), and Robertson et al. (1981).

The Poisson distribution, invented by the French mathematician Siméon Denis Poisson in

1838, is often used to model the number of events or arrivals of some defined type that occur

within a given time period. For example, a Poisson distribution might be used to model the

number of car accidents per year at a particular intersection, the number of times a Web server

is accessed each minute, or the number of alpha particles emitted by a gram of uranium-238 in

one second. Events occurring in one time period are assumed to be stochastically independent of

events occurring in another nonoverlapping time period. That is to say, the number of events in

one time period has no influence on the number of events occurring in a separate time period.

In our case we use the Poisson distribution to model the number of occurrences of a given term

in a document, with the occurrence of a term representing an “event” and the document as a

whole taking on the role of a “time period”.

Given a random variable X over the nonnegative integers and a real valued parameter μ

representing the mean number events in a given period, the Poisson distribution is defined as

g(x, μ) =
e−μ μx

x!
. (8.34)

In order to use this distribution to model term distribution, we need to assume that all docu-

ments are of equal length. Because a collection may contain both books and e-mail messages that

differ in length by a factor of 1,000 or more, this assumption is not at all realistic. Nonetheless,

we accept the assumption for now and revisit it later in the chapter.

To construct the two-Poisson distribution, we assume different means for elite and nonelite

documents — μe and μē — with the notion of eliteness requiring that μe > μē. If we let

q = p(e |r) and q̄ = p(e | r̄) and substitute into Equation 8.33, we get the following equations,

which constitute our two models for relevant and nonrelevant documents:

p(Ft = ft |r) = g(ft, μe) · q + g(ft, μē) · (1− q), (8.35)

p(Ft = ft | r̄) = g(ft, μe) · q̄ + g(ft, μē) · (1− q̄). (8.36)

Substituting into Equation 8.32 gives∑
t∈q

log
(g(ft, μe) q + g(ft, μē) (1− q)) · (g(0, μe) q̄ + g(0, μē) (1− q̄))

(g(ft, μe) q̄ + g(ft, μē) (1− q̄)) · (g(0, μe) q + g(0, μē) (1− q))
. (8.37)

Although the term weight in this equation may appear complex at first glance, its structure

is actually fairly simple. Each factor appearing in the numerator and the denominator is a

mixture of the same two Poisson distributions representing eliteness and noneliteness. For a

given term there are four parameters to be determined: μe, μē, q, and q̄. It is conceivable that

these parameters could be estimated from term statistics by determining the set of parameters

8.4 Term Frequency 269

that provides the best fit between this term weight and the actual distribution of terms in the

collection.

Unfortunately, although various researchers have made attempts along these lines, little suc-

cess has been reported. In particular, eliteness is a hidden variable that we cannot directly

observe, which greatly complicates the estimation process. Nonetheless, we can make several

valuable observations from this term weight.

First, when a term is absent (ft = 0) the term weight assigns a value of 0, as we might expect.

Second, as ft increases, the assigned weight also increases. Again, this behavior is consistent

with our expectations.

Finally, we consider the behavior of the weight as the number of terms goes to infinity

(ft →∞). With some rearrangement, Equation 8.37 becomes

∑
t∈q

log

(
q + g(ft,μē)

g(ft,μe) (1− q)
)(

g(0,μe)
g(0,μē) q̄ + (1− q̄)

)
(
q̄ + g(ft,μē)

g(ft,μe) (1− q̄)
)(

g(0,μe)
g(0,μē) q + (1− q)

) . (8.38)

Now
g(ft, μē)

g(ft, μe)
=

e−μē μē
f
t

e−μe μe
ft

= eμe−μē ·
(

μē

μe

)ft

,

which goes to 0 as ft goes to infinity because μē < μe, and

g(0, μe)

g(0, μē)
= eμē−μe .

Thus, as ft →∞, the term weight in Equation 8.38 goes to

log
q (q̄ eμē−μe + (1− q̄))

q̄ (q eμē−μe + (1− q))
, (8.39)

a constant for any given term. Thus, as the number of terms increases, the weight saturates,

reaching an asymptotic maximum given by Equation 8.39. In other words, there is a limit to

how much the repetition of a term can contribute to a document’s score. Moreover, if we assume

that eμē−μe is small, contributing little to the weight, we may approximate it with 0. The weight

then becomes

log
q (1 − q̄)

q̄ (1− q)
. (8.40)

The resemblance between this weight and the Robertson/Spärck Jones weight given in

Equation 8.23 is more than coincidental. This equation is the analogue of Equation 8.23 when

term presence is replaced by the notion of eliteness. We might even view Equation 8.23 as an

approximation to Equation 8.40.

Chapter 8 Probabilistic Retrieval270

8.4.2 Approximating the Two-Poisson Model

Based on the observations we listed regarding Equation 8.37, Robertson and Walker (1994)

suggest a simple approximation to the two-Poisson term weight, which we write as∑
t∈q

ft,d (k1 + 1)

k1 + ft,d
· wt , (8.41)

where ft,d represents the frequency of term t in document d, wt represents any variant of the

Robertson/Spärck Jones weight, and k1 > 0.

Consistent with our observations the term weight is 0 when ft,d = 0 and grows with increasing

ft,d. When ft,d = 1, the weight is equal to wt. As ft,d →∞ the weight goes to (k1 +1)wt. Thus,

the weight saturates to a constant factor of the Robertson/Spärck Jones weight, consistent with

Equation 8.38.

Typically, 1 ≤ k1 < 2, with the same value used for all terms in all queries. We use k1 = 1.2

as our default value for examples and experiments because this value is often accepted as the

default value in the research literature. In practice, since k1 is the same for all terms in all

queries, we may treat it as a system parameter and tune its value to optimize effectiveness over

the collection and application environment. Chapter 11 covers methods for parameter tuning in

this and other retrieval formulae.

Returning again to the example document collection in Table 2.1 (page 50), we apply

Equation 8.41 to rank the collection with respect to the query 〈“quarrel”,“sir”〉. We compute a

score for document 1 of

fquarrel,1 (k1 + 1)

k1 + fquarrel,1
· wquarrel +

fsir,1 (k1 + 1)

k1 + fsir,1
· wsir ≈

k1 + 1

k1 + 1
· 1.32 +

k1 + 1

k1 + 1
· 0.32 ≈ 1.64

and a score for document 2 of

fquarrel,2 (k1 + 1)

k1 + fquarrel,2
· wquarrel +

fsir,2 (k1 + 1)

k1 + fsir,2
· wsir ≈

k1 + 1

k1 + 1
· 1.32 +

2(k1 + 1)

k1 + 2
· 0.32 ≈ 1.76.

The additional occurrence of “sir” in document 2 leads to a higher score. Note, however, that

even a document containing an infinite number of occurrences of “sir” but no occurrences

of “quarrel” could receive a score lower than a document containing a single occurrence of

“quarrel”. Documents 3 and 5 both receive a score of 0.32, even though the difference in length

might suggest that one should be ranked above the other. Document 4 receives a score of zero

because it contains none of the query terms.

Note that the term weight in Equation 8.41 belongs to the TF-IDF family. However, the satu-

ration property represents a critical difference between this weight and other weights introduced

in the research literature, such as Equation 2.14. As the example demonstrates, the saturation

property places a limit on the impact that a term can have on a document’s score, regardless

of the number of times it occurs.

8.5 Document Length: BM25 271

8.4.3 Query Term Frequency

Equation 8.41 may be extended to encompass query term frequency qt — the number of times

term t appears in the query — by drawing a parallel with document term frequency. Repetition

of query terms in short queries may be relatively unusual. However, as we mention in Chapter 2

an entire document might be used as a query in some circumstances, perhaps to implement a

“More Like This” feature. Similarly, a user might easily generate a longer query by copying a

passage from a document and pasting it into a search engine.

If we view a document as a potential query, a symmetry between queries and documents

becomes apparent, suggesting a query term frequency factor of the form

qt (k3 + 1)

k3 + qt
, (8.42)

where k3 > 0 is a system parameter similar to k1. (Use of k3 is standard for this parameter

because the symbol k2 was used for other purposes in some of the research literature related to

the probabilistic model.) Incorporating this factor into Equation 8.41 gives∑
t∈q

qt (k3 + 1)

k3 + qt
· ft,d (k1 + 1)

k1 + ft,d
· wt . (8.43)

However, notwithstanding those occasions when the query is very long, the repetition of a

term in a query can be a much stronger indicator of the term’s significance than repetition in a

document. As a result typical values for k3 are often much larger than the corresponding values

for k1. Indeed, it is not uncommon to set k3 = ∞, thus reducing Equation 8.42 to qt, its limit

as k3 →∞, and resulting in the ranking formula∑
qt ·

ft,d (k1 + 1)

k1 + ft,d
· wt . (8.44)

If we wish, we may again view the summation as being over the entire vocabulary because

terms not appearing in both the query and the document automatically receive a term weight

of 0. As a result, and in keeping with a common practice in the research literature, we omit the

range of the summation in the remainder of the chapter.

8.5 Document Length: BM25

Implicit in the two-Poisson model is the unrealistic assumption that all documents are the same

length. One simple technique to account for varying document length is to normalize the actual

term frequency ft,d, scaling it according to the document length:

f ′t,d = ft,d · (lavg/ld) , (8.45)

Chapter 8 Probabilistic Retrieval272

where ld is the length of document d and lavg is the average document length across the entire col-

lection. This normalized term frequency may then be used in place of the actual term frequency

in Equation 8.44: ∑
qt ·

f ′t,d (k1 + 1)

k1 + f ′t,d
· wt . (8.46)

Expanding and rearranging this equation gives∑
qt ·

ft,d (lavg/ld) (k1 + 1)

k1 + ft,d (lavg/ld)
· wt =

∑
qt ·

ft,d (k1 + 1)

k1 (ld/lavg) + ft,d
· wt . (8.47)

Although this adjustment is consistent with the two-Poisson model, the formula still may not

be consistent with reality. Consider two documents, one twice as long as the other, with the

longer containing twice as many occurrences of each query term as the shorter. Equation 8.47

assigns both documents the same score. Although these equal scores would be reasonable if the

longer document consisted of the shorter document concatenated to itself, in reality we might

expect the longer document to contain more information and perhaps be worthy of a higher

score.

Robertson et al. (1994) suggest a blending of Equations 8.47 and 8.44 with a parameter b

controlling the level of normalization for document length∑
qt ·

ft,d (k1 + 1)

k1 ((1− b) + b (ld/lavg)) + ft,d
· wt , (8.48)

where 0 ≤ b ≤ 1. When b = 0 the equation is equivalent to Equation 8.44; when b = 1 the

equation is equivalent to Equation 8.47. Like the parameter k1 the parameter b is the same

for all queries, and may be tuned to the collection and the environment of the IR system. In

examples and experiments we use a default value of b = 0.75.

We have now reached a major milestone in the development of the probabilistic model. When

only the basic features listed in Chapter 2 are available, Equation 8.48 represents one of the

best-known methods for ranked retrieval. Although it debuted at TREC-3 in 1993, contem-

poraneous with the use of the vector space model of Chapter 2, it remains competitive with

the more modern language modeling techniques presented in the next chapter. It often forms

a baseline that newer methods may be judged against. Substantial performance improvements

beyond what it can achieve generally require extensions that depend upon additional infor-

mation, such as automatic query expansion, document structure, link structure, and machine

learning techniques trained over large volumes of relevance information. We present one form

of automatic query expansion, known as pseudo-relevance feedback, in the next section of this

chapter. Considerations of document structure in the context of the probabilistic model are

covered in Section 8.7. We will also return to the probabilistic model when we discuss machine

learning and link structure in later chapters.

Equation 8.48 is widely known as “Okapi BM25”, or just “BM25”. Okapi is the name of

the retrieval system, created by Robertson and co-workers at City University London, in which

8.6 Relevance Feedback 273

the equation was first implemented. The “BM” stands for “Best Match”. BM25 is just one of a

family of BM formulae implemented by versions of the Okapi system. Equation 8.22 is essentially

BM1, Equation 8.47 is essentially BM11, and Equation 8.44 is essentially BM15. However,

none of these methods matches the fame of BM25. In part this fame is due to it relative

simplicity and effectiveness. Participants in TREC evaluations since TREC-5 have achieved

reliable and respectable performance in many TREC tasks by creating and building upon their

own implementations of BM25.

Consider the application of BM25 to rank the collection in Table 2.1 (page 50) with respect

to the query 〈“quarrel”,“sir”〉. The average document length is lavg = (4 + 4 + 16 + 2 + 2)/5 =

28/5 = 5.6. Document 1 receives a score of

fquarrel,1 (k1 + 1)

k1 ((1 − b) + b (ld/lavg)) + fquarrel,1
· wquarrel +

fsir,1 (k1 + 1)

k1 ((1− b) + b (ld/lavg)) + fsir,1
· wsir

≈ k1 + 1

k1 ((1− b) + b (5/5.6)) + 1
· 1.32 +

k1 + 1

k1 ((1− b) + b (5/5.6)) + 1
· 0.32 ≈ 1.72

Similarly, document 2 receives a score of 1.98, document 3 receives a score of 0.18, document

4 receives a score of 0, and document 5 receives a score of 0.44. Although both document 3

and document 5 contain a single occurrence of the term “sir” and no occurrences of the term

“quarrel”, document 5 receives a higher score due to the difference in length between these

documents.

8.6 Relevance Feedback

As Section 8.3 suggests, the availability of relevance information may improve our ability to

estimate a value for wt and consequently may improve retrieval performance. In one scenario

for obtaining this information, the IR system conducts an initial search, presents the results to

the user, and allows her to identify a number of relevant documents from these results. Even if

these relevance judgments are few in number, they may be used to set values for nr and nt,r in

Equation 8.26. A final search is then conducted using these refined weights.

Perhaps more significantly, the system may also use these relevance judgments to obtain

additional information on the nature of relevant documents. For example, we might select

appropriate terms from the identified documents and add them to the query. This expanded

query would then be used for the second and final search. Query expansion techniques such as

this one implicitly recognize the limitations of Assumption Q: that the presence of a term in a

document can depend on relevance even when that term does not appear in the query.

Leaving aside for the moment the question of term selection and assuming only that we have

some method for scoring terms, the basic relevance feedback process proceeds as follows:

Chapter 8 Probabilistic Retrieval274

1. Execute the user’s initial query.

2. Present the retrieval results to the user, allowing her to browse the results and indicate

relevant documents.

3. Score the terms appearing in the relevant documents and select the top m expansion

terms, ignoring terms in the initial query.

4. Add the new terms to the initial query, adjust weights wt, and execute the expanded

query.

5. Present the final retrieval results to the user.

The adjusted weight for term t in the fourth step is determined from Equation 8.26 with nr

equal to the number of relevant documents identified by the user and nt,r equal to the number of

these documents containing t. In addition it is not unusual to accord special status to the terms

appearing in the initial query, recognizing that these may best reflect the user’s information

need. This additional adjustment may be effected by multiplying the weight of the expansion

terms by a constant factor γ, where γ = 1/3 is typical.

Relevance feedback has been the subject of a substantial body of research, and the basic

feedback process may be extended and modified in a number of ways. For example the user

might be allowed to identify nonrelevant documents, to interactively adjust the list of selected

terms, or to repeat the feedback process multiple times, adding and removing terms as she sees

fit. In addition, various methods have been proposed for scoring terms. We present one such

method next.

8.6.1 Term Selection

Robertson (1990) proposes a simple term selection method based on the expected change in

the scores of relevant and nonrelevant documents if a term is added to a query. Suppose we are

considering adding the term t to the query. In Section 8.3 we defined pt as the probability that a

relevant document contains t and p̄t as the probability that a nonrelevant document contains t.

Consider Equation 8.22. If we add t to the query, the score of a relevant document will increase

by an average of ptwt. The score of a nonrelevant document will increase by an average of p̄twt.

The greater the difference between these expected increases — between ptwt and p̄twt — the

better the term helps to differentiate between relevant and nonrelevant documents. For relevance

feedback we therefore score terms using the term selection value

wt · (pt − p̄t). (8.49)

In the context of relevance feedback, if the user identifies nr relevant documents, of which nt,r

contain t, we may estimate pt as (nt,r/nr). A value for p̄t is harder to estimate. However, we

might assume that the value is small relative to pt and treat it as 0. Thus, our term selection

8.6 Relevance Feedback 275

value becomes
nt,r

nr
· wt . (8.50)

We can also drop nr from the denominator because it is the same for all terms and multiplication

by a constant factor is order-preserving, giving

nt,r · wt . (8.51)

For relevance feedback we rank each query term according to Equation 8.51, select the top m,

and add them to the initial query, reweighting as necessary.

Unfortunately, this method provides us with no guidance regarding the number of terms m to

select. A value of m = 10 is known to provide reasonable improvement over TREC collections,

and we will take this value as our default in experiments. Robertson and Walker (1999) present a

method for estimating a cutoff threshold for term selection based on the probability of accepting

a noise term.

8.6.2 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF), also known as blind feedback, is a variant of relevance feedback

in which the interaction step is eliminated. Instead of requiring the user to identify relevant

documents, the retrieval system simply assumes that all of the top-k documents retrieved by the

initial query are relevant. A value of k = 20 is known to provide reasonable improvement over

TREC collections, and we will take this value as our default in experiments. The remainder of

the process proceeds as before: Terms are selected from these documents, added to the original

query, and the expanded query is used to generate the final retrieval results.

Because it depends on positive feedback, PRF has the potential to seriously harm perfor-

mance, particularly when few or none of the top-k documents is actually relevant. Nonetheless,

PRF often produces significant effectiveness gains when averaged over many queries, such as by

mean average precision and similar effectiveness measures. Moreover, it is an entirely automatic

process placing no burden of interaction on the user, and thus can be performed invisibly for

every query.

As an example we return to TREC topic 426 on law enforcement dogs (Figure 1.8 on page 25).

The results of pseudo-relevance feedback over the N = 528, 155 documents in the TREC45

collection are shown in Table 8.1. We assume the top k = nr = 20 documents are relevant.

The first three rows of the table give statistics for the three original query terms. Because

these terms appear in most or all of the top-20 documents, their adjusted term weights nearly

double after feedback. The bottom rows of the table list the top-10 expansion terms, ordered

by the term selection value of Equation 8.51 (nt,r · wt). The final column of the table lists

the adjusted values of wt used in the execution of the expanded query, with γ = 1/3. The

original query gives a precision@10 of 0.300 and a MAP of 0.043. The expanded query gives a

precision@10 of 0.500 and a MAP of 0.089, a substantial improvement.

Chapter 8 Probabilistic Retrieval276

Table 8.1 Pseudo-relevance feedback applied to TREC topic 426, with a weight adjustment
factor of γ = 1/3.

Query Term (t) Nt nt,r Original wt nt,r · wt Adjusted wt

dogs 2163 20 7.93178 13.29648

law 49792 19 3.40698 6.96509

enforcement 10635 19 5.63407 9.30767

dog 3126 12 7.40050 88.80600 2.64856 = 7.95363γ

sniffing 194 6 11.41069 68.46414 3.42793 = 10.29407γ

canine 150 5 11.78178 58.90890 3.44006 = 10.33051γ

pooper 20 4 14.68867 58.75468 4.35952 = 13.09164γ

officers 15006 11 5.13735 56.51085 1.78900 = 5.37239γ

metro 39887 15 3.72697 55.90455 1.70128 = 5.10896γ

canines 34 4 13.92314 55.69256 4.06435 = 12.20526γ

police 30589 13 4.10988 53.42844 1.62250 = 4.87237γ

animal 5304 8 6.63774 53.10192 2.02091 = 6.06879γ

narcotics 3989 7 7.04879 49.34153 2.06199 = 6.19217γ

The inclusion of the term “pooper” as an expansion term hints at the possible problems that

pseudo-relevance feedback can cause. The query 〈 “law”, “enforcement”, “dogs”〉 might relate

to the enforcement of laws regarding dogs as easily as to the use of dogs in law enforcement.

Although the latter interpretation is clearly indicated by the topic’s description and narrative,

the IR system is not privy to this information. Under the first interpretation “pooper” would

be an excellent expansion term because laws often require owners to clean up after their dogs,

possibly using “pooper scoopers”.

Because pseudo-relevance feedback can produce such substantial improvements, you may

wonder why we stop at a single iteration of the feedback process. You might hope that additional

iterations would produce additional improvements. However, if we execute additional iterations

for our example topic, we get following sequence of expansions shown below.

Iteration Expansion Terms

1 dog, sniffing, canine, pooper, officers, metro, canines, police, animal, narcotics

2 dog, canine, pooper, sniffing, leash, metro, canines, animal, officers, narcotics

3 dog, canine, pooper, sniffing, leash, metro, canines, animal, owners, pets

4 dog, leash, animal, metro, canine, pooper, sniffing, canines, owners, pets

5 dog, leash, metro, canine, pooper, sniffing, canines, owners, animal, pets

6 dog, leash, metro, pooper, canines, owners, pets, animals, canine, scooper

7 dog, leash, metro, pooper, canines, owners, pets, animals, canine, scooper

8.7 Field Weights: BM25F 277

After seven iterations the query has drifted solidly toward one interpretation. Additional

iterations do not produce further changes.

The query drift seen in this example illustrates the major risk of indiscriminate pseudo-

relevance feedback. Even a single iteration can sometimes seriously harm effectiveness. Perhaps

for this reason most commercial IR systems do not incorporate pseudo-relevance feedback. The

potential benefits of an average-case improvement may not outweigh the negative user experience

engendered by a failure. Moreover, pseudo-relevance feedback can be costly from an efficiency

standpoint because it requires the analysis of multiple documents and the execution of a second

query. Again,the potential benefits may not outweigh the increased response time.

8.7 Field Weights: BM25F

In Chapter 2, along with a list of basic features for ranking such as term frequency and term

proximity, we listed a number of additional features usable for ranking, including document

structure. For example, terms appearing in certain fields, such as a document’s title, may be

given more weight than terms appearing in the document’s body. In this section we present

an important extension to BM25, known as BM25F that takes this document structure into

account.

Exploiting document structure is particularly important in the context of Web search.

Figure 8.1 illustrates some of the rich structure available to a Web search engine. This figure

is a greatly simplified version of the Web page en.wikipedia.org/wiki/Shakespeare as it

appeared in the English-language Wikipedia in mid-2007.

The HTML is split into two parts: (1) the header, delimited by <head> ...</head> tags, which

provide a title and other metadata describing the document; and (2) the body, which provides the

content of the article for display. The metadata includes important dates related to Shakespeare

and annotations related to the organization of Wikipedia. For example, the keyword Persondata

indicates that the page contains a standardized table of biographical information. The body of

the document includes a section title, which is indicated by <h1> tags, as well as text to be

displayed in a bold font, which is indicated by tags.

The body also contains hypertext links to the Wikipedia pages for “poet” and “playwright”.

The anchor text between the start tag <a> and the end tag of these links can be interpreted

as indicating something about the content of the referenced pages, in this case simply restating

their titles. Anchor text is an important feature in Web search, which we return to again in

Chapter 15.

Although HTML is particularly rich in structure, many documents contain similar fields. For

example, the “Subject”, “To”, and “From” fields in e-mail messages may be exploited for similar

purposes. The goal of BM25F is to appropriately reflect the emphasis implied by this structure.

Chapter 8 Probabilistic Retrieval278

<html>

<head>

<title>William Shakespeare - Wikipedia, the free encyclopedia</title>

<meta

name="keywords"

content="William Shakespeare,Persondata,Sister projects, Earlybard,

1582,1583,1585,1616"/>

</head>

<body>

<h1>William Shakespeare</h1>

William Shakespeare (baptised 26 April 1564 - died 23 April 1616)

was an English poet and

 playwright.

He is widely regarded as the greatest writer of the English language

and the world�s pre-eminent dramatist. He wrote approximately 38 plays

and 154 sonnets, as well as a variety of other poems...

</body>

</html>

Figure 8.1 A simple HTML page showing typical structure on the Web.

The intuition underlying BM25F is similar to the intuition underlying the document length

normalization of Equation 8.45. That equation specifies an adjusted term frequency, scaled to

account for document length, that replaces the actual term frequency in the retrieval formula.

We may extend this idea to field weights by computing an adjusted term frequency that depends

on the field in which a term occurs. For example, we might consider the occurrence of a query

term in the title of a document to be equivalent to ten occurrences in the document and scale

the term frequency accordingly.

To formalize this notion we define ft,d,s to be the number of occurrences of term t in field s of

document d. We then apply field-specific document length normalization similar to the BM25

normalization but applied at the field level, reflecting the differences in average length between

different field types. For example, the title of a document is usually very short relative to its

body.

f ′t,d,s =
ft,d,s

(1 − bs) + bs (ld,s/ls)
, (8.52)

where ld,s is the length of field s in document d, ls is the average length of field s across all

documents, and bs is a field-specific parameter similar to the b parameter in BM25. Like the b

parameter the bs parameters can range from 0 to 1, producing no normalization at one extreme

and complete normalization at the other.

8.8 Experimental Comparison 279

Table 8.2 Effectiveness measures for selected retrieval methods discussed in this chapter.

TREC45 GOV2

1998 1999 2005 2006

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Equation 8.22 0.256 0.141 0.224 0.148 0.069 0.050 0.106 0.083

Equation 8.44 0.402 0.177 0.406 0.207 0.418 0.171 0.538 0.207

BM25 0.424 0.178 0.440 0.205 0.471 0.243 0.534 0.277

BM25 + PRF 0.452 0.239 0.454 0.249 0.567 0.277 0.588 0.314

BM25F 0.482 0.242 0.544 0.277

These field-specific adjusted term frequencies, or pseudo-frequencies, may then be combined

into an adjusted term frequency for the document as a whole.

f ′t,d =
∑

s

vs · f ′t,d,s (8.53)

where vs is the weight for field s. For example we might define vtitle = 10 and vbody = 1.

We may then replace the actual term frequency with this adjusted term frequency in

Equation 8.44 to give the BM25F formula:

∑
qt ·

f ′t,d (k1 + 1)

k1 + f ′t,d
· wt . (8.54)

Because length normalization is applied as part of computing the adjusted term frequency, no

explicit normalization is required in this formula. We continue to compute wt, the Robert-

son/Spärck Jones weight, at the document level. The use of BM25F requires that we tune two

parameters for each field, bs and vs, as well as the overall parameter k1.

Implementing BM25F requires documents to contain appropriate tagging and requires the

computation of term frequency with respect to each field. The query processing techniques for

lightweight structure presented in Chapter 5 may help with the implementation.

8.8 Experimental Comparison

Table 8.2 charts the progress of the probabilistic model through each major innovation, using

the test collections described in Section 1.4. The results in this table may be compared directly

with those in Table 2.5. The BM25 row appears in both.

For BM25 the experiments use parameter values of k1 = 1.2 and b = 0.75. Equation 8.30 is

used to calculate wt. For pseudo-relevance feedback (PRF) we retrieve the top k = 20 documents

and add the top m = 10 terms to the query, reweighting the original and new query terms as

Chapter 8 Probabilistic Retrieval280

described in Section 8.6 with γ = 1/3. For BM25F we consider only two fields — title and

body — where anything not in the title is considered to be in the body. The experiments for

BM25F use parameter values k1 = 1.2, vtitle = 10, vbody = 1, and btitle = bbody = 0.75.

As we see in the table, a substantial performance improvement comes from the introduction

of the term frequency component. The impact of pseudo-relevance feedback varies considerably

from collection to collection, with precision@10 improving 3–20% and MAP improving 13–34%.

Field weights (BM25F) have little impact on these GOV2 topics. In Chapter 15, where we apply

these same retrieval methods to a Web-oriented retrieval task, the impact of field weights will

be more apparent (see Table 15.6 on page 539).

8.9 Further Reading

The earliest probabilistic model for IR is perhaps the one described by Maron and Kuhns (1960).

Fuhr (1992) provides a comparison of the Maron/Kuhns model with the Robertson/Spärck Jones

probabilistic model. The inference network model builds on the probabilistic model, providing a

rich set of probabilistic operators (Turtle and Croft, 1991; Greiff et al., 1999). Lafferty and Zhai

(2003) explore at a fundamental level the relationship between the probabilistic model and the

language modeling approach we introduce in the next chapter. Our exposition of both methods

is based on their analysis. Roelleke and Wang (2006) extend this analysis, carefully detailing

the correspondence between the elements of each model.

The development of the Robertson/Spärck Jones probabilistic model can be traced through

a series of papers, most notably Spärck Jones (1972), Robertson and Spärck Jones (1976),

Robertson (1977), Croft and Harper (1979), Robertson and Walker (1994), Robertson et al.

(1994), and Robertson and Walker (1997). Spärck Jones et al. (2000a,b) provide a detailed

summary of developments up to 1999 including a substantial discussion of enhancements and

extensions.

Robertson (2004) provides addition insight into the theoretical principles underlying inverse

document frequency and its relationship to the probabilistic model. This relationship is further

explored by de Vries and Roelleke (2005). They view the provision of relevance information as a

loss of entropy and provide a curious explanation for the 0.5 smoothing applied in Equation 8.26

through the addition of “virtual documents”. Church and Gale (1995) model IDF as a mixture

of Poisson distributions and highlighting important differences between document frequency

and within-collection term frequency. Roelleke and Wang (2008) provide a careful review of the

theoretical underpinnings of TF-IDF, and its interpretation under various retrieval models.

One of the first algorithms for query expansion through relevance feedback was invented by

Joseph J. Rocchio in the context of the SMART system (see Rocchio (1971) or Baeza-Yates

and Ribeiro-Neto (1999) for details). Ruthven and Lalmas (2003) provide a thorough survey of

both interactive relevance feedback and pseudo-relevance feedback. Wang et al. (2008) discuss

relevance feedback when only negative (nonrelevant) examples are available.

8.10 Exercises 281

Experiments by many groups at TREC between 1992 and 1998 established pseudo-relevance

feedback as a technique for reliably improving mean average precision. However, the benefit

of pseudo-relevance feedback in production environments has never been clearly demonstrated.

Lynam et al. (2004) provide an experimental comparison of the pseudo-relevance feedback tech-

niques used by a number of leading research groups for TREC-style experiments circa 2003.

Building on a language modeling approach, Lee et al. (2008) apply clustering methods to select

better documents for feedback. Also building on a language modeling approach, Cao et al.

(2008) apply classification methods to select better expansion terms from feedback documents.

Collins-Thompson (2009) presents a framework for minimizing the risk associated with query

expansion techniques such as pseudo-relevance feedback.

The theory underlying BM25F was first presented by Robertson et al. (2004), well after

BM25 had been established as a top-tier ranking formula. Okapi BM25F in the form presented

here was described and evaluated as part of the Microsoft Cambridge experiments for TREC-13

(Zaragoza et al., 2004) and TREC-14 (Craswell et al., 2005b). Other extensions to BM25 include

proposals to incorporate proximity (Rasolofo and Savoy, 2003; Büttcher et al., 2006) and the

position of query terms within the document (Troy and Zhang, 2007), as well as proposals to

account for anchor text and other Web-related features (Hawking et al., 2004; Craswell et al.,

2005a). Robertson and Zaragoza (2010) provide a recent survey of probabilistic retrieval as

embodied in BM25F.

8.10 Exercises

Exercise 8.1 Show that logit(p) = −logit(1− p) for 0 ≤ p ≤ 1.

Exercise 8.2 Under what circumstances would Equation 8.26 give a negative value? Are these

circumstances likely to occur in practice?

Exercise 8.3 Apply Assumptions Q and T (pages 261–262) to derive Equation 8.32 from

Equation 8.13.

Exercise 8.4 Our description of BM25F implicitly assumes that a field s appears at most

once in each document. However, a document might have many occurrences of section headers,

bolded text, and similar structural elements. Suggest an extension to BM25F to handle multiple

fields of the same type.

Exercise 8.5 (project exercise) Implement the BM25 ranking formula (Equation 8.48).

Test your implementation using the test collection developed in Exercise 2.13 or with any other

available collection, such as a TREC collection.

Exercise 8.6 (project exercise) Implement the term selection step of the pseudo-relevance

feedback method described in Section 8.6. Given a query q, execute it over any text collection,

Chapter 8 Probabilistic Retrieval282

using any retrieval method, and return the top 20 documents. Using Equation 8.51, extract the

top ten terms from these documents. Test your implementation with the following queries:

(a) 〈 “law”, “enforcement”, “dogs” 〉
(b) 〈 “marine”, “vegetation” 〉
(c) 〈 “black”, “bear”, “attacks” 〉
(d) 〈 “journalist”, “risks” 〉
(e) 〈 “family”, “leave”, “law” 〉

These queries are taken from the TREC 2005 Robust track1, which had the goal of improving

“the consistency of retrieval technology by focusing on poorly performing topics”. Pseudo-

relevance feedback often has a detrimental impact on such topics.

8.11 Bibliography

Baeza-Yates, R. A., and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Reading,

Massachusetts: Addison-Wesley.

Bookstein, A., and Kraft, D. (1977). Operations research applied to document indexing and
retrieval decisions. Journal of the ACM, 24(3):418–427.

Bookstein, A., and Swanson, D. R. (1974). Probabilistic models for automatic indexing. Journal

of the American Society for Information Science, 25(5):312–319.

Büttcher, S., Clarke, C. L. A., and Lushman, B. (2006). Term proximity scoring for ad-hoc

retrieval on very large text collections. In Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 621–622.
Seattle, Washington.

Cao, G., Nie, J.Y., Gao, J., and Robertson, S. (2008). Selecting good expansion terms for

pseudo-relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 243–250. Singapore.

Church, K. W., and Gale, W. A. (1995). Inverse document frequency (IDF): A measure of

deviation from poisson. In Proceedings of the 3rd Workshop on Very Large Corpora, pages
121–130. Cambridge, Massachusetts.

Collins-Thompson, K. (2009). Reducing the risk of query expansion via robust constrained

optimization. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, pages 837–846. Hong Kong, China.

1 trec.nist.gov/data/robust.html

8.11 Bibliography 283

Craswell, N., Robertson, S., Zaragoza, H., and Taylor, M. (2005a). Relevance weighting for

query independent evidence. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 416–423. Salvador,

Brazil.

Craswell, N., Zaragoza, H., and Robertson, S. (2005b). Microsoft Cambridge at TREC
14: Enterprise track. In Proceedings of the 14th Text REtrieval Conference. Gaithersburg,

Maryland.

Croft, W. B., and Harper, D. J. (1979). Using probabilistic models of document retrieval without
relevance information. Journal of Documentation, 35:285–295.

de Vries, A. P., and Roelleke, T. (2005). Relevance information: A loss of entropy but a gain for

IDF? In Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 282–289. Salvador, Brazil.

Fuhr, N. (1992). Probabilistic models in information retrieval. The Computer Journal,

35(3):243–255.

Greiff, W. R., Croft, W. B., and Turtle, H. (1999). PIC matrices: A computationally tractable

class of probabilistic query operators. ACM Transactions on Information Systems, 17(4):367–

405.

Harter, S. P. (1975). A probabilistic approach to automatic keyword indexing: Part I. On the

distribution of specialty words in a technical literature. Journal of the American Society for

Information Science, 26:197–206.

Hawking, D., Upstill, T., and Craswell, N. (2004). Toward better weighting of anchors.

In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 512–513. Sheffield, England.

Lafferty, J., and Zhai, C. (2003). Probabilistic relevance models based on document and query

generation. In Croft, W. B., and Lafferty, J., editors, Language Modeling for Information

Retrieval, chapter 1, pages 1–10. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Lee, K. S., Croft, W. B., and Allan, J. (2008). A cluster-based resampling method for pseudo-

relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 235–242. Singapore.

Lynam, T. R., Buckley, C., Clarke, C. L. A., and Cormack, G. V. (2004). A multi-system analysis

of document and term selection for blind feedback. In Proceedings of the 13th ACM Interna-

tional Conference on Information and Knowledge Management, pages 261–269. Washington,
D.C.

Maron, M. E., and Kuhns, J. L. (1960). On relevance, probabilistic indexing and information

retrieval. Journal of the ACM, 7(3):216–244.

Ponte, J. M., and Croft, W. B. (1998). A language modeling approach to information retrieval.

In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 275–281. Melbourne, Australia.

Chapter 8 Probabilistic Retrieval284

Rasolofo, Y., and Savoy, J. (2003). Term proximity scoring for keyword-based retrieval systems.
In Proceedings of the 25th European Conference on Information Retrieval Research, pages

207–218. Pisa, Italy.

Robertson, S. (1977). The probability ranking principle in IR. Journal of Documentation,

33:294–304.

Robertson, S. (2004). Understanding inverse document frequency: On theoretical arguments for

IDF. Journal of Documentation, 60(5):503–520.

Robertson, S., and Spärck Jones, K. (1976). Relevance weighting of search terms. Journal of
the American Society for Information Science, 27(3):129–146.

Robertson, S., and Zaragoza, H. (2010). The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends in Information Retrieval, 4.

Robertson, S., Zaragoza, H., and Taylor, M. (2004). Simple BM25 extension to multiple
weighted fields. In Proceedings of the 13th ACM International Conference on Information

and Knowledge Management, pages 42–49. Washington, D.C.

Robertson, S. E. (1990). On term selection for query expansion. Journal of Documentation,

46(4):359–364.

Robertson, S. E., van Rijsbergen, C. J., and Porter, M. F. (1981). Probabilistic models of
indexing and searching. In Oddy, R. N., Robertson, S. E., van Rijsbergen, C. J., and Williams,

P.W., editors, Information Retrieval Research, chapter 4, pages 35–56. London, England:
Buttersworths.

Robertson, S. E., and Walker, S. (1994). Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In Proceedings of the 17th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 232–
241. Dublin, Ireland.

Robertson, S. E., and Walker, S. (1997). On relevance weights with little relevance information.
In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 16–24. Philadelphia, Pennsylvania.

Robertson, S. E., and Walker, S. (1999). Okapi/keenbow at TREC-8. In Proceedings of the 8th

Text REtrieval Conference. Gaithersburg, Maryland.

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., and Gatford, M. (1994). Okapi

at TREC-3. In Proceedings of the 3rd Text REtrieval Conference. Gaithersburg, Maryland.

Rocchio, J. J. (1971). Relevance feedback in information retrieval. In Salton, G., editor, The
SMART Retrieval System: Experiments in Automatic Document Processing, chapter 14, pages

313–323: Prentice-Hall.

Roelleke, T., and Wang, J. (2006). A parallel derivation of probabilistic information retrieval

models. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 107–114. Seattle, Washington.

Roelleke, T., and Wang, J. (2008). TF-IDF uncovered: A study of theories and probabilities.
In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 435–442. Singapore, Singapore.

8.11 Bibliography 285

Ruthven, I., and Lalmas, M. (2003). A survey on the use of relevance feedback for information

access systems. Knowledge Engineering Review, 18(2):95–145.

Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application in

retrieval. Journal of Documentation, 28(1):11–21.

Spärck Jones, K., Walker, S., and Robertson, S. E. (2000a). A probabilistic model of information

retrieval: Development and comparative experiments – Part 1. Information Processing &

Management, 36(6):779–808.

Spärck Jones, K., Walker, S., and Robertson, S. E. (2000b). A probabilistic model of information

retrieval: Development and comparative experiments – Part 2. Information Processing &

Management, 36(6):809–840.

Troy, A. D., and Zhang, G. Q. (2007). Enhancing relevance scoring with chronological term

rank. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 599–606. Amsterdam, The Netherlands.

Turtle, H., and Croft, W. B. (1991). Evaluation of an inference network-based retrieval model.

ACM Transactions on Information Systems, 9(3):187–222.

Wang, X., Fang, H., and Zhai, C. (2008). A study of methods for negative relevance feedback.
In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 219–226. Singapore.

Zaragoza, H., Craswell, N., Taylor, M., Saria, S., and Robertson, S. (2004). Microsoft Cambridge
at TREC 13: Web and Hard tracks. In Proceedings of the 13th Text REtrieval Conference.

Gaithersburg, Maryland.

9 Language Modeling and Related Methods

This chapter presents alternative views of the ranking problem that are different from the

probabilistic model introduced in Chapter 8. The retrieval methods presented in this chapter,

although they have differing theoretical underpinnings, share several important characteristics.

All may be viewed as ranking documents through some form of language modeling, in the sense

that the actual occurrences of terms in a document are compared with the expected occurrences

predicted from the characteristics of the collection and the document. The methods are also

distinguished from the probabilistic model by their reduced emphasis on relevance, which may

not be explicitly considered.

Although the methods presented in this chapter may be viewed as language modeling

approaches in a broad sense, Sections 9.1 to 9.4 focus on the foundations of what is generally

termed the “language modeling approach” in a narrower sense. This approach — established

through the work of Berger, Croft, Hiemstra, Lafferty, Ponte, Zhai, and others — is character-

ized by its use of a document to construct a generative model for queries (Ponte and Croft, 1998;

Hiemstra, 2001; Song and Croft, 1999; Miller et al., 1999; Berger and Lafferty, 1999; Lafferty

and Zhai, 2001; Zhai and Lafferty, 2001, 2004). Over a short span of time, approximately 1998

to 2001, this language modeling approach grew from its roots in a SIGIR paper by Ponte and

Croft (1998) into a leading framework for new IR research (Croft and Lafferty, 2003). When-

ever references are made to “the language modeling approach” in the research literature, this

narrower meaning is often intended.

Section 9.1 takes the Probability Ranking Principle as its starting point to derive and justify

this generative query model. Given a document that is assumed to be relevant, we develop a

language model from the document to estimate p(q |d), the probability that query q would be

entered to retrieve document d, and rank documents accordingly. We introduced the idea of

language modeling in Chapter 1 when we examined term frequencies and developed the idea

further in the context of data compression in Chapter 6. In the present chapter our language

models are based on the simplest of those introduced in Chapter 1 — we work only with

zero-order models derived from document and collection statistics.

Section 9.2 discusses the details of constructing a language model from a document, with

particular emphasis on the smoothing process through which we assign nonzero probabilities to

terms that do not appear within the document. It is important to assign positive probabilities

to these terms because a relevant document may not contain every query term. In Section 9.3

we apply our smoothed language models to the ranking problem and develop specific ranking

formulae by combining results from Sections 9.1 and 9.2. Section 9.4 considers an alternative

theoretical foundation for the language modeling approach based on Kullback-Leibler divergence,

9.1 Generating Queries from Documents 287

a method for determining the difference between two probability distributions. Building on this

alternative foundation, we outline a method for query expansion under the language modeling

approach.

Later sections consider a broader interpretation of language modeling. In Section 9.5 we

introduce a retrieval method known as divergence from randomness (DFR), which explicitly

compares a model for distributing terms at random with the actual distribution of these terms

within documents to be ranked. Section 9.6 presents an approach to passage retrieval, the

foundations of which are closely related to DFR and other language modeling approaches.

Section 9.7 provides a comparative evaluation of several of the retrieval methods presented in

the chapter and in previous chapters. Section 9.8 lists a number of emerging retrieval methods

derived from or related to language modeling.

9.1 Generating Queries from Documents

As we did in Chapter 8, we take as our starting point the Probability Ranking Principle, as

embodied in Equation 8.8:

log
p(r |D, Q)

1− p(r |D, Q)
= log

p(r |D, Q)

p(r̄ |D, Q)
(9.1)

= log
p(D, Q |r) p(r)

p(D, Q | r̄) p(r̄)
. (9.2)

In Equation 8.10 we expanded the joint probabilities appearing in this equation using the

equality p(D, Q |R) = p(D |Q, R) · p(Q |R). In this section we develop the equation in the

opposite direction, expanding the joint probabilities using the equality p(D, Q |R) = p(Q |D, R)·
p(D |R).

log
p(r |D, Q)

p(r̄ |D, Q)
= log

p(D, Q |r) p(r)

p(D, Q | r̄) p(r̄)
(9.3)

= log
p(Q |D, r) p(D |r) p(r)

p(Q |D, r̄) p(D | r̄) p(r̄)
(9.4)

= log
p(Q |D, r) p(r |D)

p(Q |D, r̄) p(r̄ |D)
(9.5)

= log p(Q |D, r) − log p(Q |D, r̄) + log
p(r |D)

p(r̄ |D)
(9.6)

= log p(Q |D, r) − log p(Q |D, r̄) + logit(p(r |D)) (9.7)

We examine each of the probabilities in this last formula in detail.

Chapter 9 Language Modeling and Related Methods288

For a given query q and a relevant document d, the value p(Q = q |D = d, r) represents the

probability that the user would enter the query q in order to retrieve d. In essence, conditioning

on d provides us with an example of a relevant document. From this example we may then

estimate the probability of a user entering q if a document such as d is desired. In particular,

if a term appears in d with much greater frequency than random chance suggests, we might

expect it to have a higher probability of appearing in the query.

On the other hand, consider the role of d in the probability p(Q = q |D = d, r̄) in Equation 9.7.

Here conditioning on d provides us with a weaker picture of the user’s requirements. We have an

example of what is not relevant but still can only guess about what is relevant. As a result it may

be reasonable to assume that this probability is independent of d, that is p(Q = q |D = d, r̄)

is a constant. If we accept this assumption, we can drop the constant, leaving us with the

rank-equivalent formula

log p(Q |D, r) + logit(p(r |D)). (9.8)

The probability p(r |D) in the second term is independent of q and is the same for all queries.

This prior probability of relevance might be interpreted as indicating something about the

quality or importance of the document. In the context of Web search, for example, the home

page of a university might be assigned a higher prior probability than the personal home page

of a student attending the university (see Section 15.3). In the context of file system search,

e-mail addressed to you personally might be assigned a higher value than e-mail you receive

from a mailing list.

Nonetheless, in the absence of information suggested by the context of the application, the

prior probability of relevance p(r |D) is often assumed to be the same for all documents. Again,

if we accept this assumption, we may drop this constant as an order-preserving transformation.

Moreover, because exponentiation is also order-preserving, we may remove the logarithm, which

leaves us with the ranking formula

p(Q |D, r). (9.9)

If we wish, conditioning on relevance can be made implicit, thus reducing the equation to

p(Q = q |D = d). (9.10)

This very simple formula plays the same role in relation to the language modeling approach

as Equation 8.13 does in relation to the probabilistic retrieval model of Chapter 8. Given a

document d and a query q, we score d for ranking purposes by estimating the probability

p(q |d).

In order to estimate this probability, the document is often considered to provide a model for

generating the query q. Imagine a user formulating a query to retrieve relevant documents. She

might attempt to think of some terms that should appear often in these relevant documents

but rarely in nonrelevant documents. In making this attempt the user forms an image in her

mind of what a relevant document looks like — what terms might distinguish it from other

9.2 Language Models and Smoothing 289

documents in the collection. She then selects a few of these terms and enters them into a search

engine. These terms become the query q.

To score d we assume it matches the image in the user’s mind and estimate the probability

that the user would select q to retrieve it. It is because of this assumed link between the user’s

information need — the image in her mind — and the document d that we can view d as

providing a generative model for q.

Some IR researchers justify Equation 9.10 more directly through a different reasoning pro-

cess. They simply state that we are interested in p(Q, D), the joint distribution of queries and

documents. The issue of relevance is ignored. Documents are ranked by

p(Q, D) = p(Q |D) · p(D),

or equivalently by

log p(Q |D) + log p(D). (9.11)

Similarly to how we handled the second term in Equation 9.8, we may interpret log p(D) as

indicating the quality or importance of the document and treat it as a constant in the absence

of other information. Note, however, the difference in this second term between Equations 9.11

and 9.8.

9.2 Language Models and Smoothing

In Chapter 1 we examined term distributions in the Shakespeare and other collections and

introduced basic language modeling approaches. In addition, in the context of text compression

in Chapter 6, we further explored the idea of finite-context models over a set of symbols. For

predictive purposes we can imagine reading the unseen text of a document from left to right,

using the language models to guess what will come next and assigning a probability to each

possible symbol. If we do a good job of guessing, we are able to encode the document in fewer

bits.

For retrieval our goal is slightly different. We must imagine that we have an example of a

relevant document and ask: What is the probability that term t would be entered by a user in

order to retrieve a document such as this one?

To answer this question we use the document to create a language model for the queries that

may be entered to retrieve it. Our goal is to construct a document language model Md(t) from

document d. The simplest document language model is the maximum likelihood model Mml
d (t)

based on the counts of the terms appearing in the document:

Mml
d (t) =

ft,d

ld
. (9.12)

Chapter 9 Language Modeling and Related Methods290

Here, as usual, ft,d is the number of times t appears in d and ld is the length of the document.

Thus, for terms not appearing in the document Mml
d (t) = 0. Because Mml

d (t) is a probability

we have, as required,∑
t∈V
Mml

d (t) =
∑
t∈d

Mml
d (t) =

∑
t∈d

ft,d/ld = ld/ld = 1. (9.13)

For example, the term “lord” appears 624 times in Hamlet, which has length 43,314, but only

78 times in Macbeth, which has length 26,807. Thus, a language model based on Hamlet predicts

a much higher probability for that term than one based on Macbeth.

Mml
Hamlet(“lord”) =

flord,Hamlet

lHamlet

=
624

43, 314
≈ 1.441%

Mml
Macbeth(“lord”) =

flord,Macbeth

lMacbeth

=
78

26, 807
≈ 0.291%

On the other hand, Hamlet predicts a lower probability for the term “lady” because it appears

30 times in Hamlet but 196 times in Macbeth.

Mml
Hamlet(“lady”) =

flady,Hamlet

lHamlet

=
30

43, 314
≈ 0.069%

Mml
Macbeth(“lady”) =

flady,Macbeth

lMacbeth

=
196

26, 807
≈ 0.731%

Because Mml
d (t) is nothing more than term frequency scaled by document length, we might

suspect that by itself it may not be sufficient to compute estimates of p(q |d) that will provide a

satisfactory document ranking. In particular, given that d is just a single example of a relevant

document and that d may consist of only a few hundred words, the estimates it provides have

the potential to be wildly inaccurate. Moreover, the model assigns a probability of 0 to all terms

not appearing in the document, implying that it is impossible for these terms to appear in the

query.

To address these problems when using language models based on documents or examples

of similar size, it is common in information retrieval, as well as in other areas such as speech

recognition, to smooth these models using a background language model in the hope of improving

accuracy. In information retrieval the collection as a whole provides a convenient basis for this

background model.

We define MC(t) as the maximum likelihood language model based on term frequencies in

the collection as a whole:

MC(t) = lt/lC, (9.14)

9.2 Language Models and Smoothing 291

where lt is the number of times t occurs in the collection C and lC is the total number of tokens

in the collection.

MC(“lord”) =
llord
lC

=
3, 346

1, 271, 504
≈ 0.263%

MC(“lady”) =
llady

lC
=

1, 031

1, 271, 504
≈ 0.081%

Unlike the examples in Chapter 1, in this example lC includes all tokens, tags as well as words.

We now consider two well-known smoothing methods. The first method, known as Jelinek-

Mercer smoothing (Jelinek and Mercer, 1980; Chen and Goodman, 1998), is a simple linear

combination of the document language model and the collection language model,

Mλ
d(t) = (1− λ) ·Mml

d (t) + λ · MC(t), (9.15)

where λ is a parameter with a value between 0 and 1 that controls the relative weight given to

the document and collection language models. For example, if λ = 0.5,

Mλ
Hamlet(“lord”) = (1− λ) · Mml

Hamlet(“lord”) + λ · MC(“lord”)

= 0.5 · 78

26, 807
+ 0.5 · 3, 346

1, 271, 504
≈ 0.277%.

Because Mλ
d(t) represents a probability, we have, as required,∑

t∈V
(1− λ) · Mml

d (t) + λ · MC(t) = (1− λ) ·
∑
t∈V
Mml

d (t) + λ ·
∑
t∈V
MC(t) = 1. (9.16)

The intuition underlying our second smoothing method is to pretend we have added an

extra μ > 0 tokens to each document in the collection and have distributed them according

to the collection language model MC(t). For example, if μ = 1, 000, we would conceptually

add μ · MC(“lord”) = 2.6315 occurrences of the term “lord” to every document. Obviously, in

reality it is not possible to add a fractional number of terms to a document, but it works as a

mathematical trick. The maximum likelihood language model based on these new documents

would then be

Mμ
d(t) =

ft,d + μMC(t)
ld + μ

,

where ft,d is the number of times t appears in the original document and ld is the original

length. The impact of the additional terms depends on the length of the document. The longer

the document, the lower the impact, with values approachingMd(t) in the limit. This smoothing

method is known as Dirichlet smoothing (Chen and Goodman, 1998) because it can be derived

from a Dirichlet distribution with appropriate parameters.

Chapter 9 Language Modeling and Related Methods292

If a term t does not appear in a document d, then Mλ
d(t) = λ · MC(t) and Mμ

d(t) =

(μ/(ld + μ)) ·MC(t). In both cases the smoothed models assign a probability that is a con-

stant factor of the collection probability, and thus the relative probability assigned to terms not

appearing in the document remains the same.

9.3 Ranking with Language Models

Equation 9.10 suggests that we are ranking documents according to the probability that q will

be entered as a query, given that d is an example of a relevant document. We are now ready to

apply the smoothed language models of Section 9.2 to the problem of estimating this probability.

We start by applying independence assumptions similar to Assumption Q on page 262, thereby

reducing the problem to that of estimating probabilities for individual terms in the query. Given

a query vector q = 〈t1, t2, ..., tn〉 and a document d, we may estimate p(q |d) as

p(q |d) = p(|q| = n) ·
n∏

i=1

p(ti |d), (9.17)

where p(|q| = n) represents the probability that the user would enter a query of length n. In

order to estimate the probability that the user will enter q, we must estimate this probability

for the query length — assuming that this length is independent of the document and query

terms — as well as a probability for each individual term — assuming that the selection of one

term is independent of the selection of the others.

Fortunately, it is safe to ignore the query length. Because the query is fixed, it is sufficient

to consider the probability that the user would enter q out of all possible queries of length n

rather than out of all possible queries of any length. In Section 9.4, where we briefly consider

query expansion under the language modeling approach, the need to estimate query length will

reappear. For now, however, we estimate p(q |d) as

p(q |d) =

n∏
i=1

p(ti |d). (9.18)

Because the order of terms in the query vector is of no significance in this equation, we may

treat q as a set and make the query-term frequency explicit in the equation:

p(q |d) =
∏
t∈q

p(t |d)qt . (9.19)

9.3 Ranking with Language Models 293

A document language model may then be used to estimate a value for each p(t |d), and thus we

would rank documents according to

p(q |d) =
∏
t∈q

Md(t)
qt , (9.20)

where Md(t) may be Mλ
d(t), Mμ

d(t), or another document language model. If we substitute

Mλ
d(t) for Md(t), we get

p(q |d) =
∏
t∈q

(
(1− λ) · Mml

d (t) + λ ·MC(t)
)qt

. (9.21)

If we substitute Mμ
d(t) for Md(t), we get

p(q |d) =
∏
t∈q

(
ft,d + μMC(t)

ld + μ

)qt

. (9.22)

We could stop at this point and use either Equation 9.21 or Equation 9.22 for ranking.

However, it is valuable to expend a little extra effort over the next few pages in order to

achieve some additional insight into the language modeling approach and its relationship to

other methods. You may have noticed that many of the characteristics saw in the ranking

formulae of Chapters 2 and 8 are absent from these equations. Unlike the previous formulae,

these equations do not take a TF-IDF form. Moreover, the number of documents in the collection

(N) and the number of documents containing the term (Nt) do not appear in the equations

at all. Nonetheless, with a little work we can find something close to TF-IDF hidden in these

equations while simplifying them at the same time.

For convenience as well as consistency with the other approaches, we work with logarithms

from this point forward rather than directly with the probabilities. First, we consider the terms

contained in the document separately from the terms not contained in the document.

log p(q |d) =
∑
t∈q

qt · log p(t |d) (9.23)

=
∑

t∈q∩d

qt · log p(t |d) +
∑

t∈q\d
qt · log p(t |d) (9.24)

When t is contained in the document, we use Md(t) to estimate p(t |d), where Md(t) may

be either Mλ
d(t) or Mμ

d (t). When t is not contained in the document, Md(t) takes the form

αdMC(t), where αd is a factor depending only on characteristics of d (and not on q). As indicated

at the end of Section 9.2, αd = λ for Mλ
d(t) and αd = μ/(ld + μ) for Mμ

d(t).

Chapter 9 Language Modeling and Related Methods294

We may now substitute Md(t) and αd · MC(t) into Equation 9.24, and with a little

rearrangement, we eliminate summation over the query terms not appearing in the document:

log p(q |d) =
∑

t∈q∩d

qt · log Md(t) +
∑

t∈q\d
qt · log(αd · MC(t)) (9.25)

=
∑

t∈q∩d

qt · log Md(t)−
∑

t∈q∩d

qt · log(αd ·MC(t)) (9.26)

+
∑

t∈q∩d

qt · log(αd ·MC(t)) +
∑

t∈q\d
qt · log(αd · MC(t)) (9.27)

=
∑

t∈q∩d

qt · log
Md(t)

αdMC(t)
+
∑
t∈q

qt · log(αd ·MC(t)) (9.28)

=
∑

t∈q∩d

qt · log
Md(t)

αdMC(t)
+ n · log αd +

∑
t∈q

qt · log MC(t) . (9.29)

Here n =
∑

t∈q qt represents the number of tokens in the query. The last term,∑
t∈q qt · log MC(t), is constant for all documents and may be dropped to give the rank-

equivalent formula ∑
t∈q∩d

qt · log
Md(t)

αdMC(t)
+ n · log αd . (9.30)

This formula has two parts. The part on the left is a sum over weights associated with the

query terms appearing in the document and is reminiscent of the ranking formulae presented

in previous chapters. The part on the right may be viewed as a document-specific adjustment

or normalization that is independent of the specific query terms but not of query or document

length.

We now specialize Equation 9.30 by replacingMd(t) with each of our two smoothed language

models, Mλ
d(t) and Mμ

d(t). Substituting Mλ
d(t) gives

∑
t∈q∩d

qt · log
Mλ

d(t)

αdMC(t)
+ n · log αd =

∑
t∈q∩d

qt · log
(1− λ)Mml

d (t) + λMC(t)
λMC(t)

+ n · log λ

=
∑

t∈q∩d

qt · log
(1− λ)ft,d/ld + λlt/lC

λlt/lC
+ n · log λ .

The term n · log λ is a constant and may be dropped. A little re-arranging gives the final form

of the ranking formula: ∑
t∈q

qt · log

(
1 +

1− λ

λ
· ft,d

ld
· lC

lt

)
. (9.31)

9.3 Ranking with Language Models 295

In the remainder of the book we refer to this formula as language modeling with Jelinek-Mercer

smoothing (LMJM). In general the optimal value for λ appears to be related to query length,

with larger values being more appropriate for longer queries. In the absence of training data or

other information, experience has shown λ = 0.5 to be an acceptable value. Unless otherwise

indicated, we use λ = 0.5 for examples and experiments.

We return to consider the document collection in Table 2.1. Given the query 〈“quarrel”,“sir”〉,
we would compute the LMJM score for document 1 as follows:

log
(
1 + 1−λ

λ · fquarrel,1

l1
· lC

lquarrel

)
+ log

(
1 + 1−λ

λ · fsir,1

l1
· lC

lsir

)
= log

(
1 + 0.5

0.5 ·
1
4 ·

28
2

)
+ log

(
1 + 0.5

0.5 ·
1
4 ·

28
5

)
≈ 3.43.

Before proceeding, it is worthwhile to examine briefly the structure of Equation 9.31. Document-

oriented collection statistics, such as N and Nt, are nowhere to be seen. However, the presence

of the collection language model, lC/lt, inside the logarithm is suggestive of IDF and its close

association with ft,d is suggestive of TF-IDF, so something of the equations of Chapters 2 and 8

can be seen here.

The document length plays an interesting role. The fraction ft,d/ld is the average number

of occurrences of t per document token. When it is multiplied by lC/lt, the result may be

interpreted as the ratio of the actual number of occurrences per token to the expected number

of occurrences based on the collection language model.

We now consider Dirichlet smoothing. Substituting Mμ
d(t) for Md(t) in Equation 9.30 and

simplifying gives the ranking formula for μ > 0,∑
t∈q∩d

qt · log
Mμ

d(t)

αdMC(t)
+ n · log αd =

∑
t∈q

qt · log

(
1 +

ft,d

μ
· lC

lt

)
− n · log

(
1 +

ld
μ

)
, (9.32)

which we refer to as language modeling with Dirichlet smoothing (LMD). In this formula the

document length normalization is separated out into the term on the right. As in Equation 9.31,

you may detect a hint of TF-IDF in the relationship between term frequency and the collection

language model. Unless otherwise indicated we use this formula for experiments and examples

with μ = 1000. We emphasize, however, that in practice the value of μ should be tuned using

appropriate training data (see Chapter 11).

If all documents in the collection have the same length, the two smoothing methods can

be made equivalent by setting μ = ld · λ
1−λ . This observation suggests that we might pick

an acceptable value for μ, based on an existing value for λ, by replacing ld with the average

document length lavg, resulting in the value μ = lavg · λ
1−λ . If we treat 0.5 as the default value

for λ, the corresponding default value for μ is then simply the average document length. By

substituting lavg for μ in Equation 9.32 and by noting that lavg = lC/N , the LMD ranking

formula reduces to ∑
t∈q

qt · log

(
1 + ft,d ·

N

lt

)
− n · log

(
1 +

ld
lavg

)
. (9.33)

Chapter 9 Language Modeling and Related Methods296

The presence of N in this formula strengthens the relationship with IDF that we noted earlier.

The equation also contains hints of the document length normalization seen in Okapi BM25.

If we use LMD to rank the collection in Table 2.1 with respect to the query 〈“quarrel”,“sir”〉,
we would compute a score for document 1 as follows:

log
(
1 + fquarrel,1 · N

lquarrel

)
+ log

(
1 + fsir,1 · N

lsir

)
− n · log

(
1 + l1

lavg

)
= log

(
1 + 1 · 5

2

)
+ log

(
1 + 1 · 5

5

)
− 2 · log

(
1 + 4

5.6

)
≈ 1.25.

9.4 Kullback-Leibler Divergence

An alternative theoretical framework for understanding and working with the language modeling

approach is provided by a concept known as Kullback-Leibler divergence. KL divergence, also

known as relative entropy, is a method for comparing two probability distributions.

Given continuous probability distributions f(x) and g(x) the KL divergence between them is

defined as ∫ ∞

−∞
f(x) · log

f(x)

g(x)
dx . (9.34)

In information retrieval, we normally work with discrete distributions, for which KL divergence

takes the form ∑
x

f(x) · log
f(x)

g(x)
. (9.35)

Larger values indicate greater divergence. When f and g represent the same distribution, their

KL divergence is zero, since log (f(x)/g(x)) = log 1 = 0.

For example, the flip of a “fair” coin will produce heads or tails with equal probability. If

an“unfair” coin produces heads with a 40% probability and tails with a 60% probability, the

KL divergence between the fair and unfair coin may be computed as

0.5 · log
0.5

0.4
+ 0.5 · log

0.5

0.6
≈ 0.02945.

In this example, we choose 2 for the base of the logarithm because the choice is arbitrary.

KL divergence is not symmetric in the sense that reversing the roles of f(x) and g(x) may

produce a different value. For example, if we reverse the roles of the fair and unfair coins, the

KL divergence becomes

0.4 · log
0.4

0.5
+ 0.6 · log

0.6

0.5
= 0.02905.

Due to this asymmetry KL divergence is sometimes viewed as comparing a “true” distribution

with another distribution in which f(x) in Equation 9.35 represents this true distribution. From

an information-theoretic standpoint, KL divergence indicates the average number of extra bits

9.4 Kullback-Leibler Divergence 297

per symbol needed to transmit or compress a message if we assume its symbols are distributed

according to g instead of the true distribution f .

In order to apply KL divergence to ranking, we construct a language model from the query

Mq(t) in much the same way that we constructed a language model from the document. The

simplest language model is the maximum likelihood model: the ratio of the number of times t

appears in the query to the length of the query:

Mml
q (t) =

qt

n
. (9.36)

It is also possible to create more complex query language models through smoothing or other

processes, just as we did for the document language models.

We then apply KL divergence to rank documents by computing the divergence between the

query language model and the document language model:∑
t∈V
Mq(t) · log

Mq(t)

Md(t)
=

∑
t∈V
Mq(t) · log Mq(t)−

∑
t∈V
Mq(t) · log Md(t) . (9.37)

The summation on the left is the same for all documents and may be dropped as an order-

preserving transform. The summation on the right, without the negative sign, increases with

decreasing divergence and is therefore suitable as a ranking formula:∑
t∈V
Mq(t) · log Md(t) . (9.38)

Now, if we replace Mq(t) with the maximum likelihood language model Mml
q (t), the formula

becomes ∑
t∈V
Mml

q (t) · log Md(t) =
1

n
·
∑
t∈q

qt · log Md(t) . (9.39)

The constant 1
n may be dropped to give the rank-equivalent formula∑

t∈q

qt · log Md(t) , (9.40)

which is exactly Equation 9.20 (in log-space).

Instead of using a maximum likelihood model for Mq(t) in Equation 9.38, we may instead

view the presence of a query language model as an opportunity for query expansion, extending

the query language model to estimate nonzero probabilities for terms not appearing in the

original query. In this way we can assign positive scores to documents that may not contain any

of the query terms. For example, given the query 〈“law”,“enforcement”,“dogs”〉 in Figure 1.8

(page 25), a document discussing the use of police canine (or K-9) units for drug searches would

certainly be relevant. As a result, performance might be improved by adding the terms “police”,

“canine”, “K-9”, “drug”, and “searches” to the query, perhaps with appropriate weighting to

Chapter 9 Language Modeling and Related Methods298

reflect their secondary status as expansion terms. The language model Mq(t) represents a

bridge between the original query terms and potential expansion terms, thereby providing a

theoretically sound route for their identification and weighting.

Lafferty and Zhai (2001) suggest an approach for expanding the query language model based

on a random “walk” through the collection, starting at a document containing a query term.

At the first step of the walk a random document containing a query term is selected in which

the selection is weighted by term frequency and perhaps other factors. A random term is then

selected from the new document according to Md(t). With probability pstop the walk stops.

With probability 1−pstop it continues. We then randomly select a document containing the new

term, then a new term from that document, and so on. The query language model Mq(t) is

then based on the probability of stopping at term t during this walk.

Lafferty and Zhai present a matrix formalization of this informal idea, thus effectively allowing

the walk to be performed for all terms simultaneously. For efficiency they stop the walk after

a small number of steps in order to avoid assigning a tiny probability to a prohibitively large

number of terms. They report significant effectiveness improvements over several collections,

including TREC45.

9.5 Divergence from Randomness

The divergence from randomness (DFR) approach to information retrieval explicitly assumes

a random process for the distribution of terms in documents, and then ranks documents by

considering the probability that the actual term distribution found in a document would occur

by chance. Similar considerations appear implicitly in the language modeling approach through

its incorporation of a collection language model into the smoothing process. For example, we

noted on page 295 that Equation 9.31 includes the ratio of the actual number of occurrences in

a document to the expected number of occurrences based on the collection language model.

An important property of DFR is the absence of the seemingly arbitrary parameters that

appear in other methods and require tuning over a training set. Parameters such as μ in LMD,

λ in LMJM, and k1 in BM25 often appear unintuitive, defying an easy explanation for their

presence. DFR offers retrieval effectiveness comparable with these methods in a non-parametric

form.

In this section we also revisit the notion of eliteness that we introduced in Section 8.4. Having

determined the probability that a random document d would contain ft,d occurrences of term t

where ft,d > 0, we exploit the notion of eliteness to estimate the probability that the document

is actually “about” the concept embodied in the term. In Section 8.4 this notion was modeled

by a two-Poisson distribution. In this section we present an approach based on Laplace’s law of

succession.

At its most generic the core of the DFR approach may be summarized by the formula

(1− P2) · (− log P1) , (9.41)

9.5 Divergence from Randomness 299

In this formula P1 represents the probability that a random document d contains exactly ft,d

occurrences of t. The value − log P1 may be viewed as the number of bits of information, called

the self-information, associated with d containing exactly ft,d occurrences of t (see Section 6.1).

Our random process for distributing occurrences of the term t across the document collection

is unlikely to assign a large proportion of these terms to the specific document d. Thus P1 may

decrease rapidly as ft,d increases.

P2 provides an adjustment that reflects eliteness, thus correcting for this rapid decrease. If

d is elite in the t, we might assume that the occurrences of t that appear within it are not

accidental. Suppose we begin reading d, which is elite in t, in order to count the number of

occurrences of t it contains. Well before we reach its end, we discover ft,d − 1 occurrences of t.

This discovery suggests that we should expect to find more occurrences and P2 is the probability

of finding at least one. P2 increases as ft,d increases. Thus, (1− P2) in Equation 9.41 decreases

as ft,d increases.

Thus far we have considered only a single term. To rank documents with respect to a multi-

term query, we make the usual independence assumption, giving the ranking formula∑
t∈q

qt · (1− P2) · (− log P1) . (9.42)

In the remainder of the presentation we focus on estimating P1 and P2 for a given term t with

the understanding that these estimates will be used in this formula for ranking.

The theory underlying the DFR was first developed by Amati and van Rijsbergen (2002), and

was validated through experimentation at TREC conferences (Plachouras et al., 2002; Amati

et al., 2003). In addition to providing substantial theoretical justification for Equation 9.41,

Amati and van Rijsbergen (2002) present and evaluate seven methods for estimating P1 and

two methods for estimating P2. In this chapter we examine in detail only one of each, chosen

for their ability to illustrate the reasoning underlying the approach as well as their retrieval

effectiveness.

In addition Amati and van Rijsbergen present two methods for incorporating document length

normalization into the DFR approach. For the time being we will ignore this complicating issue

by assuming that all documents are of the same length. Toward the end of our presentation we

will return to the issue by handling document length normalization in the spirit of Equation 8.45,

computing an adjusted term frequency for documents of nonaverage length and using it to

replace the actual term frequency.

9.5.1 A Model of Randomness

Suppose we randomly distribute terms into documents. If we have lt occurrences of term t

distributed across N documents, then

ft,1 + ft,2 + ... + ft,N = lt , (9.43)

Chapter 9 Language Modeling and Related Methods300

where ft,i is the number of occurrences of term t in the ith document. How many different

ways can lt occurrences be distributed across N documents, assuming that the documents are

indistinguishable? For example, four occurrences can be distributed across three documents

in four different ways: (1) all occurrences into one document, (2) three occurrences into one

document and one into another, (3) two occurrences in one document and one in each of the

other documents, or (4) two occurrences in two documents. In other words, how many different

arrangements of terms will satisfy Equation 9.43?

To answer this question, Amati and van Rijsbergen recognize that this problem is identical

to the problem addressed by Bose-Einstein statistics, which computes the number of ways

indistinguishable particles may be assigned to energy states in thermal equilibrium. The solution

may be expressed as a binomial coefficient:(
N + lt − 1

lt

)
=

(N + lt − 1)!

(N − 1)! lt!
. (9.44)

Alternatively, the problem may be viewed as equivalent to the problem of determining the

number of ways in which m balls can be distributed across n indistinguishable bins, a version

of the occupancy problem from combinatorics.

In order to compute an estimate of P1 for term t, we assume that a given document d is found

to contain ft,d occurrences of t. A random distribution of the remaining lt − ft,d occurrences

into the remaining documents must satisfy the equation

ft,1 + · · ·+ ft,d−1 + ft,d+1 + · · ·+ ft,N = lt − ft,d . (9.45)

The number of ways to satisfy this equation follows from Equation 9.44:(
(N − 1) + (lt − ft,d)− 1

lt − ft,d

)
=

((N − 1) + (lt − ft,d)− 1)!

(N − 2)! (lt − ft,d)!
. (9.46)

This equation assumes that a selected document contains ft,d occurrences and represents the

number of ways the remaining terms can be distributed. Equation 9.44 represents the number of

ways lt occurrences may be distributed across N documents. Thus, the ratio of these equations

represents P1, the probability that a selected document contains ft,d occurrences:

P1 =

(
(N − 1) + (lt − ft,d)− 1

lt − ft,d

)
(

N + lt − 1

lt

) =
((N − 1) + (lt − ft,d)− 1)! (N − 1)! lt!

(N − 2)!(lt − ft,d)! (N + lt − 1)!
. (9.47)

Unfortunately, the presence of factorials in Equation 9.47 makes it difficult to work with it

directly. Instead, Amati and van Rijsbergen provide two methods for estimating its value and

9.5 Divergence from Randomness 301

demonstrate that both methods provide similar performance in terms of effectiveness. The

simpler of these methods provides an estimate for P1 of

P1 =

(
1

1 + lt/N

)(
lt/N

1 + lt/N

)ft,d

, (9.48)

and therefore

− log P1 = log(1 + lt/N) + ft,d · log(1 + N/lt) . (9.49)

The term on the right has a form reminiscent of TF-IDF, but with lt taking the role of Nt.

9.5.2 Eliteness

Amati and van Rijsbergen obtain one estimate for P2 by way of Laplace’s law of succession,

which can best be explained by an example. Suppose we have seen the sun rise on each of m−1

successive mornings. In the absence of other information, such as a physical model of the Earth

orbiting the sun, what probability should we assign to the event that the sun will rise tomorrow?

Even though we are fairly certain this event will happen, it is not appropriate to assign it a

value of 1, absolute certainty. After all, the sun may not rise tomorrow. Instead (without getting

into the mathematical details) the law of succession suggests the value m/(m + 1).

Amati and van Rijsbergen apply the law of succession to estimate

P2 =
ft,d

ft,d + 1
. (9.50)

They explain this equation as the “conditional probability of having one more token of the

term in the document [...], assuming that the length of a relevant document is very large”.

Substituting this estimate along with Equation 9.49 into 9.41 gives

(1− P2)(− log P1) =
log(1 + lt/N) + ft,d log(1 + N/lt)

ft,d + 1
. (9.51)

The term-frequency component in this formula resembles the term-frequency component of

the Okapi BM25 ranking formula (Equation 8.48 on page 272), and possesses a similar sat-

uration property. Regardless of the value of ft,d, the value of Equation 9.51 is bounded by

log(1 + lt/N) + log(1 + N/lt).

9.5.3 Document Length Normalization

Equation 9.51 assumes that all documents have the same length. When documents vary in

length, Amati and van Rijsbergen suggest a normalization in which an adjusted term frequency

f ′t,d replaces ft,d in the equation. They derive and evaluate two methods for computing this

Chapter 9 Language Modeling and Related Methods302

adjustment. The better-performing of these methods is

f ′t,d = ft,d · log (1 + lavg/ld) . (9.52)

They call the combination of Equation 9.49 and 9.50, as adjusted by Equation 9.52, the GL2

variant of the DFR approach. We use this variant for the experiments reported in this book.

9.6 Passage Retrieval and Ranking

Most of the ranking methods we examine in this book rank documents. Depending on the

application environment, these documents may correspond to Web pages, news articles, e-mail

messages, or a combination of these and other document types. In some environments it may

be appropriate to rank elements within documents, such as the pages in a book or the sections

in a news article. In other circumstances arbitrary passage retrieval may be desirable so that

any fragment of text within a document may be returned as a ranked result.

William Shakespeare — Wikipedia, the free encyclopedia

At the age of 18, Shakespeare married the 26-year-old Anne Hathaway. The con-

sistory court of the Diocese of Worcester issued a marriage licence on 27 November

1582. Two of Hathaway’s neighbours posted bonds the next day ...

en.wikipedia.org/wiki/William Shakespeare

Figure 9.1 A typical search engine result for the query 〈“shakespeare”,“marriage”〉, evaluated against
Wikipedia. The result provides a brief snippet from the document that shows the query terms in context.

One such circumstance is generation of snippets to provide a simple summary of the contents

of a retrieved document for presentation to the user. Figure 9.1 provides an example of the result

a search engine might return from Wikipedia given the query 〈“shakespeare”,“marriage”〉. Along

with the title of the Web page and its URL, the search engine provides a snippet extracted from

the body of the document to illustrate the context in which the search terms appear.

Question answering is another application in which arbitrary passage retrieval may be valuable

(Tellex et al., 2003). Given a question such as “What is the population of India?”, a question

answering system attempts to provide an exact answer (“1.12 billion”) rather than a document

that may contain the answer. Passage retrieval is often an early step in question answering.

Keywords are extracted from the question and formed into a query for processing by an IR

system (〈“population”,“india”〉). Passages containing these terms are then retrieved from the

corpus and analyzed to extract and validate possible answers. An interval containing the query

terms in close proximity (“...population of India, ...”) is likely to be part of a slightly longer

9.6 Passage Retrieval and Ranking 303

but still short passage containing the answer (“...The population of India is...”). The interval

represents a “hot spot” within the collection near which the answer may be found.

In Section 2.2.2 we presented a simple ranking method based solely on term proximity. That

method locates covers for a query vector q = 〈t1, t2, ..., tn〉, where a cover is defined as an

interval of text [u, v] that contains at least one occurrence of each term in the query and does

not contain a smaller interval that also contains all the terms.

We now extend the notion of a cover to subsets of the query terms. We define an m-cover

for m ≤ n terms as an interval [u, v] in the collection that contains an occurrence of at least

m distinct terms in the query and does not contain a smaller interval that also contains m

distinct terms. For simplicity we assume that terms are not repeated in q because the passage

ranking method in this section does not take repeated query terms into account. For example,

the set of 2-covers for the query vector 〈“you”,“quarrel”, “sir”〉 over the collection in Table 2.1

(page 50) consists of the intervals [2, 3], [3, 4], [4, 5], [5, 6], [8, 10], [10, 12], [12, 16], [24, 28]. Note

that the interval [12, 24] is not included in the set because it contains [12, 16]. Note also that

[24, 28] is included even though it cuts across the last three documents. In most applications

m-covers such as this one would be filtered from the set before use. However, for simplicity we

define m-covers without consideration for document boundaries and other structures and apply

a postprocessing pass as appropriate.

The notion of an m-cover may be used to support snippet generation and arbitrary passage

retrieval for question answering. Suppose we are looking for a snippet to display within an

indexed Web page. Ideally we would display a snippet containing all the query terms in close

proximity, but this goal is not always possible. Some of the query terms may appear only far

apart, at the start and the end of the document. Some of the query terms may appear only in

the title of the document and not in the body. Some of the query terms may not appear in the

document at all. Instead, the snippet might be composed of text fragments corresponding to one

or more m-covers that together contain as many of the terms as possible. Once an appropriate

set of m-covers is determined, each could be extended to include the nearest sentence boundaries

and then trimmed to fit into the required space.

In the context of question answering, a passage containing a strict subset of the query

terms in close proximity may be more likely to yield an answer than a much longer

passage containing all the query terms. For example, suppose we are answering the ques-

tion “Who starred in the film Shakespeare in Love?” We might execute the query vector

〈“starred”,“film”, “shakespeare”, “love”〉 and analyze the result for possible answers. A short

3-cover containing the terms “shakespeare” and “love” along with just one of the terms “starred”

or “film” may be a better indicator of an answer than a longer passage containing all the terms,

in which the answer may be mixed with other names and details. More generally, for applica-

tions such as snippet generation and question answering, we must select intervals by trading off

length against the combination of query terms they contain.

Chapter 9 Language Modeling and Related Methods304

9.6.1 Passage Scoring

Assume we have an interval [u, v] that we wish to score with respect to a query

q = 〈t1, t2, ..., tn〉. Further assume that the interval contains a subset of the query terms q′ ⊆ q,

where q′ = 〈t1′, t2′, ..., tm′〉 and m ≤ n. We assign a score to [u, v], with length l = v − u + 1,

by estimating the probability that a randomly selected interval of this length would contain at

least one occurrence of these query terms. Like the method described in Section 9.5, the passage

scoring method relates the actual distribution of terms to a random distribution.

For this purpose we model the collection as a sequence of independently generated terms and

assume that there is a fixed probability pt of a term t ∈ q′ matching at any given document

location. Note that this assumption allows multiple terms to match at a particular location.

Although unrealistic, this assumption is tolerable when pt is small, as it is for most terms, and

helps to simplify the derivation of a passage scoring formula.

Given the interval [u, v] with length l = v − u + 1, the probability p(t, l) that the interval

contains one or more occurrences of t is

p(t, l) = 1− (1− pt)
l (9.53)

= 1− (1− lpt + O(pt
2)) (9.54)

≈ l · pt . (9.55)

The probability that [u, v] contains all the terms from q′ is then

p(q′, l) =
∏
t∈q′

p(t, l) ≈
∏
t∈q′

l · pt = lm ·
∏
t∈q′

pt . (9.56)

Finally, we estimate pt as the collection frequency of the term t:

pt = lt/lC , (9.57)

where lt is the total number of times t appears in the collection and lC is the total length of the

collection. Substituting and taking a negative logarithm (i.e., the self-information) gives∑
t∈q′

(log(lC/lt))−m · log(l) . (9.58)

The relationship between length and collection frequency in this equation resembles the

relationship in Equation 9.32.

9.6.2 Implementation

Perhaps not surprisingly, the algorithm to locate m-covers is a simple extension of the adaptive

algorithm appearing in Figure 2.10 (page 61). The details of the extended algorithm are given in

Figure 9.2. For a given value of m the algorithm locates the next m-cover after a given position.

9.6 Passage Retrieval and Ranking 305

nextCover (〈t1, ..., tn〉, position, m) ≡
1 for i← 1 to n do
2 V [i]← next(ti, position)
3 v ← mth largest element of V
4 if v =∞ then
5 return [∞,∞]
6 u← v
7 for i← 1 to n do
8 if V [i] < v and prev(ti, v + 1) < u then
9 u← prev(ti, v + 1)
10 return [u, v]

Figure 9.2 Function to locate the next occurrence of an m-cover for the term vector 〈t1, ..., tn〉 after
a given position. The integer array V is used to store intermediate calculations.

Lines 1–2 find the next occurrence of each individual term after this position. The m-th largest

term becomes the end point (v) for the m-cover (line 3). For each term occurring before v we

locate its last occurrence before v (lines 7–9). The smallest of these values becomes the start

point (u) for the m-cover.

To generate all m-covers we repeatedly call this extended version of nextCover across the

collection for all values of m > 1.

for m← n down to 2 do

u← −∞
while u <∞ do

[u, v] ← nextCover(〈t1, t2, ..., tn〉, u, m)

if u 	=∞ then

report the m-cover [u, v]

It is not necessary to explicitly generate 1-covers because these can be taken directly from the

postings lists for the terms.

Depending on the application, it is not usually necessary to generate all m-covers across the

entire collection. For snippet generation we are interested only in the m-covers contained in

top ranking documents. For question answering we are interested only in a single best m-cover

from a fixed number of documents. Clarke et al. (2006) discuss optimizations for fast m-cover

generation in this second case.

Chapter 9 Language Modeling and Related Methods306

9.7 Experimental Comparison

Table 9.1 Effectiveness measures for selected retrieval methods discussed in this chapter.

TREC45 GOV2

1998 1999 2005 2006

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

LMJM (Eq. 9.31) 0.390 0.179 0.432 0.209 0.416 0.211 0.494 0.257

LMD (Eq. 9.32) 0.450 0.193 0.428 0.226 0.484 0.244 0.580 0.293

DFR (Eq. 9.51/9.52) 0.426 0.183 0.446 0.216 0.465 0.248 0.550 0.269

Table 9.1 shows the effectiveness of the retrieval methods presented in this chapter. The numbers

in this table may be compared with those in Tables 2.5 (page 72) and 8.2 (page 279). Results

for the passage retrieval algorithm of Section 9.6 are not shown in the table because the method

ranks passages, not documents. Although in principle it could be used for document ranking

purposes, by assigning each document the score of its highest-scoring passage, this approach

breaks down for one-word queries.

9.8 Further Reading

The seminal work on the language modeling approach to information retrieval, as presented

in this chapter, includes that of Ponte and Croft (1998), Berger and Lafferty (1999), Zhai and

Lafferty (2004), and the Ph.D. thesis of Hiemstra (2001). A volume edited by Croft and Lafferty

consolidates much of the work up to 2003 (Croft and Lafferty, 2003). Lavrenko and Croft (2001)

explore the role of relevance in the language modeling approach. Other early work includes that

of Miller et al. (1999), who derive Equation 9.21 by assuming that queries are generated from

documents using a hidden Markov model (HMM), where λ selects between a document state

and a general language state, as represented by the collection. They then extend this HMM

framework to incorporate pseudo-relevance feedback, proximity, and document priors.

Smoothing plays an important part in language modeling techniques across the full range

of human language technologies. Chapter 6 of Manning and Schütze (1999) includes a general

introduction to language modeling. Chen and Goodman (1998) provide a tutorial comparison

of smoothing techniques.

The language modeling approach forms the foundation for a noticeable segment of current

IR research. Most IR conference proceedings from the past several years contain papers that

build upon or depend upon the insights of the language modeling approach. Although a complete

9.9 Exercises 307

bibliography is outside the scope of this book, we provide a few examples of recent research: Met-

zler and Croft (2004) combine the language modeling approach with the probabilistic inference

model (Turtle and Croft, 1991; Greiff et al., 1999); Cao et al. (2005) integrate term dependence

into the language modeling approach; Tao and Zhai (2007) and Zhao and Yun (2009) integrate

proximity measures into the language modeling approach; Cao et al. (2008) consider pseudo-

relevance feedback within a language modeling framework. Lv and Zhai (2009) consider the

integration of term positional information. Zhai (2008b) provides a recent survey of language

modeling for information retrieval.

9.9 Exercises

Exercise 9.1 You have discovered that documents in a certain collection have a “half-life” of

30 days. After any 30-day period a document’s prior probability of relevance p(r |D) is half of

what it was at the start of the period. Incorporate this information into Equation 9.8. Simplify

the equation into a rank-equivalent form, making any assumptions you believe are reasonable.

Exercise 9.2 Show that models resulting from Dirichlet smoothing can be treated as

probability distributions. That is, show
∑

t∈VM
μ
d(t) = 1.

Exercise 9.3 (project exercise) Implement the LMD ranking formula (Equation 9.33). Test

your implementation using the test collection developed in Exercise 2.13 or any other available

collection, such as a TREC collection.

Exercise 9.4 (project exercise) Implement DFR ranking as described in Section 9.5. Test

your implementation using the test collection developed in Exercise 2.13 or with any other

available collection, such as a TREC collection.

Exercise 9.5 (project exercise) Implement the passage retrieval and scoring method

described in Section 9.6. Use your implementation to provide result snippets for one of the

document retrieval methods described in this book.

9.10 Bibliography

Amati, G., Carpineto, C., and Romano, G. (2003). Fondazione Ugo Bordoni at TREC 2003:

Robust and Web Track. In Proceedings of the 12th Text REtrieval Conference. Gaithersburg,
Maryland.

Amati, G., and van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based

on measuring the divergence from randomness. 20(4):357–389.

Chapter 9 Language Modeling and Related Methods308

Berger, A., and Lafferty, J. (1999). Information retrieval as statistical translation. In Proceedings

of the 22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 222–229. Berkeley, California.

Cao, G., Nie, J.Y., and Bai, J. (2005). Integrating word relationships into language models.

In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 298–305. Salvador, Brazil.

Cao, G., Nie, J.Y., Gao, J., and Robertson, S. (2008). Selecting good expansion terms for

pseudo-relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 243–250. Singapore.

Chen, S. F., and Goodman, J. (1998). An Empirical Study of Smoothing Techniques for Language

Modeling. Technical Report TR-10-98. Aiken Computer Laboratory, Harvard University.

Clarke, C. L. A., Cormack, G. V., Lynam, T.R., and Terra, E. L. (2006). Question answering by

passage selection. In Strzalkowski, T., and Harabagiu, S., editors, Advances in Open Domain

Question Answering. Berlin, Germany: Springer.

Croft, W. B., and Lafferty, J., editors (2003). Language Modeling for Information Retrieval.

Dordrecht, The Netherlands: Kluwer Academic Publishers.

Greiff, W. R., Croft, W. B., and Turtle, H. (1999). PIC matrices: A computationally tractable

class of probabilistic query operators. ACM Transactions on Information Systems, 17(4):367–

405.

Hiemstra, D. (2001). Using language models for information retrieval. Ph.D. thesis, University

of Twente, The Netherlands.

Jelinek, F., and Mercer, R. L. (1980). Interpolated estimation of Markov source parameters from
sparse data. In Proceedings of the Workshop on Pattern Recognition in Practice. Amsterdam,

The Netherlands.

Lafferty, J., and Zhai, C. (2001). Document language models, query models, and risk min-
imization for information retrieval. In Proceedings of the 24th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 111–119.

New Orleans, Louisiana.

Lavrenko, V., and Croft, W. B. (2001). Relevance based language models. In Proceedings

of the 24th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 120–127. New Orleans, Louisiana.

Lv, Y., and Zhai, C. (2009). Positional language models for information retrieval. In Pro-

ceedings of the 32nd International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 299–306. Boston, Massachusetts.

Manning, C. D., and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

Cambridge, Massachusetts: MIT Press.

Metzler, D., and Croft, W. B. (2004). Combining the language model and inference network
approaches to retrieval. Information Processing & Management, 40(5):735–750.

9.10 Bibliography 309

Miller, D. R. H., Leek, T., and Schwartz, R. M. (1999). A hidden Markov model information

retrieval system. In Proceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 214–221. Berkeley, California.

Plachouras, V., Ounis, I., Amati, G., and Rijsbergen, C. V. (2002). University of Glasgow

at the Web Track of TREC 2002. In Proceedings of the 11th Text REtrieval Conference.
Gaithersburg, Maryland.

Ponte, J. M., and Croft, W. B. (1998). A language modeling approach to information retrieval.

In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 275–281. Melbourne, Australia.

Song, F., and Croft, W. B. (1999). A general language model for information retrieval. In

Proceedings of the 8th International Conference on Information and Knowledge Management,
pages 316–321. Kansas City, Missouri.

Tao, T., and Zhai, C. (2007). An exploration of proximity measures in information retrieval.

In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 295–302. Amsterdam, The Netherlands.

Tellex, S., Katz, B., Lin, J., Fernandes, A., and Marton, G. (2003). Quantitative evaluation

of passage retrieval algorithms for question answering. In Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in Informaion Retrieval.

Toronto, Canada.

Turtle, H., and Croft, W. B. (1991). Evaluation of an inference network-based retrieval model.
ACM Transactions on Information Systems, 9(3):187–222.

Zhai, C. (2008a). Statistical Language Models for Information Retrieval. Synthesis Lectures on

Human Language Technologies: Morgan & Claypool.

Zhai, C. (2008b). Statistical language models for information retrieval: A critical review.

Foundations and Trends in Information Retrieval, 2.

Zhai, C., and Lafferty, J. (2001). A study of smoothing methods for language models applied

to ad hoc information retrieval. In Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 334–342. New

Orleans, Louisiana.

Zhai, C., and Lafferty, J. (2004). A study of smoothing methods for language models applied

to information retrieval. ACM Transactions on Information Systems, 22(2):179–214.

Zhao, J., and Yun, Y. (2009). A proximity language model for information retrieval. In

Proceedings of the 32nd International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 291–298. Boston, Massachusetts.

10 Categorization and Filtering

In this chapter we consider information needs that are longstanding, recurring, or common for

a large population of users. Table 10.1 shows short excerpts from 60 Wikipedia articles. Can

you identify the language of each excerpt? Figure 10.1 shows an e-mail in-box with 18 messages.

Can you identify the 10 spam messages?

In both of these examples the essential information need — to identify the language or to

identify spam — is commonly understood and likely to arise in many circumstances. A search

engine might need to identify the language of a query so as to provide a relevant response; or

a searcher might wish to explicitly specify the language of documents to be retrieved (which

may be different from that of the query). An e-mail spam filter must identify spam in order to

prevent its delivery. A customer-support “help desk” might need to route incoming e-mail to

personnel capable of reading and responding to it.

As a third and final example consider a search-oriented information need statement such

as topic 383 from the TREC Filtering Track (shown in Figure 10.2), which concerns medical

treatments for mental illness. A search engine, as described in the previous chapters, may be

used to find historical documents in a corpus. But the user, perhaps a health-care professional,

may wish to remain abreast of developments by being informed on an ongoing basis of any new

articles relevant to the query. The essential information need is the same, but in the first case

it is transitory, whereas in the second, it is longstanding.

Categorization is the process of labeling documents to satisfy some information need; in our

examples the documents might be labeled with a tag indicating language, spam or ham (i.e., not

spam), relevance or nonrelevance. Filtering is the process of evaluating documents on an ongoing

basis according to some standing information need. Generally the outcome of filtering is to

deliver the document to zero or more destinations, depending on the information need. A spam

filter, for example, will either delete spam or deliver it to a junk folder but deliver ham to the

user’s in-box. A news filter might deliver articles on mental health to our health-care professional.

Routing is a synonym for filtering with the connotation that documents are delivered to distinct

locations, according to their category. Selective dissemination of information (SDI) is another

synonym.

The problems of categorization and filtering are similar to those of search. In a sense they

are dual formulations of the same problem: Classification and filtering find the categories to

which a given document belongs; that is, the longstanding information needs that are met by

the document. Search, on the other hand, finds the documents that satisfy a given information

need; that is, documents belonging to a particular category, whether relevant or not.

Chapter 10 Categorization and Filtering 311

Table 10.1 Snippets from 60 language-specific editions of Wikipedia. Each snippet is the first
50 bytes of the text of an article retrieved via the “random article” link.

�� ����� �� ����� ���	�
���������������������������������������
��������������� !� ���"��������������� ����� ����"����#��� ���������!���#�� �!���"�����$
�� �����������%��!�&�!������&���������'� ����� (����&�������������������)�����*����� ����+��
(������,&���"���(������#���#���������� ����� (-���.������������� /�""��"�!!������/���!�"�$�0
(�������1(������2�������-���!�"����3����� ����� 4������&�����������%��&#��&��&���������
4�"������������ ���������"����������������&�" ����� 4���������5��67	6 8�
��87	6 6� 9
:����1�:�
���* ;�
 ���*�����"�����/��� ����� :��������8�������������������������������������8
:���0�����<���#���1=��>$�?��������� ��9�&#@A�� �& ����� B������4����������1!���	������!����8	��2���
<������/#�!��������1�=�	6��������������C��* ����� <����@�����;�! ��# ��1�����2����� &��#� &
<���������D������#E������!D�"��������.��F�- ����� <�����1@����2�G�H�������!���!�&�����!����������<
0��������-�����I�� ������"%�#�����I��"����- ����� 0����"����#���0����0.������*�"�������������
?��� ����,������$�,������������4#����@�!%�% ����� J�! ��������������������� #�������������������
J������� ��5�8	7�8
���76� 9 ����� +�����#�!�����%�����!�����������&���������
����/#������K������1=�>$���������8�����9����� ����� �����������)����� ����9�����������������������

<4�C�	������L�����M#�� �I�9�������*�"���M ����� K���� N��&������������������ -��*�O��# ���
,����)))�1�	��4#N������*��C	��P��C�<���������* ����� ,��&�!�����N�"��P���" ��������&����!���@��
,Q�� R�S!�*�� ��-&��S��T����-�������� ����� T�������&����������������U�����
FV���#����"�����V�#!��V���)��J�����*���"�� ����� ����W�"����1�������"����X��&��5� �*����
������@��#�����������������������������-�D!� ����� A���<�������!���� ��������Y�����!�����&��Z:��5
[�U����\�;�;�"���;�;"\��]��%���^]� ����� �"���
&��A�������������!�����Y����J� ��

@ �����
���8� �����

����
�����

����� _

���� ���

�1 ��� �5?-���2 ���� �1��>82�

�����

�P� ���� �1FQ�����
�<(�� �?,�1���8� ��� 2 ����� �1)���#�
���������,��-2

Categorization and filtering differ from search in a number of ways. Categories are typically

(but not always) specified quite differently from the information need statements or queries

associated with search. One would hardly expect the search methods presented in the preceding

chapters to give a meaningful response to an information need statement such as “find documents

written in Dutch” or “find spam”. Even given an amenable information need, such as that of our

health-care professional, the longstanding nature of information needs makes it worthwhile to

spend more effort communicating the need to the system. One way to do so is to have an expert

Chapter 10 Categorization and Filtering312

Figure 10.1 Ten of these 18 e-mail messages are spam. Can you identify them?

manually specify a number of rules: the vocabulary, grammar, and identifying characteristics

of the various languages, spam messages, or mental health treatments. These rules are in effect

complex Boolean search queries. With sufficient effort it is possible to define rules to distinguish

languages, or spam from ham, or reports on treatments for depression from other articles. But,

as just as they are for search, automatic methods for categorization and filtering are more

efficient and typically more effective. The automatic approaches we shall consider are machine

learning methods known as classifiers. A classifier learns from examples how to distinguish

documents belonging to different categories.

In a sense any search method is a classifier because it aims to distinguish relevant from non-

relevant documents. In the same way that a search engine may return either a set of documents

or a ranked list, a classifier may be hard or soft. A hard classifier returns a Boolean result

indicating whether or not a document belongs to a category, whereas a soft classifier returns

a confidence score. Soft classification is often called ranking, and the study of soft classifiers is

called learning to rank.

Although it is not traditionally considered machine learning, the BM25 ranking method from

Chapter 8 meets our definition of a soft classifier, and may be applied with reasonable effective-

ness to the filtering and categorization problems introduced in this chapter. In Section 10.1 we

develop the example problems outlined previously, showing the role of classification and ranking

in their solution. To illustrate this role we use BM25 because it is familiar and yields results

that are good enough to serve as baselines for comparison with other methods presented in this

chapter and the next. Along the way we develop evaluation measures specific to this purpose.

10.1 Detailed Examples 313

<top>

<num> Number: 383

<title> mental illness drugs

<desc> Description:

Identify drugs used in the treatment of mental illness.

<narr> Narrative:

A relevant document will include the name of a specific

or generic type of drug. Generalities are not relevant.

</top>

Figure 10.2 TREC 7 Adhoc and TREC 8 Filtering Topic 383.

In Section 10.2 we treat classification more formally, and in Sections 10.3 through 10.7

we describe a wide variety of learning methods that are useful for categorization and filter-

ing. In Section 10.8, we compare the results from these methods with the BM25 baselines of

Section 10.1.

10.1 Detailed Examples

Through a series of graduated examples we illustrate typical filtering and categorization prob-

lems, solutions, and evaluation methods. The problems are variants of those posed above:

topic-oriented filtering, language categorization, and spam filtering. The solutions illustrated

in this section employ the BM25 ranking and relevance feedback methods from Chapter 8.

Although BM25 is not typically used for filtering and classification, it provides a convenient

starting point for understanding the area as well as a solid baseline for comparison. Evaluation

measures are developed in conjunction with the problems and solutions to which they apply.

We begin with an example that is similar to the ranked retrieval task for which BM25 was

designed, then progress through several variants that highlight differences in the task, approach,

and evaluation measures.

10.1.1 Topic-Oriented Batch Filtering

Consider the needs of our health-care professional. The topic format is suitable as input to a

search engine, but at the outset of a filtering task the documents to be searched do not yet

exist! So there is nothing to do but wait for documents to arrive. If we can afford to wait for

a large number of documents to arrive, we can accumulate them into a corpus, index them,

and apply a search method such as BM25 to yield a ranked list of the most likely relevant

documents, which is then presented to the user. We can then wait for more documents to arrive

and repeat the process for each new batch of documents in turn. This approach is known as

batch filtering. From the user’s perspective batch filtering yields a viable solution if enough

Chapter 10 Categorization and Filtering314

Table 10.2 Topic-oriented batch filtering results. Undefined results are represented by a dash.

First Batch Second Batch Avg. (all batches)

Batches n |Rel| AP P@10 |Rel| AP P@10 |Rel| AP P@10

1000 141 1 1.00 0.1 0 – 0.0 0.07 – 0.01

500 281 1 0.50 0.1 0 – 0.0 0.13 – 0.01

100 1407 3 0.33 0.2 0 – 0.0 0.67 – 0.04

50 2814 3 0.15 0.1 1 0.33 0.1 1.34 – 0.05

10 14070 6 0.06 0.0 8 0.17 0.1 6.70 0.10 0.07

5 28140 14 0.08 0.1 14 0.09 0.1 13.00 0.07 0.10

1 140651 67 0.05 0.1 67.00 0.05 0.10

documents arrive within a suitable time interval. Our health-care professional may be satisfied

to see new articles once a week or once a month. Indeed, this may be the preferred mode of

delivery. In other circumstances, such as e-mail filtering, the delay associated with batching is

probably not acceptable.

To illustrate the batch filtering approach, we assume that topic 383 represents the user’s

information need, and process a chronological subsequence of the TREC45 corpus using BM25.

In particular:

• We use the title field as a query: 〈 “mental”, “illness”, “drugs” 〉.
• Guided by our experience with multilingual search and spam filtering, we use byte

4-grams as tokens (see Section 3.3). For topic 383 stemmed and unstemmed words yield

similar results, which we do not report.

• We use the BM25 parameter settings k1 = 1.1 and b = 0, effectively ignoring document

length. We retain these settings for the subsequent experiments reported in this chapter.

• For this experiment we do not use relevance feedback or pseudo-relevance feedback

(Section 8.6).

• We use the Financial Times (FT) documents, dated 1993 and later from the TREC45

collection. These documents are chronologically ordered over a period of about two years.

There are N = 140,651 documents, of which 67 are relevant to topic 383. This sequence

of documents was used as the evaluation set for the routing and batch filtering tasks of

the TREC 8 Filtering Track.

• To simulate batch filtering with various batch sizes, we group the documents into equal-

sized batches of consecutive documents ranging from 141 documents (1000 batches; each

the better part of a day’s messages) to 140,651 documents (one batch; the full two years’

messages). Each batch is indexed as a separate and independent document collection.

The batches are presented to the BM25 filter, one batch at a time, in chronological order.

10.1 Detailed Examples 315

The problem of evaluating filter effectiveness is somewhat different from that of evaluating

ranked retrieval. We introduce notions as necessary to evaluate our examples and relate them

to the more general evaluation framework.

For the single batch of 140,651 documents, batch filtering is equivalent to ranked retrieval.

We could use any of the measures introduced in Section 2.3 and expanded upon in Chapter 12.

On the single batch BM25 yields P@10=0.1, P@1000=0.04, and AP=0.053.

When more than one batch is considered, an obvious but unsatisfactory approach is to com-

pute the evaluation measure separately for each batch, then average these results to yield a

summary measure. This approach is unsatisfactory for the following reasons:

• When we divide the documents into more batches, the number of documents per

batch (n) and the number of relevant documents per batch (|Rel|) decrease. When

the number of batches is large, many batches will have no relevant documents (i.e.,

|Rel| = 0). Average precision (AP) is undefined if any batch has |Rel| = 0. In general

any measure that depends on |Rel| will not work for small batches.

• Measures such as precision at k (P@k) are heavily influenced by n, thus rendering it

impossible to compare results using different batch sizes.

Table 10.2 illustrates these issues. For batch sizes varying between n = 141 (1000 batches) and

n =28,140 (5 batches), we show AP and P@10 for the first two batches and the average over all

�N/n� batches. For n = 1 there is only one batch.

AP is undefined for most batch sizes because many batches contain no relevant documents.

Both P@10 and AP (where it is defined) vary with batch size and convey little information

about the effectiveness of the method for its intended purpose.

P@k is not a suitable measure for comparing results using different batch sizes because for any

given k the number of retrieved documents is proportional to the number of batches. Consider

the two extreme cases of 1000 batches and a single batch. If 1000 batches are used, P@10 is

the precision achieved when the user is presented 10,000 documents in total, 10 per batch. If a

single batch is used, P@10 is the precision achieved when she is presented only 10 documents.

A more reasonable approach is to hold the total number of documents presented to the user

constant over all batches. This is achieved by evaluating P@�ρn�, where 1
n ≤ ρ
 1; that is,

we assume that the user is presented the top-ranked fraction ρ of each batch of documents and

hence this same fraction ρ of all documents in the corpus. For our purposes we choose ρ = k
N

where N is the corpus size and k is the total number of documents presented to the user. So

regardless of the batch size n, the average of P@
⌊

k n
N

⌋
over all batches is comparable with P@k

for the single batch. Table 10.3 shows P@�ρn�, which corresponds to k between 10 and 2000.

The numbers in each column pertain to the same overall number of retrieved documents. From

this table we see that for this example, the average is largely unaffected by batch size so long

as the batch size is large enough that �ρn� > 0.

The measure P@�ρn� assumes that an equal proportion of documents from each batch is

presented to the user. This assumption may be unrealistic because some batches will contain

Chapter 10 Categorization and Filtering316

Table 10.3 Size-specific P@k results for topic-oriented batch filtering.

P@�ρn�

Batches n ρ = 10
N

ρ = 20
N

ρ = 100
N

ρ = 200
N

ρ = 1000
N

ρ = 2000
N

1000 141 – – – – 0.03 0.02

500 281 – – – – 0.04 0.01

100 1407 – – 0.05 0.04 0.04 0.02

50 2814 – – 0.07 0.05 0.04 0.01

10 14070 0.1 0.10 0.07 0.06 0.04 0.03

5 28140 0.2 0.10 0.06 0.06 0.04 0.01

1 140651 0.1 0.15 0.07 0.06 0.04 0.03

Table 10.4 Aggregate results for topic-oriented batch filtering.

Batches n P@10 P@20 P@100 P@200 P@1000 P@2000 AP

1000 141 0.2 0.10 0.07 0.08 0.04 0.02 0.058

500 281 0.1 0.15 0.08 0.08 0.04 0.03 0.056

100 1407 0.1 0.15 0.06 0.07 0.04 0.03 0.053

50 2814 0.1 0.15 0.07 0.06 0.04 0.03 0.053

10 14070 0.1 0.15 0.07 0.06 0.04 0.03 0.053

5 28140 0.1 0.15 0.07 0.06 0.04 0.03 0.053

1 140651 0.1 0.15 0.07 0.06 0.04 0.03 0.053

more relevant documents than others. This situation may arise entirely due to chance, or because

the documents are chronologically ordered and their makeup will naturally be be influenced by

current events. A filtering system that reflects this variable proportion may better meet the

user’s information needs. Suppose that the user is prepared to examine documents at an average

rate of ρ; that is, over time to examine ρN of the N documents processed by the filter. Precision

over these ρN documents is not optimized by presenting exactly ρn documents per batch to

the user. Precision may be improved if the filter presents to the user more documents from the

batches that it deems to contain a larger number of relevant documents.

Because BM25 orders documents ranked by a relevance score s, we may select, rather than

the top-ranked �ρn� documents from every batch, those documents with s > t for some fixed

threshold t. Overall, a larger value of t will result in fewer documents being returned with

higher precision, and vice versa. Therefore, for any particular k there exists a value of t such

that about k = ρN documents have a score s > t. For the moment we assume that it is possible

to determine in advance the appropriate value of t for any k. Under this assumption we coin

the term aggregate P@k to characterize the effectiveness of the system under the choice of t

that yields k documents in total (see Table 10.4). Aggregate AP, also shown, is derived from

10.1 Detailed Examples 317

D o c u m e n t
S t r e a m

Fi l te r

D e l i v e r y
M e d i u m

T o p i c

Figure 10.3 Topic-oriented on-line filtering.

aggregate P@k in the normal way. As we would expect, the numbers in each column are nearly

identical. The variations are due to slight differences in IDF values from batch to batch.

Aggregate P@k and aggregate AP aptly model the real-world scenario in which the filter

may be tuned to a particular user’s requirement by setting t as described above. They also

model the real-world scenario in which the results of each batch are entered successively into a

common priority queue that the user may peruse at will. Aggregate P@k is the precision of the

top k elements of the queue once all batches are processed, whereas aggregate AP measures the

effectiveness of the final ranking.

10.1.2 On-Line Filtering

On-line filtering is analogous to batch filtering with batch size n = 1. As depicted in Figure 10.3,

an on-line filter acts immediately on each message in sequence rather than on batches of mes-

sages. Messages deemed likely to be relevant are delivered to the user; those deemed unlikely

to be relevant are discarded. The delivery medium may be a text message system or an e-mail

system, or a result archive that the user consults when convenient. The possible media form a

continuum largely characterized by immediacy, storage capacity, and access capability.

Chapter 10 Categorization and Filtering318

Table 10.5 Aggregate results for topic-oriented batch versus on-line filtering. The first row
is repeated from Table 10.4.

Method P@10 P@20 P@100 P@200 P@1000 P@2000 AP

Single batch 0.1 0.15 0.07 0.06 0.04 0.03 0.053

On-line 0.2 0.15 0.05 0.05 0.03 0.02 0.041

Like batch filtering, on-line filtering requires a trade-off between precision and recall. In

general it is possible to increase recall at the expense of precision by delivering more messages

to the user. Nowadays even the most immediate media (e.g., text messaging) have large storage

capacity and sophisticated access capabilities, so the user’s capacity to deal with the messages

is more likely to be a constraint than that of the medium. To that end it is advantageous, where

possible, to prioritize messages delivered to the medium, which in effect acts as a priority queue.

As with ranked retrieval, the user tacitly determines the trade-off by examining some number

of the highest-priority documents.

In the event that prioritization is impossible, it is necessary to determine a threshold t such

that an appropriate number of documents is delivered. We may set t so that the rate of delivery

is ρ (as described in the previous section) or to optimize some function (e.g., Fβ ; page 68) that

captures the trade-off between precision and recall.

The relevance score of a ranked retrieval method like BM25 is a suitable indicator of priority,

provided the score can be computed on a per-document basis. In this regard BM25 is not

entirely amenable, because it depends on the term count Nt, whose computation assumes a

large collection of documents. That said, we may apply BM25 to the near-vacuous collection

consisting of only the document to be filtered, and come up with aggregate results that are not

dramatically inferior to those for batch filtering, as shown in Table 10.5. In any event both batch

and on-line filtering are improved substantially by the use of historical examples, as detailed in

the following section.

10.1.3 Learning from Historical Examples

Generally, when a filter is deployed, we have available historical examples of documents from the

same source or a similar source. Recall that the filter in our running example is to be deployed

on Financial Times documents dated 1993 or later. The TREC45 collection also contains 69,508

Financial Times documents dated 1992 or earlier that can serve as historical examples.

We know from previous TREC evaluation efforts that 22 of these historical documents are

relevant to topic 383. But this information would not necessarily be known at the time of filter

deployment. We first consider using the historical documents without this relevance informa-

tion, and then how this information, if available, may be harnessed to dramatically improve

effectiveness.

10.1 Detailed Examples 319

Table 10.6 The effect of historical collection statistics on aggregate results for topic-oriented on-line filtering. The
first two rows are repeated from Table 10.5. The third row represents a filter that uses historical collection statistics
to compute IDF values. The last row shows the effect of augmenting the query with 20 terms extracted from labeled
training examples through BM25 relevance feedback prior to filter deployment.

Method P@10 P@20 P@100 P@200 P@1000 P@2000 AP

Single batch 0.1 0.15 0.07 0.06 0.04 0.03 0.053

On-line no history 0.2 0.15 0.05 0.05 0.03 0.02 0.041

On-line historical IDF 0.1 0.15 0.07 0.06 0.04 0.03 0.054

On-line historical IDF + training 1.0 0.95 0.39 0.24 0.06 0.03 0.555

Historical collection statistics

Perhaps the simplest way to use historical documents is to increase the effective batch size for

batch filtering. For any given batch the historical documents are combined with those of the

batch and the entire collection is ranked. Then the historical documents are removed from the

ranked list, thus yielding a rank and a score for each document in the batch to be filtered.

The principal effect of this approach is to yield better collection statistics (IDF in particular)

and hence a more accurate relevance score. A secondary effect is that rather than returning a

fixed number k of documents per batch, we can return only those that appear among the top

k′ > k in the combined ranked list. If the batch contains more high scoring documents, more

documents will be returned. For a suitable choice of k′ the system will return the same number

of documents overall while achieving better precision.

The use of historical documents effectively transforms the on-line filtering problem into a

batch problem in which the only work to be done is to compute the score of each filtered

document and, perhaps, its relative rank within the historical collection. For this purpose the

index structures detailed in previous chapters are overkill. All we need to compute BM25 and

similar scores is a dictionary indicating the document count Nt for each term and, if a rank

score is desired, an ordered list of the historical documents’ scores. To compute the relevance

score we simply fetch the relevant Nt values and apply the formula; to compute rank we apply

a binary search to the list of historical scores.

The third row in Table 10.6 shows the effect of using historical collection statistics on the

aggregate effectiveness of our on-line filter. The aggregate result is nearly identical to that

achieved by our batch filter.

Historical training examples

Because the information need associated with a filter is ongoing, it is likely that examples of

relevant documents are already known or can be found without too much effort. These examples

are known as training examples or labeled data. In machine learning using labeled data to build

a classifier is known as supervised learning. In this book we have already described one simple

method of supervised learning: the BM25 relevance feedback approach (Section 8.6).

Chapter 10 Categorization and Filtering320

As we mentioned previously, there are 22 relevant documents in our historical Financial Times

data. We used BM25 relevance feedback to select the best m = 20 terms from these documents,

which were used to augment the 3 terms from the topic. Using these terms, the BM25 scoring

formula was applied to each document in turn as an on-line filter.

The aggregate results of this method of supervised learning are shown in the bottom row of

Table 10.6. The first and last columns of results are not misprints: For this specific task the use

of historical training examples yields roughly a tenfold improvement in both P@10 and AP.

10.1.4 Language Categorization

From the 60 language-specific editions of Wikipedia in Table 10.7, we fetched 8012 articles using

the “random article” link and extracted from each the first 50 bytes of the main text (shown in

Table 10.1 on page 311). We consider the dual problems of categorization and filtering:

• Categorization: Given a document d and a set of possible categories, identify the category

(or categories) to which d belongs. Categorization may be reduced to category ranking,

which ranks the categories according to how likely they are to contain the document.

• Filtering: Given a particular category c, identify documents that belong to c. Filtering

may be reduced to document ranking, which ranks documents according to how likely

they are to belong to the category.

For the purposes of our example the documents are snippets from Wikipedia articles and the

categories are languages. By definition each document in our example belongs to exactly one

category, determined by the Wikipedia edition from which it was extracted. In other situations

it may make sense to consider a document as belonging to several categories; for example,

a document might contain several languages or a language might have several overlapping

dialects. When working with full documents, language identification is relatively straightfor-

ward (McNamee, 2005), but we deliberately limit ourselves to short snippets for the purposes

of this example.

Our language categorization problem may arise when we wish to identify the language of

a message for routing purposes or to organize documents into language-specific collections.

Neither of these problems is readily expressed as a query that can be processed by a search

engine. Instead, we rely exclusively on training examples to communicate the information need.

To this end we arbitrarily consider 4000 of the snippets to be historical, and the remaining

4012 snippets as the ones to be categorized or filtered. In machine-learning terms, the historical

examples form a training set and the others form a test set. The overall objective is to categorize

or filter a set of examples much larger than the test set, which should be viewed as a sample

for the purpose of estimating classifier effectiveness on the larger set.

Filtering and document ranking can be done with the methods we have introduced for topic-

oriented filtering with historical examples. We consider each language to be a separate topic

and apply BM25 ranking with relevance feedback (Section 8.6). For this example we treat each

10.1 Detailed Examples 321

Table 10.7 Tags identifying 60 language-specific Wikipedia editions.

Tag Language Tag Language Tag Language

ang Anglo-Saxon fi Finnish nn Nynorsk

ar Arabic fr French no Bokm̊al

az Azeri he Hebrew pa Punjabi

bg Bulgarian hi Hindi pl Polish

bn Bengali hr Croatian pt Portuguese

bpy Bishnupriya hu Hungarian ro Romanian

br Breton id Indonesian ru Russian

bs Bosnian is Icelandic simple Simple English

ca Catalan it Italian sk Slovak

cs Czech ja Japanese sl Slovenian

cy Welsh ka Georgian sq Albanian

da Danish ko Korean sr Serbian

de German la Latin sv Swedish

el Greek lb Luxembourgish ta Tamil

en English lt Lithuanian th Thai

eo Esperanto mk Macedonian tr Turkish

es Spanish mr Marathi uk Ukrainian

et Estonian ms Malay vi Vietnamese

eu Basque new Nepal Bhasa yo Yoruba

fa Persian nl Dutch zh Chinese

of the training snippets in a topic language as a “relevant document”. For a given language we

create a query from the training snippets by treating each byte 4-gram as a query term.

Table 10.8 shows the per-language AP results that are achieved by applying BM25 to each

of the 60 filtering problems, as well as the overall MAP. By usual search standards MAP=0.78

would indicate extremely high effectiveness, but it tells us little about how effectively (or indeed

how) BM25 addresses the categorization problem.

To address the categorization problem we must rank languages instead of documents, and we

must compute this ranking for every document. To do so we use the relevance scores from the

document ranking. Given a document d and a language l, let s(d, l) be the relevance score for d

in the document ranking for language l. Now consider two languages l1 and l2. We assume that

s(d, l1) > s(d, l2) indicates that d is more likely to be written in language l1 than in l2. Under

this assumption s(d, l) is also the relevance score for l in the category ranking for document d.

It is infeasible to show all 4012 category rankings. Table 10.9 shows one example: the com-

plete ranking of languages for a snippet drawn from the German Wikipedia. We see that the

correct category (l1 = de) is ranked first and other categories that are apparently similar — the

Germanic languages — are ranked ahead of those that are dissimilar, such as Asian languages.

Chapter 10 Categorization and Filtering322

Table 10.8 AP results for 60 language-specific filtering problems,
using BM25 with terms selected from 4000 training examples.

Tag AP Tag AP Tag AP

ang 0.91 ar 0.99 az 0.53

bg 0.67 bn 0.84 bpy 0.81

br 0.94 bs 0.48 ca 0.70

cs 0.67 cy 0.95 da 0.40

de 0.76 el 1.00 en 0.59

eo 0.72 es 0.67 et 0.45

eu 0.82 fa 0.95 fi 0.85

fr 0.79 he 1.00 hi 0.72

hr 0.47 hu 0.75 id 0.67

is 0.93 it 0.79 ja 0.94

ka 0.99 ko 1.00 la 0.79

lb 0.97 lt 0.82 mk 0.81

mr 0.86 ms 0.68 new 0.91

nl 0.84 nn 0.63 no 0.45

pa 0.96 pl 0.83 pt 0.83

ro 0.92 ru 0.75 simple 0.54

sk 0.75 sl 0.59 sq 0.60

sr 0.68 sv 0.76 ta 0.97

th 1.00 tr 0.82 uk 0.84

vi 0.96 yo 0.63 zh 0.87

MAP: 0.78

Strictly applying our problem definition, there is exactly one relevant result: the correct category.

All others are nonrelevant.

Table 10.10 lists overall summary measures for the 4012 language rankings. In this table P@1

is more commonly called accuracy: the proportion of documents for which the correct category

was ranked first. MAP is equal to the measure known as mean reciprocal rank (MRR) because

there is exactly one relevant result per ranking (see page 409). For a single topic, reciprocal

rank is defined as RR = 1
r , where r is the rank of the first (and only) relevant result. Because

AP = P@r = 1
r , in this case RR = AP and MRR = MAP.

The summaries shown in the table are expressed as micro-averages and as macro-averages,

defined as follows:

• Micro-average: A summary measure over all documents, without regard to category.

• Macro-average: The average of summary measures computed for each category.

10.1 Detailed Examples 323

Table 10.9 Language ranking for the German snippet shown at the top
of the table (correct tag: de). s(d, l) denotes the BM25 score for the given
language.

W������0���1=�	$����������������JE�#���1��#��
Tag s(d, l) Tag s(d, l) Tag s(d, l)

de 58.2 lb 35.2 da 33.6

no 29.1 en 28.4 tr 19.4

sk 18.5 hu 17.5 bs 16.4

la 14.7 cs 14.5 et 13.2

fi 13.0 es 12.7 cy 12.0

is 11.8 sl 10.6 simple 10.4

nl 9.3 pl 7.3 yo 7.1

sv 6.0 sq 5.9 ru 5.0

ro 4.6 ang 4.5 lt 3.9

el 3.4 eo 3.3 az 2.4

sr 2.4 nn 2.4 ms 1.7

fr 1.4 zh 0.0 vi 0.0

uk 0.0 th 0.0 ta 0.0

pt 0.0 pa 0.0 new 0.0

mr 0.0 mk 0.0 ko 0.0

ka 0.0 ja 0.0 it 0.0

id 0.0 hr 0.0 hi 0.0

he 0.0 fa 0.0 eu 0.0

ca 0.0 br 0.0 bpy 0.0

bn 0.0 bg 0.0 ar 0.0

AP (RR): 1.00

For this example the difference between micro-average and macro-average is small because there

are roughly the same number of examples of each language in the test. The difference may be

profound when the number of examples differs or when the effectiveness of the ranking varies

from category to category. To illustrate the difference, we extrapolate the summary measures

from our test set to the entire Wikipedia.

Table 10.11 shows, for each Wikipedia edition, the fraction of all articles in the edition and

the MRR summary for those articles. The editions vary substantially in size, and the largest

edition (English) contains vastly more articles than any other but achieves a mediocre MRR

score of 0.71. The net result is that for the test set, micro-averaged MRR is lower than macro-

averaged MRR (0.82 versus 0.86). In other applications, such as spam filtering, the difference is

even more important. Overall, a macro-average is independent of the proportion of documents

Chapter 10 Categorization and Filtering324

Table 10.10 Summary measures for language ranking over 4012 snippets. P@1 is equivalent to
accuracy: the total fraction of correctly classified snippets. MAP is equivalent to MRR, since the
problem statement defines exactly one “relevant” language for each snippet.

Accuracy (P@1) Error (1-accuracy) MRR (MAP)

Micro-average 0.79 0.21 0.860

Macro-average 0.79 0.21 0.857

Table 10.11 Language categorization results extrapolated over the contents of 60 Wikipedia
editions. The columns labeled “%” contain the fraction of all Wikipedia articles that belong to the
given edition. Some editions (e.g., English) contain far more articles than others (e.g., Icelandic).

Tag % MRR Tag % MRR Tag % MRR

ang 0.01 0.90 ar 0.81 0.99 az 0.19 0.91

bg 0.60 0.87 bn 0.16 0.89 bpy 0.20 0.84

br 0.21 0.89 bs 0.22 0.69 ca 1.45 0.80

cs 1.05 0.77 cy 0.19 0.95 da 0.90 0.65

de 7.52 0.88 el 0.35 1.00 en 23.95 0.71

eo 0.95 0.80 es 3.91 0.78 et 0.52 0.73

eu 0.32 0.87 fa 0.50 0.97 fi 1.69 0.88

fr 6.66 0.88 he 0.77 1.00 hi 0.25 0.93

hr 0.49 0.58 hu 1.04 0.87 id 0.86 0.68

is 0.21 0.94 it 4.71 0.81 ja 4.88 0.94

ka 0.25 0.99 ko 0.80 1.00 la 0.23 0.80

lb 0.22 0.99 lt 0.72 0.91 mk 0.24 0.88

mr 0.19 0.81 ms 0.32 0.83 new 0.42 0.85

nl 4.47 0.89 nn 0.40 0.71 no 1.81 0.57

pa 0.01 0.96 pl 5.03 0.89 pt 3.98 0.90

ro 1.04 0.93 ru 3.20 0.81 simple 0.49 0.79

sk 0.90 0.79 sl 0.63 0.78 sq 0.19 0.88

sr 0.62 0.70 sv 2.63 0.85 ta 0.15 0.97

th 0.38 1.00 tr 1.07 0.85 uk 1.21 0.88

vi 0.68 0.96 yo 0.05 0.93 zh 2.10 0.91

MRR: 0.82/0.86 (micro-average/macro-average)

in each category, whereas a micro-average is weighted by that proportion. To extrapolate micro-

average from one collection to another, it is necessary to know both the proportions and the

class-specific summary scores. The distinction between micro-averaging and macro-averaging is

specific to categorization: MAP and other summary measures, when applied to search results,

are invariably macro-averages.

10.1 Detailed Examples 325

I n c o m i n g E m a i l

F i l te r

I n b o x Q u a r a n t i n e

S e a r c hT r i a g e

C lass i f i e r

R e a d E m a i l

M i s c l a s s i f i e d
H a m

M i s c l a s s i f i e d S p a m

H a m

Figure 10.4 On-line spam filter deployment.

10.1.5 On-Line Adaptive Spam Filtering

Figure 10.4 shows the context of the spam filtering problem that we address in our third and

final example. The filter receives a stream of e-mail messages and must deliver each, in turn,

to the user’s in-box or to a quarantine file. The messages in the in-box are read by the user

in chronological order, whereas the quarantine file is occasionally searched to find ham (i.e.,

non-spam) messages that may have been placed there incorrectly by the filter. When, through

either of these processes, the user notices spam in the in-box or ham in the quarantine, feedback

is given to the filter. For this application it is useful to consider the in-box to be a simple queue

and the quarantine a priority queue (that is, a dynamically updated ranked list).

Chapter 10 Categorization and Filtering326

Table 10.12 Command-line interface for the TREC Spam Filter Evaluation Toolkit.
For evaluation within the toolkits framework a filter must implement these five
operations, which are invoked in sequence by the toolkit.

Command Filter Action

initialize Create a filter to process a new stream of messages.

classify file Return a category and priority score for the message in file.

train spam file Use file as a historical example of spam.

train ham file Use file as a historical example of ham.

finalize Shut down the filter.

We use the TREC 2005 Public Spam Corpus1, a sequence of 92,180 messages, of which 39,399

are spam and 78,798 are ham. Rather than splitting the sequence into training and test sets,

we employ on-line feedback in which an ideal user is assumed to detect and report all errors.

Under this assumption every message may be used as a historical training example immediately

after it is delivered: Those reported as errors are assumed to belong to the category indicated

by the user, and those not reported as errors are assumed to have been correctly categorized by

the filter. Although the assumption of an ideal user is unrealistic, evaluation results based on

it serve as a well-defined basis for comparison.

The on-line adaptive filtering scenario is implemented by the TREC Spam Filter Evaluation

Toolkit, a test harness that, along with test corpora and sample filters, may be downloaded

from the Web.2 Although the toolkit uses categories that happen to be named spam and ham,

it works equally well for any on-line binary categorization task. All of the examples presented

in this chapter were prepared using the toolkit. For evaluation using the toolkit the filter must

implement the five command-line operations detailed in Table 10.12.

As an illustrative example we again use BM25, applying it to build an on-line adaptive spam

filter. Again we emphasize that this is not a typical application of BM25, but it does provide

a solid baseline for the techniques we discuss later in the chapter. Spam filtering is an example

of binary categorization, for which there are exactly two exclusive categories: each document,

by definition, belongs to one category or the other. In contrast to our previous examples, in

this one there are neither topic statements nor historical examples. The training examples are

derived exclusively from on-line feedback. At the outset the filter has no information on which

to base its decision, but as more messages are processed, it learns the characteristics of messages

that distinguish the categories. The rate and manner in which the filter improves with training

is known as the learning curve.

Our baseline approach is the same as for language categorization. We apply BM25 with

relevance feedback separately to each of the document ranking problems: identifying spam

1 trec.nist.gov/data
2 plg.uwaterloo.ca/∼gvcormac/jig

10.1 Detailed Examples 327

Table 10.13 Effectiveness measures for the document ranking problem associated with spam fil-
tering. The three rows show the effectiveness of document ranking using separate spam and ham
relevance scores, and their difference.

Relevance Score P@10 P@20 P@100 P@200 P@1000 P@2000 AP

s(d, spam) 1 1 1 1 1 1 0.9918

s(d, ham) 1 1 1 1 1 1 0.9906

s(d, spam)− s(d, ham) 1 1 1 1 1 1 0.9927

Table 10.14 IR-oriented effectiveness measures for the primary categorization problem
in an on-line spam filter.

Class Accuracy (P@1) Error (%) Precision Recall F1

Spam 0.99989 0.011 0.80308 0.99989 0.89074

Ham 0.67149 32.860 0.99977 0.67149 0.80339

Micro-average 0.85954 14.055 0.85945 0.85954 0.85954

Macro-average 0.83569 16.431 – – 0.84707

Logit average 0.99260 0.740 – – 0.85233

and identifying ham, yielding two scores for each document d: s(d, spam) and s(d, ham). The

category ranking for d is determined by the difference s(d) = s(d, spam)− s(d, ham). If s(d) > 0,

the message is deemed to be spam; otherwise it is ham.

As before, query terms are byte 4-grams taken from messages labeled as spam or ham. As the

filtering progresses, we create and maintain separate queries for ham and spam. As feedback is

provided, new terms are added to the appropriate queries and IDF values are updated. Initially

both queries are empty, yielding scores of 0, but they quickly grow as messages are seen. In

contrast to the previous experiments we do not restrict the number of feedback terms added to

each query, but allow both queries to grow without limits.

The score s(d) also serves as a priority for the purpose of on-line ranking. Evaluation measures

for the the document ranking problem, shown in Table 10.13, fail to shed much light on the

intended purpose of our method: spam filtering. Broadly speaking, this is because the purpose

of search is to identify documents of interest and effectiveness measures such as P@k and AP

reward systems that find the documents that are easiest to categorize. Such measures tell us

little about how well the filter works for difficult-to-categorize documents, the crux of spam

filter effectiveness.

Evaluation measures for the primary categorization problem in an online spam filter are

shown in Table 10.14. Because there are only two categories, reciprocal rank is redundant and

not reported. For computing the filter’s F1 score we assumed that spam constitutes the relevant

class. This is a common assumption in the literature. Whenever you encounter recall or precision

numbers for which it is not obvious whether they refer to ham or spam, you should assume that

the author treats spam as the relevant class.

Chapter 10 Categorization and Filtering328

As you see from Table 10.14, the accuracy (P@1) for spam messages is so high that it is

difficult to interpret due to the large number of leading nines. Error (1-P@1) expressed as a

percentage is more convenient and intuitive. In assessing filter effectiveness it is quite easy to

observe that an error rate of, say, 0.1% is ten times better than an error rate of 1%. The

observation that an accuracy of 0.999 is ten times better than an accuracy of 0.990 requires

mental arithmetic and counting nines. Returning to our example, the spam error rate is 0.01%,

meaning that about 1 in 10,000 spam messages is delivered to the user’s in-box. On the other

hand, the ham error rate is 32.9%, meaning that about a third of the user’s good messages

are delivered to quarantine. The user is unlikely to find this behavior acceptable; but if the

situation were reversed, she might. If the ham error rate were 0.01% and the spam error rate

were 32.9%, the filter would deliver the overwhelming majority of ham to the in-box while

eliminating two-thirds of the spam.

Summary statistics, whether micro-averages or macro-averages, fail to consider the category-

specific consequences of errors. In addition, micro-averages are highly sensitive to the overall

proportion of spam. Suppose, for example, that the amount of spam were to double while

the amount of ham — and the filter’s spam and ham error rates – remained constant. The

micro-averaged error rate would fall from 14% to 8.9%. Did the filter improve? Of course not.

Micro-averaging measures the prevalence of spam as much as any property of the filter.

The logit average (LAM) is a macro-average under the logit transformation (see

Equation 10.38):

lam(x, y) = logit−1

(
logit(x) + logit(y)

2

)
. (10.1)

Intuitively, this average interprets the scores as probabilities and combines them according to

the weight of evidence they afford. Under the logit average the difference between scores of 0.1

and 0.01 has the same impact as the difference between scores of 0.9 and 0.99. In a sense each of

these pairs represents an order of magnitude difference in effectiveness. On the other hand, the

difference between 0.5 and 0.51 has little impact. Cormack (2008) gives a more formal derivation

of LAM based on odds ratios (Section 10.2.1).

Precision and recall, along with other summary measures based on them, are difficult to

interpret for filtering tasks and also are strongly influenced by prevalence. For spam filtering

we must arbitrarily deem either spam or ham to be “relevant” in order to compute precision

and recall. The results in Table 10.14 show precision and recall under the common assumption

that spam is “relevant”. Note that micro-averaged precision and recall are redundant; both are

equal to accuracy. It can easily be shown that this equality will hold whenever the categories

are exclusive — as is the case for our spam filtering and language categorization examples.

Macro-averaging precision and recall separately makes no sense, but it is possible to compute

the macro-average of a summary recall/precision measure such as F1, also shown in Table 10.14.

We have difficulty offering a sensible interpretation for precision, recall, or F1 in this context,

and suggest they be avoided as evaluation measures for filtering tasks.

10.1 Detailed Examples 329

Table 10.15 The trade-off between spam and ham error rates as a function of the threshold setting.

Threshold t Spam Error Ham Error Macro-Avg. Error Logit Avg. Error Macro-Avg. F1

2156 56.8% 0.0% 28.4% 1.1% 0.66

1708 36.2% 0.1% 18.2% 2.3% 0.79

1295 10.0% 0.4% 5.2% 2.0% 0.94

1045 2.2% 1.0% 1.6% 1.5% 0.98

931 1.0% 2.8% 1.9% 1.7% 0.98

713 0.1% 10.0% 5.1% 1.0% 0.95

-180 0.0% 34.9% 17.4% 0.7% 0.84

10.1.6 Threshold Choice for Binary Categorization

When a ranking method such as BM25 is used for binary categorization, the choice of the

threshold t involves a direct trade-off between the two category-specific error rates. In our spam

filtering example we somewhat arbitrarily chose to label messages with s(d) > 0 as spam and

the others as ham. We could have used any t instead of 0 and labeled messages with s(d) > t

as spam and the rest as ham. The error rates for several values of t are shown in Table 10.15.

As we can see, the threshold values in themselves are quite meaningless, but larger values of t

yield lower ham error rates at the expense of higher spam error rates, and vice versa. A receiver

operating characteristic (ROC) curve consists of all points (x, y) where x is the spam error and

1 − y is the ham error (that is, y is the ham accuracy) for some threshold t. The ROC curve

thus provides a geometric characterization of filter effectiveness, independent of any particular

threshold setting, in the same way that a recall-precision curve characterizes ranked retrieval

effectiveness, independent of any particular cutoff.

Plotted on a linear scale (Figure 10.5), the ROC curve isn’t much use as a visual indication of

filter performance: It follows the x and y axes too closely. For this purpose the logit-transformed

representation shown in Figure 10.6 is preferred. From this curve one can readily determine what

spam error would result if were t adjusted to achieve some particular ham error or vice versa.

One can also use the curve to compare filters. If one curve is superior to another, it indicates

better effectiveness across the board. If the curves cross, which one is better depends on the

relative importance of spam and ham errors. For comparison we juxtapose our BM25 results

with those achieved by the popular SpamAssassin3 filter on the same messages (version 3.02

with default parameters). We see that BM25 is superior to SpamAssassin for much of the range,

but at very low ham error rates the curves cross and SpamAssassin is slightly better.

The area under the ROC curve (AUC or ROCA) is a number between 0 and 1 that may be

used as a threshold-independent indicator of filter performance. A filter with a superior ROC

3 spamassassin.apache.org

Chapter 10 Categorization and Filtering330

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
pa

m
 e

rr
or

 r
at

e
(%

)

Ham error rate (%)

BM25

Figure 10.5 Linear-scale ROC curve for our BM25-based spam filter.

curve will tend to have a larger AUC. In addition to this geometric interpretation AUC has a

probabilistic interpretation. It is the probability that a random spam message will have a higher

score than a random ham message:

AUC = Pr[s(d1) > s(d2) | d1 ∈ spam, d2 ∈ ham] . (10.2)

Our BM25 filter has AUC = 0.9981. For ease of interpretation, it is convenient to state the

area above the ROC curve, 1−AUC, as a percentage: 1− AUC = 0.1896%. SpamAssassin has

1−AUC = 0.5163%.

In the event that the threshold is fixed prior to evaluation, the ROC curve consists of exactly

one point (x, y), so AUC is undefined. In this event the logistic average LAM offers a summary

measure that is much less sensitive to threshold setting than others, as shown in Table 10.15.

Micro- or macro-averaged error and F1 are much more strongly influenced by threshold setting —

to the extent that they measure little else.

If the filter is trained on historical data, it is a reasonably straightforward process to try several

values of t to determine the one that achieves the desired trade-off between spam error and ham

error. In an on-line setting with feedback, t may be adjusted dynamically by incrementing it

by a small amount if the ham error is too high and decrementing it otherwise. But it is not

easy to formalize “desired trade-off”, and in many circumstances the choice of threshold is best

determined by the user, either explicitly or implicitly. The user interface may solicit threshold

adjustment (e.g., a slider from “show fewer” to “show more” or a set of buttons labeled “strict

filtering”, “moderate filtering”, “none”). Or it may require the user to specify an acceptable

error rate for one of the categories, or to specify some number of documents per unit time, or

some fraction of the incoming documents that should be delivered. These quantities are easily

estimated; t can be adjusted automatically to maintain them over time at the specified level.

10.2 Classification 331

50

10

1

0.1

0.01

0.01 0.1 1 10 50

S
pa

m
 e

rr
or

 r
at

e
in

 %
 (

lo
gi

t s
ca

le
)

Ham error rate in % (logit scale)

BM25
SpamAssassin

Figure 10.6 Logit-scale ROC curve for SpamAssassin and our BM25-based spam filter.

10.2 Classification

Having used BM25 to illustrate the nature of classification and filtering through detailed exam-

ples, we now examine other methods for solving the same types of problems. At the core of

filtering and categorization is classification. The most fundamental classification problem is

that of binary classification, the process of determining whether or not an object has some

particular property P . A binary classifier is an automated procedure for binary classification.

Throughout our development of binary classification methods we shall rely heavily on the exam-

ple of spam filtering, in which the objects are e-mail messages, the property P is “being spam”,

and the classifier is the spam filter. Later we consider the application of the methods to our

other examples, where the objects are documents and the property is relevance, or a particular

language such as “Ukrainian”.

The problem of classification long predates computer science. Much of the early work in

classical statistics concerned binary classification problems such as identifying bad batches of

beer for quality control at a brewery. From these efforts arose some arcane terminology that

remains in common use. Then, as now, any real classifier will necessarily be imperfect. A type

1 error occurs when the classifier determines the object to have the property when it does

not (identifies a good batch of beer as bad). A type 2 error occurs when the classifier fails to

determine that the object has the property when it does (fails to detect a bad batch). The

consequences of these errors depend on the intended purpose of classification. For beer the

purpose of classification is presumably to avoid shipping bad beer to customers. If type 1 errors

are frequent, profits are lost due to waste; if type 2 errors are frequent, the consequences are less

tangible but potentially more severe, including lost goodwill and compromised public health.

Chapter 10 Categorization and Filtering332

Table 10.16 Contingency table for diagnostic test
results.

Property or Condition

absent present

Test result
negative tn fn

positive fp tp

The study of classification was further advanced through signal detection theory, invented in

conjunction with radar. Signal detection theory has been widely adopted in medical diagnostic

testing and other fields. Practically everyone is familiar with the use of diagnostic tests in this

context. For example, a positive pregnancy test is taken as evidence (but not proof) that a

person is pregnant. A positive test result is evidence for some condition; a negative test result

is evidence against it. A true positive (tp) is a positive result that is correct, whereas a false

positive (fp) is a positive result that is incorrect. Similarly, a true negative (tn) is a negative

test result that is correct, and a false negative is a negative result that is incorrect. That is,

false positives and false negatives are exactly type 1 and type 2 errors, respectively. Table 10.16

illustrates the four possibilities. It is known as the contingency table for diagnostic test results.

The effectiveness of a diagnostic test is typically characterized by its sensitivity and specificity,

also known as true positive rate (tpr) and true negative rate (tnr). If we take the elements of

Table 10.16 to represent the frequencies of the four possibilities for a particular test, we have

sensitivity = tpr =
tp

tp + fn
, specificity = tnr =

tn

tn + fp
. (10.3)

Because sensitivity and specificity approach 1 for good tests, it is more convenient to work with

the complementary error rates, false negative rate (fnr) and false positive rate (fpr):

fnr = 1− sensitivity =
fn

tp + fn
, fpr = 1− specificity =

fp

tn + fp
. (10.4)

In pregnancy testing, the condition of interest is pregnancy. The false negative rate is the fraction

of pregnant individuals for which the test is negative; the false positive rate is the fraction of

nonpregnant individuals for which the test is positive.

False negative rates and false positive rates are very commonly misinterpreted through

specious reasoning known as the prosecutor’s fallacy. Suppose we administer a pregnancy test

that has fpr = 1% and fnr = 10% to an individual getting a positive result. The prosecutor’s

fallacy asserts that the probability that the individual is pregnant is 1− fpr = 99%. The absur-

dity of this conclusion is obvious when we consider the case of administering the test to a man.

The probability of a man being pregnant is vanishingly small, regardless of what the test says.

By far the most likely explanation is that the test result is a false positive. On the other hand, if

the individual is a fertile woman displaying symptoms of pregnancy, the most likely explanation

10.2 Classification 333

is that the test result is a true positive, with probability much higher than 99%. In order to

quantify the consideration of such prior probabilities, we introduce the notions of odds, odds

ratios, and likelihood ratios.

10.2.1 Odds and Odds Ratios

The manipulation of probabilities and conditional probabilities may be simplified considerably

by recasting them as odds and odds ratios (OR), respectively. Given an event e conditioned on

x, we define

Odds[e] =
Pr[e]

Pr[e]
, (10.5)

OR(e, x) =
Odds[e |x]

Odds[e]
. (10.6)

From the definition it follows directly that

Odds[e |x] = Odds[e] ·OR(e, x) . (10.7)

By applying Bayes’ rule to Pr[e |x] and to Pr[e |x] in Equation 10.7, we arrive at

OR(e, x) =

Pr[e|x]
Pr[e|x]

Pr[e]
Pr[e]

=

Pr[x|e]·Pr[e]·Pr[x]
Pr[x|e]·Pr[e]·Pr[x]

Pr[e]
Pr[e]

=
Pr[x |e]
Pr[x |e] . (10.8)

In this form the odds ratio is commonly known the likelihood ratio (LR) for x given e:

LR(e, x) =
Pr[x |e]
Pr[x |e] , (10.9)

where Pr[x |e] is the likelihood of x given e, and Pr[x |e] is the likelihood of x given e.

Odds are easily interpreted and easily estimated by counting “wins” and “losses”. If a sports

team wins 50 games and loses 30, we estimate its odds of winning to be 50
30 ≈ 1.67. An odds

ratio may be interpreted as how much the odds would change if x were true. For example, if

acquiring a new player, Mika, would improve our team’s odds of winning to 51
29 ≈ 1.76, we say

that the odds ratio is

OR(winning, Mika) =
51
29
50
30

≈ 1.06 . (10.10)

In general, if OR(e, x) > 1, we say that x improves the odds of e; if OR(e, x) < 1,

then x diminishes the odds. Now consider the effect of adding a different player, Jenson,

where OR(winning, Jenson) ≈ 1.12. This evidence indicates that Jenson would be the bet-

ter acquisition. But what if it were possible to acquire both players? What would the value of

Chapter 10 Categorization and Filtering334

OR(winning, Mika and Jenson) be? The näıve Bayes assumption asserts that

OR(e, x and y) = OR(e, x) ·OR(e, y) . (10.11)

Under this assumption

OR(winning, Mika and Jenson) ≈ 1.18 . (10.12)

But in many circumstances this assumption is unrealistic. If Mika and Jenson play the same

position on the team, for example, goalkeeper, there may be little cumulative benefit in hiring

both. And if there were a personality conflict between Mika and Jenson, the overall effect might

even be to diminish the odds of winning.

Now consider pregnancy testing. We wish to compute the odds of pregnancy, given a positive

test result:

Odds[pregnant |positive] = Odds[pregnant] ·OR(pregnant, positive) . (10.13)

From Equation 10.8 we have

OR(pregnant, positive) = LR(pregnant, positive) =
tpr

fpr
=

90%

1%
= 90 . (10.14)

The prior odds, Odds[pregnant], depend entirely on evidence other than the test. If about 80%

of women requesting a pregnancy test are in fact pregnant, we have

Odds[pregnant |positive] =
80%

20%
· 90%

1%
= 360 (10.15)

and thus

Pr[pregnant |positive] =
360

1 + 360
≈ 99.7% . (10.16)

On the other hand, if the test were negative,

Odds[pregnant |negative] =
80%

20%
· fnr

tnr
=

80%

20%
· 10%

99%
≈ 0.404 (10.17)

and thus

Pr[pregnant |negative] ≈ 0.404

1 + 0.404
= 28.8% . (10.18)

In such a situation a second test would be in order.

10.2.2 Building Classifiers

For categorization and filtering applications, we wish to build binary classifiers automatically

from examples of documents that do and do not belong to specific categories. When there are

10.2 Classification 335

two exclusive categories (e.g., ham and spam), a binary classifier is constructed to identify

membership in one of the categories. A positive result indicates membership in that category,

and a negative result indicates membership in the other. When the categories are nonexclusive,

we may construct a separate binary classifier to identify each. For n > 2 categories it is necessary

either to combine several binary classifiers or to build an n-way classifier (see Section 11.6). In

this section we consider the problem of constructing a binary classifier, taking into account its

role in categorization and filtering.

Classification may be formalized as a learner L that builds a classifier c, where c renders either

a positive/negative result or a continuous score. Given a collection of documents D, we denote

by P ⊂ D the subset of documents having some property of interest. For convenience we denote

by P = D\P the complementary subset from which the property is absent. The key challenge

is to build a classifier — a concrete function that for any document d accurately answers the

question “Given d, is d ∈ P?” An ideal classifier would be a total function

isp : D → {pos, neg} (10.19)

such that isp(d) = pos if and only if d ∈ P . No such ideal classifier exists; instead, we build an

approximation c ≈ isp. Hard and soft classifiers employ different notions of approximation. A

hard classifier

c : D → {pos, neg} (10.20)

approximates isp to the extent that c(d) = isp(d) for most d ∈ D. A soft classifier

c : D → R (10.21)

approximates isp to the extent that c(d) > c(d′) for most (d, d′) ∈ P × P . A hard classifier ch

may be defined in terms of a soft classifier cs and a fixed threshold t:

ch(d) =

{
pos (cs(d) > t)

neg (cs(d) ≤ t)
. (10.22)

A näıve utility measure for the effectiveness of a hard classifier is

accuracy = 1− error =
|{d |ch(d) = isp(d)}|

|D| . (10.23)

Accuracy and error are commonly reported and commonly optimized in filter construction,

notwithstanding their dependence on prevalence. As a pair we use the error measures

fpr =

∣∣P ∩ {d |c(d) = pos}
∣∣∣∣P ∣∣ , fnr =

|P ∩ {d |c(d) = neg}|
|P | . (10.24)

Chapter 10 Categorization and Filtering336

For a soft classifier, we use the cost measure

1−AUC =

∣∣P × P ∩ {(d, d′) |c(d) < c(d′)}
∣∣+ 1

2 |P × P ∩ {(d, d′) |c(d) = c(d′)} |
|P | · |P |

. (10.25)

For filtering it is useful to regard c as a fixed formula with a hidden parameter specifying a

learned profile; that is, c(d) is shorthand for c(profile, d) where profile is created by a learner L.

10.2.3 Learning Modes

The learner L constructs the profile from evidence presented to it. The manner in which the

evidence is presented depends on the learning mode.

• Supervised learning is a common mode for machine-learning classifiers. The learner’s

input (T, label) consists of a set T ⊆ D of training examples and a function label : T →
{pos, neg} that approximates isp over the subdomain T . The function label is typically

handcrafted by human adjudicators. Under the assumption that T is an independent and

identically distributed (i.i.d.) sample of D and that label(d) = isp(d) for all d ∈ T , the

learner induces a profile that optimizes c for some utility function, typically accuracy.

Supervised learning, along with its associated assumptions, is so common that it is often

assumed without question. But it can be exceedingly difficult to obtain a sample —

especially an i.i.d. sample — of documents to be classified. Indeed, many members of

D (the ones we are interested in classifying) exist only in the future and are therefore

simply impossible to sample. Constructing label is sufficiently onerous and error-prone

that the assumption of its existence may be questionable. One should not assume that

optimizing accuracy yields the classifier most suitable for its intended purpose.

• Semi-supervised learning assumes input (T, S, label) where T ⊆ D, S ⊂ T , and

label : S → {pos, neg}; that is, label is defined for only a subset of the training examples.

Semi-supervised learning accommodates the fact that obtaining sample documents may

be considerably easier than labeling them. Like supervised learning, it assumes that T

is an i.i.d. sample of D. This assumption may allow the learner to learn more about

the distribution of D from the unlabeled examples in T \S. A vacuous semi-supervised

learner is simply the supervised learner with input (S, S, label); this special case provides

a convenient baseline with which semi-supervised learners may be compared.

• Transductive learning, like semi-supervised learning, uses labeled and unlabeled

examples (T, S, label) as before. The difference is that the unlabeled examples include all

of the test examples; that is, T = D. So the classifier c : T → {true, false} or c : T → R

applies only to the elements of T . Classical information retrieval is an example of trans-

ductive learning, as the entire corpus is used for document statistics, and the set of

documents classified as relevant is a subset of the corpus.

10.2 Classification 337

• Unsupervised learning assumes no label function at all; that is, the input is simply

a set T ⊆ D and is rarely used directly to construct a classifier. Unsupervised learning

methods may nevertheless be used in conjunction with others; for example, clustering

methods may be used to find groups of similar messages under the assumption that each

member of a group belongs to the same class.

• In on-line learning there is no a priori division between training and test examples.

The examples to be classified form a sequence S = d1, d2, . . . , dn. When each document

dk is classified, all previous documents {di<k} are available as training examples. Every

example is first used to test the classifier and subsequently used for training. An on-

line classifier, but not necessarily an efficient or effective one, may be implemented by

constructing a new batch classifier for each dk, using Tk = {di | i < k} as the training

set. If every document is labeled, we have supervised on-line learning; otherwise it is

semisupervised or unsupervised. This approach has two principal shortcomings:

1. The nature of the examples may change considerably over time, a phenomenon

known as concept drift. The proposed method is unable to model this phe-

nomenon because it ignores the temporal cues inherent in the sequencing of

the training examples.

2. If we use every available training example to construct a new classifier ck from

scratch to classify each dk, the overall running time over S will be quadratic

or worse. When building ck there are k − 1 training examples, and examining

each takes time proportional to k. A lower bound on the time to create all ck is

therefore
n∑

i=k

k − 1 ∈ Ω(n2) . (10.26)

• Incremental learning may be used to reduce the overall cost of classifying a sequence.

An incremental learner efficiently constructs ck+1 from the hidden profilek underlying

the classifier ck constructed for dk, without necessarily examining all of the examples in

Tk. The amenability of the learner to efficient incremental construction is an important

criterion in the choice of a method for on-line filtering. Incremental learning may be

approximated by using a non-incremental learner that uses batches and a sliding window.

• Active learning allows the classifier to request labels for a limited number of the

unlabeled training examples. A filter may, for example, solicit the user to label particular

messages and classify the rest based on these examples. The prototypical method for

active learning is uncertainty sampling (Lewis and Catlett, 1994), in which a soft classifier

is applied to each unlabeled example and labels are requested for those examples whose

classifier result is closest to the threshold t.

Chapter 10 Categorization and Filtering338

10.2.4 Feature Engineering

Although we have characterized the classifier’s domain D as a set of documents, few classifiers

operate directly on the textual representation. Instead, each document is typically represented

as a collection of features derived from the text or from extrinsic information related to it, such

as the time of arrival of an e-mail message. The process of defining and extracting features likely

to be useful to the classifier — called feature engineering — has a profound impact on overall

filter effectiveness. The reader should be skeptical of published results (good or bad) for any

particular learning method that fail to note the method of feature representation.

A document d is typically represented as a vector of n features x[d] = 〈x[d]
1 , x

[d]
2 , . . . , x

[d]
n 〉,

where each x
[d]
i is a real or discrete value quantifying some evidence pertaining to the message

that might be useful to the classifier. Each message is thus represented as a point in an n-

dimensional feature space. The most obvious features are simple statistics computed from the

tokens and terms detailed in Chapter 3.

The issues involved in tokenization are generally the same for classification as for search, with a

few differences in emphasis. In filtering and categorization applications, documents are processed

in sequence rather than fetched from a large corpus, so index construction is unnecessary. It is

possible to use far more features for classification than might be appropriate for a search engine,

which would have to retrieve a postings list for each. Features such as character and word n-

grams (see Section 3.3) are practical and have been found useful in a number of applications.

Sparse bigrams — pairs of tokens separated by k or fewer tokens — increase the dimension of

the feature space but have been used to good effect in filtering (Siefkes et al., 2004).

Some learners nevertheless perform poorly, either in terms of efficiency or of classification

performance, for large n. Consider the problem of learning a classifier from training set T where

|T |
 n. In such a case it is almost certainly possible to solve a set of simultaneous equations

so as to build a perfect classifier for T . But that classifier would have poor performance over D

as a whole, a flaw known as overfitting. All classifiers exhibit some generalization error in that

they perform worse on D than on T . One of the primary differences among methods is their

ability to minimize such error.

Feature selection is commonly used to reduce n, and hence the dimensionality of the feature

space X . More generally, dimensionality reduction techniques may be used to project or trans-

form X to a space of smaller dimension. There are two principal purposes for dimensionality

reduction: It may be required to achieve reasonable time or space efficiency and it may be

required to reduce generalization error.

Historically, feature selection or dimensionality reduction has been considered a separate

preprocessing step done prior to building the classifier. In light of modern advances in classifier

construction, this view is no longer appropriate. There is a strong interaction between feature

selection and the classifier, so the two should be considered together. There is nothing in our

definition of c that prevents it from projecting its input onto a smaller space as part of its internal

working. Some classifiers, such as the näıve Bayes and decision tree methods we shall consider,

do this quite aggressively. Some of the best classifiers, such as logistic regression and support

10.3 Probabilistic Classifiers 339

vector machines, do no explicit dimensionality reduction, handling the issues of efficiency and

generalization error by other means. We are not saying that feature selection and dimensionality

reduction have no use; rather we are saying that they must be considered in the context of a

particular application and classification method, and in many circumstances are unnecessary.

Feature selection is the most direct method of dimensionality reduction; stopping

(Section 3.1.3) is a trivial example. Many statistical techniques have been proposed and used

to identify the most important features; the rest are eliminated. Stemming (Section 3.1.2) is a

simple example of dimensionality reduction in which multiple features are conflated into one.

Hashing has also been used successfully to reduce very large spaces by arbitrarily combining

dimensions whose tokens hash to the same value. More sophisticated methods, such as principal

component analysis, use linear algebra to transform the entire space to one of smaller dimension.

Some feature engineering choices may be difficult to reconcile with incremental classifier

construction, and hence with efficient on-line adaptive filtering. Previously unseen features may

be encountered at any point, thus expanding the dimensionality of the space. The set of known

values for a particular feature may grow as new examples are learned. Global statistics such as

IDF must be recomputed when used because the addition of a single document changes the IDF

for every term it contains. This change may dramatically alter the effective scores of previously

filtered documents. Statistical feature selection and dimensionality reduction are problematic

in an on-line environment because the statistics are ever-changing.

A common error in evaluating classifiers is to perform feature selection or dimensionality

reduction based on the training and test documents. This approach is simply wrong; it effectively

communicates information about the test examples to the classifier’s profile.

10.3 Probabilistic Classifiers

A probabilistic classifier computes an estimate p[d] ≈ Pr[d ∈ P |x[d]] of the probability that a

given document d, represented by x[d] = 〈x[d]
1 , x

[d]
2 , . . . , x

[d]
n 〉, has property P or equivalently, is

contained in the set P of documents with that property. This estimate may be used directly as

a soft classifier

c(d) = p[d] (10.27)

or, in combination with some threshold 0 < t < 1, as a hard classifier

c(d) =

⎧⎨⎩pos (p[d] > t)

neg (p[d] ≤ t)
. (10.28)

Probabilistic classification involves two steps:

1. Estimating p
[x]
i ≈ Pr[d ∈ P |x[d]

i] for each x
[d]
i in x[d].

2. Combining the estimates to yield p[d] ≈ Pr[d ∈ P |x[d]].

Chapter 10 Categorization and Filtering340

10.3.1 Probability Estimates

Features may be either discrete or continuous. A discrete feature (also called a categorical

feature) can assume one of a finite number of possible values. For a continuous feature the set

of possible values is infinite. Different methods are used to estimate probabilities for categorical

and for continuous features.

Probability estimates from categorical features

We first consider the special case of a binary feature that has exactly two possible values, 0 and

1. Although the values of a binary feature x
[d]
i : {0, 1} have no intrinsic meaning, x

[d]
i = 1 often

represents the presence of some token in d, whereas x
[d]
i = 0 indicates its absence. The odds

that d is in P given x
[d]
i = k may be estimated as the ratio of positive to negative examples in

the training set T :

Odds[d ∈ P |x[d]
i = k] ≈

∣∣∣{d ∈ T |x[d]
i = k

}
∩ P

∣∣∣∣∣∣{d ∈ T |x[d]
i = k

}
∩ P

∣∣∣ . (10.29)

For example, consider the hypothetical situation in which the word “money” occurs in 100 spam

messages and 5 ham messages. The odds that a particular message d containing “money” is

spam may be estimated as Odds[d ∈ P |x[d]
i = 1] ≈ 100

5 = 20
1 . The same estimate, expressed

as a probability, is Pr[d ∈ P |x[d]
i = 1] ≈ 20

1+20 = 0.952. The value k = 1 is not particularly

special; assuming that T consists of, say, 1000 spam and 1000 ham messages, we may deduce

that 900 spam messages and 995 ham messages have xi = 0, so the odds of a message not

containing “money” being spam are Odds[d ∈ P |x[d]
i = 0] = 900

995 ≈ 0.9, that is, nearly even odds.

Intuitively, the nonoccurrence of “money” contributes little to solving the filtering problem; for

this reason filters usually ignore the information obtainable from the absence of a token.

The ratio a
b of the number of positive to negative training examples is a good odds estimate if

these numbers, a and b, are sufficiently large. If they are small, the estimates will be unreliable

due to chance, and if either or both are 0, the resulting estimates are 0
1 , 1

0 , or 0
0 , none of which is

a sensible estimate. A simple way to mitigate this problem is smoothing: We add small positive

constants γ and ε to the numerator and denominator, respectively; that is, we use a+γ
b+ε as the

odds estimate. In the case of a = b = 0 this yields an estimate of γ
ε , whereas for large a and b

the estimate is indistinguishable from a
b . Typically γ = ε = 1.

We note that this derivation may be extended to non-binary categorical features, where k

may take on values other than 0 or 1. Odds are then estimated separately for each k.

10.3 Probabilistic Classifiers 341

Probability estimates from continuous features

If x
[d]
i is a real-valued feature, a direct way to estimate a probability is to transform its value

to a binary value b
[d]
i : {0, 1} by comparing it against a threshold t

b
[d]
i =

{
1 x

[d]
i > t

0 x
[d]
i ≤ t

(10.30)

and to estimate Odds[d ∈ P |b[d]
i = k] as described in the previous section. Although a real

value, like a discrete value, has no intrinsic meaning, features may be engineered so that a

larger value of x
[d]
i indicates higher odds that d ∈ P . In other words, x

[d]
i is itself a soft classifier

and b
[d]
i is the corresponding hard classifier. An n-ary categorical value b

[d]
i ∈ {0, 1, . . . , n − 1}

may be computed using n bins delimited by n− 1 threshold values:

b
[d]
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n− 1 tn−1 < x

[d]
i

· · · · · ·
1 t1 < x

[d]
i ≤ t2

0 x
[d]
i ≤ t1

, (10.31)

thus effecting a piecewise approximation of the odds implied by the continuous value x
[d]
i .

The principal drawback of this approach is that as n increases, the number of documents

with b
[d]
i = k for any particular k decreases, and the odds estimates become less reliable. An

alternative approach is to define a transformation f : R→ R such that

f(k) ≈ Odds[d ∈ P |x[d]
i = k] . (10.32)

Parametric models may be used instead of simple counting to estimate the distributions of x
[d∈P]
i

and x
[d∈P]
i . For example, if a Gaussian4 (normal) distribution is assumed, the four parameters

μ(i,P), σ(i,P), μ(i,P), σ(i,P) — the means and standard deviations for x
[d∈P]
i and x

[d∈P]
i — fully

characterize the distributions. Given these parameters, we may compute the likelihood ratio

LR(d ∈ P, x
[d]
i = k) ≈

g(μ(i,P), σ(i,P), k)

g(μ(i,P), σ(i,P), k)
, (10.33)

where g is the probability density function of the Gaussian distribution. By equations 10.7 and

10.8, we have

Odds[d ∈ P |x[d]
i = k] ≈ NP

NP

·
g(μ(i,P), σ(i,P), k)

g(μ(i,P), σ(i,P), k)
, (10.34)

where NP and NP are the number of positive and negative examples in T .

4 See Section 12.3.2 for a discussion of the Gaussian distribution: g(μ,σ2, x) = ϕμ,σ2(x).

Chapter 10 Categorization and Filtering342

Table 10.17 Example from the TREC 2005 Public Spam Corpus.

Message tag True Class head:enron body:enron

016/201 spam 12 0

033/101 spam 11 0

050/001 spam 10 0

066/186 ham 7 24

083/101 ham 21 0

083/101 ham 21 0

100/001 ham 27 4

133/101 spam 12 17

148/013 ham 22 5

166/201 ham 13 23

183/101 spam 11 0

200/001 spam 14 4

216/201 ham 25 2

233/101 spam 13 20

250/001 ham 5 0

266/201 spam 12 0

283/101 spam 13 0

300/001 spam 11 22

An example

We illustrate the methods described above by using two features derived from the TREC 2005

Public Spam Corpus (Cormack and Lynam, 2005). Our features are chosen to harness the knowl-

edge that all messages in the corpus were delivered to individuals at one particular organization

and that the organization’s name (Enron in this instance) might have different prevalence in

spam and ham messages. Our two features simply count the number of occurrences of the

character sequence “enron” in the header and in the body of each message after conversion to

lowercase. The notation head : enron indicates the number of instances of “enron” in the header,

and body : enron indicates the number in the body. Table 10.17 presents these attributes for 18

messages selected from the corpus, 10 of which are spam and 8 of which are ham.

As a binary feature indicating the presence of “enron” in the respective message components,

this information is of limited use. The token “enron” occurs in every header, and therefore its

presence yields no information beyond the ratio of spam to ham in the sample (i.e., a likelihood

ratio of 1). The token occurs in the bodies of 4 spam and 5 ham messages, yielding a 4:5 estimate

of the odds that a message whose body contains “enron” is spam. It does not occur in the bodies

of 6 spam and 3 ham message, yielding a 2:1 odds estimate for such messages.

10.3 Probabilistic Classifiers 343

Table 10.18 Sample versus gold standard estimates for the example shown in Table 10.17.

Training Data Gold Standard

Feature f Frequency Pr[spam |f] Frequency Pr[spam |f]

head : enron �= 0 1.0 0.56 0.9999 0.57

head : enron = 0 0.0 0.50 0.0001 0.00

body : enron �= 0 0.5 0.44 0.62 0.45

body : enron = 0 0.5 0.67 0.38 0.77

Overall 1.0 0.56 1.00 0.57

Table 10.19 Discrete range feature estimates for the example shown in Table 10.17.

Training Data Gold Standard

Feature f Frequency γ = ε = 0 γ = ε = 1 Frequency Pr[spam |f]

0 ≤ head : enron < 10 0.11 0.00 0.25 0.18 0.05

10 ≤ head : enron < 20 0.61 0.91 0.85 0.74 0.75

20 ≤ head : enron < 30 0.28 0.00 0.14 0.05 0.19

Table 10.18 compares these estimates (recast as probabilities) with our “gold standard” best

estimate of the true probability — computed over the entire corpus.

Table 10.19 shows the result of splitting the values of head:enron into three discrete ranges:

[0, 9], [10, 19], and [20, 30]. Probability estimates derived from the training data are shown for

two choices of smoothing parameters: γ = ε = 0 and γ = ε = 1 (see page 340 for a reminder of

how this kind of smoothing works). Values in the center range (10 ≤ head : enron < 20) clearly

predict spam, whereas extreme values indicate ham.

Table 10.20 shows the predictions made for each possible value of head:enron assuming

a Gaussian distribution with parameters computed from the sample: μP = 11.9, σP = 1.2,

μP = 17.6, σP = 8.3. The model aptly estimates Pr[d ∈ P |head : enron = k] for small values

of k but dramatically underestimates it for larger values. These larger values are fairly rare,

thus mitigating the effect of the underestimate; and even the underestimates will yield a correct

classification more often than not. Nevertheless, there is plenty of room to improve the model.

10.3.2 Combining Probability Estimates

We wish to estimate

p[d] ≈ Pr[d ∈ P |x[d]] , (10.35)

given separate estimates for the individual features of d:

p
[d]
i ≈ Pr[d ∈ P |x[d]

i] (for 1 ≤ i ≤ n) . (10.36)

Chapter 10 Categorization and Filtering344

Table 10.20 Sample versus gold standard spam estimates under the Gaussian model for the example
shown in Table 10.17.

Training Data Gold Standard

k Frequency Pr[spam |head : enron = k] Frequency Pr[spam |head : enron = k]

5 0.06 0.0000 0.00 0.0000

6 0.00 0.0000 0.01 0.0705

7 0.06 0.0017 0.08 0.0000

8 0.00 0.0311 0.05 0.0409

9 0.00 0.2315 0.03 0.1767

10 0.06 0.5880 0.07 0.6191

11 0.17 0.7735 0.28 0.8366

12 0.17 0.8049 0.19 0.7343

13 0.17 0.7158 0.09 0.7838

14 0.06 0.4371 0.04 0.7269

15 0.00 0.1079 0.02 0.6321

16 0.00 0.0094 0.01 0.4687

17 0.00 0.0004 0.01 0.4162

18 0.00 0.0000 0.01 0.4838

19 0.00 0.0000 0.01 0.3539

20 0.00 0.0000 0.01 0.5745

21 0.11 0.0000 0.01 0.4236

22 0.06 0.0000 0.01 0.4008

23 0.00 0.0000 0.00 0.5281

24 0.00 0.0000 0.00 0.1026

25 0.06 0.0000 0.02 0.0114

26 0.00 0.0000 0.00 0.0629

27 0.06 0.0000 0.00 0.0026

For convenience, we compute instead the corresponding log-odds estimate

l[d] ≈ logOdds[d ∈ P |x[d]] , (10.37)

where

l[d] = logit(p[d]) = log
p[d]

1− p[d]
, p[d] = logit−1(l[d]) =

1

1 + e−l[d]
. (10.38)

We also define

l
[d]
i ≈ logOdds[d ∈ P |x[d]

i] (for 1 ≤ i ≤ n) . (10.39)

10.3 Probabilistic Classifiers 345

We consider the special cases n = 0 . . . 2, as well as their generalization to n > 2:

• n = 0 denotes the empty vector, so the estimate, which we denote l0, reduces to

l[d] = l
[d]
0 =

|P ∩ T |+ γ

|P ∩ T |+ ε
≈ logOdds[d ∈ P] (10.40)

(where γ and ε are smoothing parameters, as before).

• n = 1 is also trivial; we have

l[d] = l
[d]
1 ≈ logOdds[d ∈ P |x[d]

1] . (10.41)

• n = 2 is more problematic; there is no general method of combining l
[d]
1 and l

[d]
2 into a

common estimate without considering the conditional dependence of x
[d]
1 and x

[d]
2 . From

Equations 10.7 and 10.40 we have

log OR(d ∈ P, x
[d]
1) ≈ l

[d]
1 − l

[d]
0 , (10.42)

log OR(d ∈ P, x
[d]
2) ≈ l

[d]
2 − l

[d]
0 . (10.43)

Under the näıve Bayes assumption (Equation 10.11) we have

log OR(d ∈ P, x[d]) = log OR(d ∈ P, x
[d]
1 and x

[d]
2) ≈ l

[d]
1 − l

[d]
0 + l

[d]
2 − l

[d]
0 (10.44)

and therefore

l[d] = − l
[d]
0 + l

[d]
1 + l

[d]
2 ≈ logOdds[d ∈ P |x[d]] . (10.45)

The näıve Bayes assumption seldom holds in practice; the word “sildenafil”, for exam-

ple, is far more likely to be found in e-mail messages — spam and ham alike — that

also contain the word “Viagra”. Invalid assumptions aside, näıve Bayes classifiers are

commonly used because they are simple and perform adequately as hard classifiers with

a probability threshold t = 0.5, even if their probability estimates are far from accurate

(Domingos and Pazzani, 1997).

A contrasting assumption is that x1 and x2 are dependent; for example, that the pres-

ence of both “sildenafil” and “Viagra” is an indicator of spam; but whether one, or the

other, or both occur in a particular message is of no consequence. In short, a message

containing “sildenafil” and “Viagra” is no more and no less likely to be spam than a

message containing either term alone. Under this assumption l1 and l2 may be averaged

because they are both estimates of the same quantity and differ only in estimation error:

l[d] =
l
[d]
1 + l

[d]
2

2
. (10.46)

Chapter 10 Categorization and Filtering346

Table 10.21 Combining probability estimates using log-odds averaging and Näıve Bayes.

Pr[spam |f1, f2]

Feature f1 Feature f2 Log-Odds Avg. Näıve Bayes Gold Standard

0 ≤ head : enron < 10 body : enron = 0 0.45 0.36 0.14

0 ≤ head : enron < 10 body : enron > 0 0.33 0.16 0.03

10 ≤ head : enron < 20 body : enron = 0 0.77 0.90 0.86

10 ≤ head : enron < 20 body : enron > 0 0.66 0.76 0.65

20 ≤ head : enron < 30 body : enron = 0 0.36 0.21 0.40

20 ≤ head : enron < 30 body : enron > 0 0.25 0.08 0.12

For both näıve Bayes and log-odds averaging the general solution for n ≥ 2 computes l[d] as a

linear combination of the individual l
[d]
i :

l[d] =

n∑
i=0

βi · l[d]
i . (10.47)

For näıve Bayes,

βi =

⎧⎨⎩1− n (i = 0)

1 (i > 0)
, (10.48)

for log-odds averaging,

βi =

⎧⎨⎩0 (i = 0)

1
n (i > 0)

. (10.49)

Table 10.21 compares the two methods, using all combinations of values for the two discrete

features in our running example. We see that averaging tends to yield conservative results closer

to p0 = 0.55, whereas those due to näıve Bayes are more extreme. For some examples, averaging

appears to yield the better estimate; for others, näıve Bayes does.

Many other choices of βi are possible. One might, for example, average the näıve Bayes

and log-odds averaging estimates, which would yield a different linear combination that reflects

partial conditional dependence among the various x
[d]
i . Or one might choose weights other than

1
n for specific βi, depending on the accuracy of the corresponding l

[d]
i .

Logistic regression is a method that computes βi so as to maximize likelihood, given a set of

labeled training examples. Likelihood is simply the combined probability of the examples under

the assumption that the estimate p[d] = 1

1+e−l[d] = Pr[d ∈ P |x[d]]; that is,

likelihood =
∏

d∈T∩P

p[d] ·
∏

d∈T∩P

1− p[d] . (10.50)

10.3 Probabilistic Classifiers 347

Inputs:
Set T ⊂ D of training examples d ∈ T , represented by x[d] = 〈1, x

[d]
1 , x

[d]
2 , . . . , x

[d]
n 〉

Labeling label : T → {0, 1}
Smoothing parameters γ, ε

Output:
β · x[d] is the näıve Bayes estimate of logOdds[label(d) = 1], where β = 〈β0, . . . , βn〉

1 p← a← 〈0, . . . 0〉
2 for d ∈ T do
3 for i ∈ [0..n] do

4 if x
[d]
i = 1 then

5 if label(i) = 1 then pi ← pi + 1 else ai ← ai + 1
6 β0 ← logit(p0+γ

a0+ε
)

7 for i← 1 to n do
8 βi ← logit(pi+γ

ai+ε
)− β0

Figure 10.7 Näıve Bayes classifier construction.

Because logistic regression solves for βi, it is not essential that the separate l
[d]
i be calibrated

as log-odds estimates. In particular it is unnecessary to transform categorical features for the

purpose of logistic regression. Instead, a feature x
[d]
i : {k1, k2, . . . , km} may be interpreted as m

distinct binary features x
[d]
i1 , x

[d]
i2 , . . . , x

[d]
im where

x
[d]
ij =

{
1 (x

[d]
i = kj)

0 (x
[d]
i 	= kj)

.

Commonly x
[d]
i is binary-valued and x

[d]
i0 is discarded for the reasons stated in Section 10.3.1,

so x
[d]
i is effectively replaced by x

[d]
i1 . It is also unnecessary to transform continuous features, so

long as they are proportional (or nearly proportional) to log-odds.

10.3.3 Practical Considerations

The choice of feature representation and combining method may have a dramatic effect on

the simplicity and efficiency of the resulting classifier, particularly for on-line deployment. We

have previously mentioned that feature transformations such as TF-IDF and statistical feature

selection are difficult to reconcile with adaptive classifiers. Probability-based interpretations

that model global distributions entail similar difficulties. For this purpose discrete features

that may be derived from individual messages, independent of others in the training set, are

more amenable to on-line settings. Even for batch filtering, these simple feature representations

usually work as well as or better than more complex and less adaptive ones based on global

statistics.

Chapter 10 Categorization and Filtering348

Inputs:
Set T ⊂ D of training examples d ∈ T , represented by x[d] = 〈1, x

[d]
1 , x

[d]
2 , . . . , x

[d]
n 〉

Labeling label : T → {0, 1}
Rate parameter δ

Output:
β · x[d] is the maximum likelihood estimate of Pr[label(d) = 1] over d ∈ T

1 β ←〈0, . . . , 0〉
2 loop until convergence:
3 for d ∈ T do
4 p← 1

1+e−β·x[d]

5 β ← β + (label(d)− p) · δ · x[d]

Figure 10.8 Logistic regression using the gradient descent method.

Provided amenable features are used, a näıve Bayes classifier is very easy to implement and

there is little difference between batch and on-line versions. The batch version is shown in

Figure 10.7. It simply counts the number of occurrences of each feature in T ∩P and T ∩P and

then computes the log-odds coefficients from them. An equivalent on-line adaptive version (not

shown) simply combines the counting and coefficient calculations. Incremental discovery of new

features is easily accomplished by setting the initial count of each new feature to 0 when it first

occurs in a document.

Although the näıve Bayes method makes an adequate hard classifier, it is a horrible soft

classifier because it overestimates the combined effect of the individual features. The more

features considered, the larger the overestimate. To mitigate this effect we may select a fixed

number of terms per document. For some fixed value m only the m largest and m smallest values

of x
[d]
i are used in computing x[d]. This selection process tends to normalize the magnitude of

the overestimate among documents, and among positive and negative features.

Logistic regression is traditionally viewed as a batch algorithm, but a simple gradient descent

method yields an implementation that is simpler and more effective than näıve Bayes and that

may be used in on-line or batch scenarios. Gradient descent methods find the local minimum

of a function by taking a step along the direction of the negative gradient at each iteration.

The batch version is presented in Figure 10.8. The simplest incremental version, instead of

iterating until convergence, performs exactly one gradient step for each incoming document. It

is also possible to maintain an incremental history of training examples seen so far and to train

on them. For example, when training a new positive example, one could also train a negative

example selected at random, and so on. The net effect is to balance the number of positive and

negative examples, which may yield better classification.

In many circumstances the space efficiency of gradient descent makes it attractive for very

large problems. However, if the number of training examples is large, more time-efficient

algorithms are available.

10.4 Linear Classifiers 349

The relatively slow convergence of the gradient descent method may be an advantage in

combating overfitting. Logistic regression, after all, can solve a system of simultaneous equations,

and hence overfit, when the number of features exceeds the number of examples. Through a

suitable choice of the learning rate δ, the gradient descent method avoids this pitfall. Batch

methods, on the other hand, use a technique known as regularization to avoid overfitting.

Regularization involves not only maximizing the likelihood with respect to the training examples

but also minimizing the magnitude of β because large coefficients tend to indicate overfitting.

The trade-off between maximizing likelihood and minimizing |β| is specified by a regularization

parameter, often denoted as C.

All major statistical and mathematical software packages implement batch logistic regression,

which is a standard tool for scientific research. For classification notable implementations include

Weka (Witten and Frank, 2005), LR-TRIRLS (Komarek and Moore, 2003), and LibLinear.5

10.4 Linear Classifiers

A linear classifier views the feature vector x[d] for a message d as a point in an n-dimensional

space, where n is the number of features. The classifier consists of a vector of coefficients

β = 〈β1, β2, . . . , βn〉 and a threshold t. The equation β · x = t defines a hyperplane that divides

the space into half-spaces. All points on one side of the hyperplane (β · x[d] > t) are classified

as positive and the ones on the other side (β · x[d] ≤ t) are classified as negative. β · x = t is a

separating hyperplane if ∀d∈P : β · x[d] > t and ∀d∈P : β · x[d] ≤ t. A set of messages is said to be

linearly separable if there exists a separating hyperplane for the set. The log-odds formulation of

the probabilistic classifier developed in the previous section is an example of a linear classifier.

In this section we describe a geometric interpretation and several construction methods.

For convenience we limit our illustrations to the case of n = 2; it should be kept in mind that

typical filtering applications involve more features and hence more dimensions. Figure 10.9 shows

the vector space representation for the 18 messages in our running example (Table 10.17). The x-

axis corresponds to the head:enron feature transformed using the Gaussian model (Table 10.20).

The y-axis corresponds to the body:enron feature represented as a simple count. The diagonal

line is a separating hyperplane because all positive examples fall on one side and all negative

examples on the other. Thus it is a perfect classifier — at least for the sample data.

Figure 10.10 shows that the same line is not a separating hyperplane for a larger sample from

the same source; indeed, none exists. Still, most positive examples lie on the spam side of the

line and most negative ones lie on the other side. Thus the line is a reasonable classifier. But is

it the best linear classifier within this vector space? And how may it be chosen using only the

training data? The answer depends on the definition of best.

5 www.csie.ntu.edu.tw/∼cjlin/liblinear

Chapter 10 Categorization and Filtering350

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

bo
dy

:e
nr

on
 (

N
um

be
r

of
 o

cc
ur

re
nc

es
)

head:enron (Gaussian model)

Non-spam

Spam

Figure 10.9 A linearly separable sample along with one possible separating hyperplane.

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

bo
dy

:e
nr

on
 (

N
um

be
r

of
 o

cc
ur

re
nc

es
)

head:enron (Gaussian model)

Non-spam

Spam

Figure 10.10 A larger linearly inseparable sample.

10.4 Linear Classifiers 351

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

bo
dy

:e
nr

on
 (

N
um

be
r

of
 o

cc
ur

re
nc

es
)

head:enron (Gaussian model)

Non-spam

Spam

Figure 10.11 A linearly separable sample with two separating hyperplanes. Which one is “better”?

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

bo
dy

:e
nr

on
 (

N
um

be
r

of
 o

cc
ur

re
nc

es
)

head:enron (Gaussian model)

Non-spam Spam

Figure 10.12 Ignoring one point.

Chapter 10 Categorization and Filtering352

Inputs:
Set T ⊂ D of training examples d ∈ T , represented by x[d] = 〈1, x

[d]
1 , x

[d]
2 , . . . , x

[d]
n 〉

Labeling label : T → {−1, 1}
Output:

if linearly separable, β such that β · x[d] > 0 if and only if label(d) = 1
else fails to terminate

1 β ←〈0, . . . , 0〉

2 while ∃d∈T : β · x[d] · label(d) < 0 do

3 β ← β + x[d] · label(d)

Figure 10.13 The perceptron learning algorithm.

If the points are linearly separable, there are in general an infinite number of separating

hyperplanes. Any positive linear combination of the extreme curves shown in Figure 10.11 will

itself separate positive from negative. It is not apparent that the best classifier is a separating

hyperplane, even if one exists. If one were to assume that the ham 〈0.72, 23〉 were an outlier —

perhaps a mistake in the training data — one might reasonably choose the vertical separator in

Figure 10.12, which reflects the assumption that the second feature has no real effect. Hindsight

(i.e., Figure 10.10) tells us intuitively that our original separator was more appropriate. However,

we are concerned here with justifying the choice based on the training data alone. Figures 10.9

and 10.12 represent two competing views of what constitutes the best classifier:

• One that correctly classifies all training examples while maximizing the distance from

the nearest example to the hyperplane (Figure 10.9)

• One that allows one or more examples to be misclassified while increasing the distance

to the rest (Figure 10.12).

10.4.1 Perceptron Algorithm

The perceptron algorithm (Figure 10.13) iteratively finds a separating hyperplane — any sep-

arating hyperplane, if one exists — starting with a weight vector β that is incremented or

decremented for every example on the wrong side of the hyperplane specified by β. The algo-

rithm ignores correctly classified examples. If the examples are linearly separable, the algorithm

converges in a finite number of steps; otherwise it fails to terminate. For practical purposes it

is sufficient to stop training after some time, under the assumption that a good, if not optimal

in any sense, classifier has been found. The perceptron is attractive for filtering because it is

simple, incremental, and adaptive.

The margin perceptron algorithm increments β for examples that are near but on the correct

side of the hyperplane, and also for examples that are on the wrong side. Margin is defined to be

the distance to the nearest example in Euclidean space. The margin perceptron (Figure 10.14;

see Sculley et al. (2006) for details) adds a margin parameter τ so as to bias the method to prefer

higher margin separators. Where the standard perceptron would stop, the margin perceptron

10.4 Linear Classifiers 353

Inputs:
Set T ⊂ D of training examples d ∈ T , represented by x[d] = 〈1, x

[d]
1 , x

[d]
2 , . . . , x

[d]
n 〉

Labeling label : T → {−1, 1}
Margin parameter τ

Output:
if linearly separable, β such that β · x[d] ≥ τ if label(d) = 1, β · x[d] ≤ −τ if label(d) = −1
else fails to terminate

1 β ←〈0, . . . , 0〉

2 while ∃d∈T : β · x[d] · label(d) < τ do

3 β ← β + x[d] · label(d)

Figure 10.14 Margin perceptron.

continues to adjust the hyperplane until a margin of τ
|β| is achieved. Note that |β| grows with

each step, effectively reducing the margin until a suitable hyperplane is found. There is no

guarantee that the largest possible margin (i.e., the smallest possible |β|) is found, but for

sufficiently large τ the margin perceptron usually finds a reasonable approximation.

10.4.2 Support Vector Machines

A support vector machine (SVM) directly computes the separating hyperplane that maximizes

the margin or distance to the nearest example points. Several points will be at the same distance;

these points are known as the support vectors and the resulting classifier is a linear combination

of these vectors — all other points may be ignored. Thus the SVM would prefer the solution in

Figure 10.9 over the ones in Figure 10.11 with support vectors of 〈0, 0〉, 〈0.72, 23〉 on the ham

side and 〈0.72, 20〉 on the spam side.

In the case of nonseparable data or of separable data in which a few points dramatically affect

the solution (e.g., Figure 10.12 or point 〈0.72, 23〉 in our training data), it may be desirable to

relax the requirement that all training data be correctly classified. Contemporary SVM formu-

lations implement a trade-off between maximizing the margin and minimizing the magnitude of

training errors. The trade-off parameter C determines the relative weight of the second objective

to the first. C = 0 specifies the pure SVM detailed in the previous paragraph; C = 1 gives the

objectives balanced weight and is a typical default value; C = 100 gives the second objective

substantial weight and has been found to be appropriate for spam filtering (see Drucker et al.

(1999) or Sculley et al. (2006)).

A number of software packages implementing SVMs are available, including Weka,6 SVM-

light,7 and LibSVM8. Sculley and Wachman (2007) describe a gradient method for efficient

incremental on-line filtering using SVMs.

6 www.cs.waikato.ac.nz/ml/weka
7 svmlight.joachims.org
8 www.csie.ntu.edu.tw/∼cjlin/libsvm

Chapter 10 Categorization and Filtering354

10.5 Similarity-Based Classifiers

In this section we consider similarity-based classifiers, which harness the assumption that similar

documents are more likely to belong to the same category than dissimilar ones. For classifica-

tion it is necessary to formalize the notion of similarity as a function sim : D ×D → R, where

sim(d1, d2) > sim(d3, d4) means that in some sense d1 and d2 are more similar to one another

than are d3 and d4. Perhaps the most familiar example is the vector space model for information

retrieval from Chapter 2, where sim is the cosine formula (Equation 2.12):

sim(d1, d2) =
|x[d1] · x[d2]|
|x[d1]| · |x[d2]| . (10.51)

For topic-oriented filtering without historical examples, documents may be prioritized by simi-

larity to the query q, exactly as for ranked retrieval, yielding a soft classifier:

c(d) = sim(d, q) . (10.52)

If historical examples are available, we may compute the similarity of d to any or all of them,

and combine the resulting evidence to classify d. We formalize this approach by defining a new

similarity function Sim : D × 2D → R, where Sim(d, D′) indicates the similarity of d to the

documents in a set D′ ⊂ D. Various similarity-based classifiers are distinguished by how they

define sim and by how Sim is derived from sim.

10.5.1 Rocchio’s Method

Rocchio’s method (Rocchio, 1971) defines

Sim(d, D′) = sim(d, d′), where x[d′] =
1

|D′|
∑
d∈D′

x[d] . (10.53)

That is, D′ is represented by a hypothetical surrogate document d′ whose feature vector is the

centroid of all members of D′. In its simplest form the Rocchio classifier uses only positive

training examples:

c(d) = Sim(d, T ∩ P) . (10.54)

For categorization, where positive and negative examples are available, a better classifier is

derived from the difference

c(d) = Sim(d, T ∩ P)− Sim(d, T ∩ P) . (10.55)

Rocchio’s method has been used extensively for relevance feedback in the vector space model.

Like the cosine measure on which it is based, Rocchio’s method is essentially obsolete for this

purpose; methods like BM25 relevance feedback work better. It is not difficult to see that

10.6 Generalized Linear Models 355

Rocchio’s method is in fact a linear classifier, but it is not as effective as the other classifiers

presented here.

Our application of BM25 to language categorization and spam filtering (Section 10.1) may

be considered a variant of Rocchio’s method in which Sim is defined in terms of the BM25

relevance feedback formula instead of the cosine measure.

10.5.2 Memory-Based Methods

Memory-based methods, also known as case-based methods, use the training examples them-

selves as the classifier profile. These examples are searched as necessary to classify a document

or set of documents. Perhaps the simplest memory-based method is nearest neighbor (NN),

which is traditionally taken to be a hard classifier:

ch(d) = label

(
arg max

d′∈T
sim(d, d′)

)
. (10.56)

If sim happens to be one of the ranking methods we have considered for standard search tasks,

the nearest neighbor classifier may be implemented efficiently by indexing the training examples

and using a search engine to retrieve the most similar document. Otherwise it may be necessary

to enumerate sim(d, d′) for every d′ ∈ T .

More generally, we may compute a soft nearest neighbor classifier and derive the hard classifier

from it:

Sim(d, D′) = max
d′∈D′

sim(d, d′) (10.57)

cs(d) = Sim(d, T ∩ P)− Sim(d, T ∩ P) (10.58)

ch(d) =

⎧⎨⎩pos (cs(d) > 0)

neg (cs(d) ≤ 0)
. (10.59)

An efficient implementation of cs involves the construction of separate search indices for Tpos

and Tneg.

A simple variant is k-nearest neighbor (kNN), in which the k documents most similar to d are

considered, for some fixed k. Most commonly a hard classifier is then defined as the majority

vote among the most similar k documents.

10.6 Generalized Linear Models

As we have noted previously, there is no firm distinction between feature engineering and

classifier construction. Through a suitable choice of the feature representation x[d] one can

Chapter 10 Categorization and Filtering356

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

bo
dy

:e
nr

on
 (

N
um

be
r

of
 o

cc
ur

re
nc

es
)

head:enron (Number of occurrences)

Figure 10.15 Untransformed features.

transform essentially any classification problem into one that may be solved by a linear classifier.

The examples we have presented so far rely on such feature engineering:

• For probabilistic classifiers we applied the logit transformation, known as a link function

or transfer function, to make the problem amenable to linear classification.

• For our linear classification example we applied a Gaussian transformation to one of the

dimensions.

Figure 10.15 shows the linear classification example without transformation. The feature repre-

sentation is the raw term frequency for both dimensions. In this exposition we distinguish raw

and transformed representations using the following notation:

• x[d] is the raw representation of d. For this example x[d] is the vector of the frequencies of

the two terms. In general, x[d] is a representation that is in some sense a straightforward

representation of d.

• X [d] = ϕ(x[d]) is the transformed representation of d, where ϕ is a mapping function. X

is a vector space whose dimensionality need not be the same as x. It may be smaller, in

which case the transformation is an example of dimensionality reduction. Or it may be

considerably larger, even infinite. In this second situation kernel methods may be used

to construct linear classifiers over X without having to calculate X [d]. Perceptrons and

SVMs are readily implemented as kernel methods.

10.6 Generalized Linear Models 357

Using Equation 10.34, the mapping for our example is

X [d] = ϕ(x[d]) =

〈
NP

NP

·
g(μ(1,P), σ(1,P), x

[d]
1)

g(μ(1,P), σ(1,P), x
[d]
1)

, x
[d]
2

〉
. (10.60)

Note that the four parameters μ(1,P), σ(1,P), μ(1,P), σ(1,P) are estimated from the training exam-

ples as part of the feature engineering process. An alternative is to guess several values for these

parameters and to see which one works best, a process known as parameter selection or, more

colloquially, tuning. One may guess ϕ as well; the overall process of guessing ϕ and its parame-

ters is known as model selection. In evaluating classifiers whose construction involves parameter

or model selection, it is essential that the evaluation (i.e., test) data not be consulted. A common

approach is to subdivide the training examples into separate training and validation sets (as

detailed in Chapter 11). For our immediate purpose we assume that ϕ (including any implicit

parameters on which it depends) is fixed.

For expository purposes we consider a second mapping ϕ+ on the same data that augments

the dimensionality of x, to form a three-dimensional space:

ϕ+(x[d]) =

〈
x

[d]
1 , x

[d]
2 ,

NP

NP

·
g(μ(1,P), σ(1,P), x

[d]
1)

g(μ(1,P), σ(1,P), x
[d]
1)

〉
. (10.61)

This mapping may be visualized as lifting the positive examples from the plane, along the new

third dimension, while depressing the negative examples. In this new three-dimensional space

the examples are linearly separable. Furthermore, the first dimension is unnecessary because the

examples are still linearly separable when we reduce the space to two dimensions by eliminating

it:

ϕ−(X [d]) =
〈
X

[d]
3 , X

[d]
2

〉
(10.62)

Our original mapping ϕ is simply the composition of ϕ+ and ϕ−:

ϕ(x[d]) = ϕ−(ϕ+(x[d])) . (10.63)

10.6.1 Kernel Methods

A linear classifier may be reformulated as a similarity-based classifier where

sim(d1, d2) = X [d1] ·X [d2] . (10.64)

Consider the case in which the feature space x is linearly separable. The perceptron algorithm

may be used to compute a weight vector β such that

c(d) = β ·X [d] c(d ∈ P) > 0 c(d ∈ P) < 0 . (10.65)

Chapter 10 Categorization and Filtering358

Inputs:
Set T ⊂ D of training examples d ∈ T , represented arbitrarily
Labeling label : T → {−1, 1}
Similarity (kernel) function sim : D ×D → R,

where sim(d1, d2) = X [d1] ·X [d2] in virtual feature space X
Output:

if linearly separable,
α such that c(d) > 0 if and only if label(d) = 1, where c(d) =

P
d′∈T αd′ sim(d′, d)

else fails to terminate

1 α←〈0, . . . , 0〉
2 while ∃d∈T : c(d) · label(d) < 0 do
3 αd ← αd + label(d)

Figure 10.16 Kernel perceptron learning algorithm.

From Figure 10.13 we see that β must be a linear combination of positive and negative train-

ing examples in which the positive and negative examples have nonnegative and nonpositive

coefficients, respectively:

β =
∑
d∈T

αiX
[d] αd∈P ≥ 0 αd∈P ≤ 0 . (10.66)

Here α is a vector of weights, one for each document in T . Combining Equations 10.64, 10.65,

and 10.66, we have the dual formulation of the classifier:

c(d) = (
∑
d′∈T

αd′ · x[d′]) · x[d] =
∑
d′∈T

αd′ · (x[d′] · x[d]) =
∑
d′∈T

αd′ · sim(d, d′) . (10.67)

This dual formulation does not reference X [d] except within the definition of sim. The ker-

nel perceptron algorithm (figure 10.16) uses this representation and computes α instead of β,

replacing the update rule

β ← β + X [d] · label(d) with αd ← αd + label(d) . (10.68)

Thus the kernel perceptron manipulates sim and α, but never X [d] or β. Other methods,

including the margin perceptron and SVM, may be formulated as kernel methods.

The so-called kernel trick is to implement sim(d1, d2) without reference to X , thus avoiding

its computation altogether. So long as Equation 10.64 holds, any implementation will do. Such

an implementation is called a kernel function. The kernel trick enables us to use a vast or

unlimited number of virtual features, which would not otherwise be possible.

Consider, for example, a set of documents d ∈ D whose raw feature representation x[d] consists

of n term frequencies. Rather than using the traditional cosine rule that directly yields a linear

classifier, let us define similarity to be the number of terms that two documents share with

10.7 Information-Theoretic Models 359

identical frequencies:

sim(d1, d2) = |{i ∈ [1, n] |x[d1]
i = x

[d2]
i }| . (10.69)

In general there is an unbounded number of possible values for f = x
[d]
i , but we may enumerate

them by defining a mapping π from combinations of (f, i) to N:

π(f, i) = i + n · f . (10.70)

Given π, the virtual feature representation X [d] is defined by

X
[d]
π(f,i) =

⎧⎨⎩1 (x
[d]
i = f)

0 (x
[d]
i 	= f)

. (10.71)

In this space we have sim(d1, d2) = X [d1] · X [d2], as required. But sim is implemented by

enumerating x[d1] and x[d2], not X [d1] and X [d2].

The design of feature spaces and kernel functions is limited only by the imagination. Standard

examples include string kernels, polynomial kernels, and radial basis function (Gaussian) kernels.

SVM packages commonly support a variety of kernels, including user-defined kernels in which

sim is specified in a programming language.

10.7 Information-Theoretic Models

A model is an estimate of the probability of some event derived from available evidence. A meteo-

rologist might use evidence such as humidity and barometric pressure to predict an 80% chance

of rain tomorrow. In this example the event is rain and the meteorologist’s model estimates

Pr[rain] ≈ 0.8 and Pr[not rain] ≈ 0.2.

In Chapter 6 we considered several models for data compression under the simplifying

assumption that the model M predicting each symbol s from some alphabet S was exact:

∀s∈S Pr[si] =M(si) . (10.72)

Here we make the opposite assumption: that any real model M is necessarily inexact and that

M is better than some other model M′ if it is closer to the true probability. The task of

determining which of M or M′ is better presents two challenges:

• The true probability is intangible, and cannot be used as a gold standard for comparison.

• The notion of “closer to” has many possible interpretations.

Assuming these challenges are met and we have a method to determine which is the better

model, we can construct a classifier in one of two ways:

Chapter 10 Categorization and Filtering360

• Construct separate data compression models from positive and negative training

examples, and use them to estimate the likelihood ratio for an unknown document:

MP (d) ≈ Pr[d |d ∈ P] MP (d) ≈ Pr[d |d ∈ P] (10.73)

cs(d) =
MP (d)

MP (d)
≈ LR(d ∈ P, d) . (10.74)

• From among many candidate models, choose M that best models the labels of the

training examples, and use M itself for classification:

cs(d) = M(label(d) = pos |d) ≈ Pr[d ∈ P |d] . (10.75)

This approach is commonly used in constructing decision tree classifiers. More generally,

the approach is known as model selection.

10.7.1 Comparing Models

We define P(x) to be the hypothetical true probability of an event x, and M to be a model for

that probability:

M(x) ≈ P(x) = Pr[x] . (10.76)

IP(x) is the information content of x given P , measured in bits:

IP (x) = − log2 P(x). (10.77)

H(P) is the entropy, or expected information content, of a random variable X with distribution

P (also measured in bits):

H(P) = E[IP(X)] =
∑

x

P(x) · IP(x). (10.78)

H(P) is an information-theoretic lower bound on the expected number of bits that are needed

to encode X . This lower bound is achieved if and only if every x is encoded with IP (x) bits.

Real data compression methods, such as those considered in Chapter 6, fail to achieve this

lower bound for two reasons:

• Under the assumption that M(x) = P(x), they encode each x using about IM(x) bits,

thus optimizing H(M) instead of H(P).

• In general, IM(x) is not an integer, so fractions of bits are wasted.

For our purposes only the first consideration is of any consequence: How far from the lower

bound is a code that uses exactly IM(x) bits to encode x? The expected length of such a code

10.7 Information-Theoretic Models 361

for a random variable X with distribution P is given by the cross-entropy between P and M:

H(P ;M) = E[IM(X)] =
∑

x

P(x) · IM(x) (10.79)

The difference between cross-entropy (the code length) and entropy (the lower bound) is KL

divergence (see Section 9.4):

DKL(P ‖ M) = H(P ;M)−H(P) . (10.80)

We say that model M1 is a better model than M2 if it yields a shorter expected code length;

that is, if

H(P ;M1) < H(P ;M2) ⇔ DKL(P ‖ M1) < DKL(P ‖ M2) (10.81)

⇔
∑

x

P(x) · (IM1 (x)− IM2(x)) < 0 . (10.82)

10.7.2 Sequential Compression Models

Sequential compression models such as prediction by partial matching (PPM; Cleary and

Witten, 1984), dynamic Markov compression (DMC; Cormack and Horspool, 1987), and

context-tree weighting (CTW; Willems et al., 1995), treat a message m as a sequence s1s2 . . . sn

of symbols from a finite alphabet. The symbols are processed sequentially, and a separate model

Mk is constructed for each prefix s1s2 . . . sk in turn, for 0 ≤ k < n. EachMk is used to compress

sk+1 and then discarded. The model M for the whole message is

M(m) =

n−1∏
k=0

Mk(sk+1) . (10.83)

Under this model the optimal code length for m is

IM(m) =

n−1∑
k=0

IMk
(sk+1) . (10.84)

For classification (Bratko et al., 2006) we represent each document d by some sequence of

symbols m[d] and form a supersequence mP by concatenating all m[d∈T∩P] (the positive train-

ing examples), and mP by concatenating all m[d∈T∩P] (the negative training examples). Two

sequential models MP and MP are constructed for these sequences. A new message m[d] to be

classified is concatenated to mP and to mP , yielding new models MPd and MPd, respectively.

The soft classifier is constructed as follows:

c(d) ≈ log
Pr[mP m[d] |d ∈ P]

Pr[mP m[d] |d ∈ P]
− log

Pr[mP |d ∈ P]

Pr[mP |d ∈ P]
= log LR(d ∈ P, m[d]) (10.85)

Chapter 10 Categorization and Filtering362

c(d) = IP d(m
P m[d])− IP (mP)− IPd(mP m[d]) + IP (mP) . (10.86)

That is, the classifier is the difference between the increase in information content from adding

d to the negative examples, and the increase from adding d to the positive examples.

In practice it is unnecessary to computeMPd andMPd from scratch. Sequential compression

methods efficiently construct MPd and MPd from stored representations of MP and MP ,

along with m[d]. Incremental training is easily effected by replacing MP with MPd when it is

discovered that d ∈ P , and MP with MPd when it is discovered that d ∈ P .

For illustration we use Dynamic Markov Compression (DMC), arguably the simplest method

that performs well. DMC treats each message as a sequence of bits, typically the obvious ASCII

or Unicode representation of the text. Thus the message representation is a sequence of symbols

from the alphabet {0, 1}. Figure 10.17 illustrates how DMC works. It starts with an initial

Markov model (Section 1.3.4) with very few states, as illustrated by the left panel (a). The

message is processed as a sequence of binary bits, so there are transitions from each state

labeled 0 and 1. Each transition is also labeled with a frequency indicating the number of times

it has been followed. From this information we may deduce that panel (a) has been trained on

a sequence of 22 bits, of which 16 were 1 and 6 were 0. Intuitively, the state A represents a

sequence whose last bit is 0 while B represents a sequence whose last bit is 1. The odds of the

next transition from these states may be estimated from the frequencies

Odds[1 |A] ≈ 4

2
= 2 and Odds[1 |B] ≈ 12

4
= 3 . (10.87)

The method operates as an on-line classifier: Each bit is first predicted using the odds estimate,

then the correct transition is taken and the corresponding frequency is incremented.

When a state is visited frequently through one transition, and also through other transitions,

it is cloned to yield two similar states. This situation is illustrated by the right panel (b), in which

the transition from A to B is about to be taken, raising its frequency to 5. B is cloned to create

B′, and the high-frequency transition is redirected to B′. The outgoing frequencies of B and

B′ are divided in proportion to the incoming frequencies, so that Odds[1|B′] = Odds[1|B] = 3.

Finally, the transition to B′ is taken, and its frequency is incremented. Through cloning, the

Markov model grows, progressively modeling longer substrings of the training example. For this

example B′ models sequences ending in 01, and B models sequences ending in 11. The state A,

as before cloning, models sequences ending in 0.

An implementation of DMC is available for download at no cost.9 Table 10.22 illustrates

the result of applying two DMC models (one for ham and one for spam) to the To: fields

of the 18 messages in our running example, in order (see Table 10.17). The first column of

Table 10.22 shows the true class of the message; the second, the overall log-likelihood ratio c(d);

9 plg.uwaterloo.ca/∼ftp/dmc/dmc.c

10.7 Information-Theoretic Models 363

1/1/f=4

A B

0/f=4

0/f=2 1/f=12 A

B’

0/f=3

1/f=5

0/f=2 1/f=3

B

0/f=1

1/f=9
cloning of state B

a) b)

Figure 10.17 Example of DMC’s Markov model cloning operation.

and the third, the To: field of the message. Each character xi is darkened to indicate the log-

likelihood ratio associated with it (that is, the sum of the log-likelihoods for the individual bits

in the character): Black indicates spam (log LR(d ∈ spam, xi) � 0); light gray indicates ham

(log LR(d ∈ spam, xi)
 0); and medium gray indicates neither (log LR(d ∈ spam, xi) ≈ 0).

The first message is gray and has a log-likelihood ratio of 0 because there are no previous

messages; thus the spam and ham models are identical. The next two messages are classified

(correctly) as spam, which is perhaps not surprising as there are no ham examples with which

to compare. Indeed the fourth message — the first ham — is incorrectly classified as spam with

a positive log-likelihood ratio. As more examples are learned, the models are better able to

distinguish spam from ham. The last seven messages are correctly classified. The shadings of

individual characters reveal that some key indicators of ham are the following:

• quotation marks

• the token “ENRON”, in upper case

• specific names like Adams and pete.davis.

Indicators of spam are the following:

• the token “enron”, in lowercase

• variants of the name kholst.

The data compression models used for filtering harness the correlation between adjacent symbols

in the message. DMC uses a bitwise dynamic Markov model that incrementally adapts to model

longer sequences that occur frequently. PPM, in contrast, tacitly uses an n-gram character model

(4 ≤ n ≤ 8 is typical) for which a suffix-tree representation is more amenable than a feature

vector because it consumes linear space. Context-tree weighting is asymptotically optimal under

certain theoretical assumptions, but is more complex and does not appear to yield better results

than DMC or PPM.

Chapter 10 Categorization and Filtering364

Table 10.22 DMC results, when applied to the To: field extracted from each message, with on-line
learning in the order shown. The first column gives the true category. The second column gives the
log-likelihood ratio computed by DMC. Positive indicates spam and negative indicates ham. The third
column shows the text itself, with dark print indicating high spam likelihood and light print indicating
low spam likelihood. The To: field is used for brevity of exposition; superior results are achieved when
the entire message text is used.

Class Score Message Snippet

spam 0.0 To: emclaug@enron.com
spam 3.9 To: SKean@enron.com
spam 0.1 To: <joydish@bareed.alburaq.net>
ham 1.1 To: "Shapiro, Richard" <Richard.Shapiro@ENRON.com>
ham -0.8 To: "Adams, Jacqueline P." <Jacqueline.P.Adams@ENRON.com>,
ham -4.4 To: "Adams, Jacqueline P." <Jacqueline.P.Adams@ENRON.com>,
ham 1.5 To: pete.davis@enron.com
spam 1.0 To: KAM.KEISER@enron.com
ham -2.1 To: "Abel, Chris" <Chris.Abel@ENRON.com>,
ham -1.8 To: "Moran, Tom" <Tom.Moran@ENRON.com>,
spam -0.1 To: nqeb5e6@msn.com
spam 1.6 To: skean@enron.com
ham -1.4 To: pete.davis@enron.com
spam 0.1 To: kholst <kholst@enron.com>
ham -1.1 To: "Scott, Susan M." <Susan.M.Scott@ENRON.com>
spam 0.8 To: mmotley@enron.com
spam 3.2 To: kholst@enron.com
spam 3.1 To: keith.holst@enron.com

10.7.3 Decision Trees and Stumps

A decision tree classifier successively partitions D into subsets, each of which has a higher

proportion of either positive or negative examples than D itself. The tree is constructed from

the examples in T , under the assumption that the same tree will suitably partition D.

We consider binary decision trees in which the partitioning is expressed as a set of Boolean

formulae, each specifying a binary partition on one of the subsets. Each formula is typically

quite simple, based on a single binary feature or on comparing a continuous feature against a

threshold value.

The simplest decision tree is a binary decision stump, which uses a binary formula b to

partition D into two subsets:

Db = {d ∈ D|b}, Db = {d ∈ D|b} . (10.88)

10.7 Information-Theoretic Models 365

A decision tree is formed by repeatedly partitioning subsets of D. After n − 1 steps we arrive

at n disjoint subsets:

D = D1 ∪D2 ∪ . . . ∪Dn . (10.89)

At each step k = 1 through k = n− 1, two decisions are taken:

1. Identify a particular Di (1 ≤ i ≤ k) to be partitioned.

2. Identify bik to partition Di into Di and Dk.

The challenge is to make decisions that lead to a good classifier. For any reasonable definition

of “good”, the problem is intractable and the decisions are made one at a time in a “greedy”

fashion using some heuristic. Information gain (IG) is commonly used for this purpose.

Consider the problem of finding a model M for a binary classification in which the possible

events are pos and neg:

M(pos) = 1−M(neg) ≈ Pr[d ∈ P] . (10.90)

Given a set T of labeled training examples, we may derive a simple model from the proportion

of positive examples

M(pos) =
|T ∩ P |
|T | . (10.91)

The information content of the set of training labels label(T) = {label(d) |d ∈ T } is then

IM(label(T)) =
∑
d∈T

IM(label(d)) = |T ∩ P | · IM(pos) + |T ∩ P | · IM(neg) . (10.92)

Now consider the situation in which separate models are constructed for T b = T ∩ Db and

T b = T ∩Db:

Mb(pos) =
|T b ∩ P |
|T b| (10.93)

Mb(pos) =
|T b ∩ P |
|T b|

≈ Pr[d ∈ P |b] . (10.94)

Assuming B ∈ {b, b} is known for the document that is to be classified, a combined model is

MB =

⎧⎨⎩Mb (B = b)

Mb (B = b)
≈ Pr[d ∈ P |B] . (10.95)

The information content of the training labels, given B, is

IMB
(label(T)) = IMb

(label(T b)) + IMb
(label(T b)) . (10.96)

Chapter 10 Categorization and Filtering366

The information gain due to B is the amount by which the information content of the labels is

reduced when B is known:

IG(B) = IM(label(T))− IMB
(label(T)) . (10.97)

Among the 18 training examples in Table 10.17, we have 10 positive and 8 negative. Our simple

model M uses the proportion of positive examples as a probability estimate:

M(pos) =
10

18
≈ 0.556 (10.98)

IM(label(T)) ≈ − 10 · log2(0.556)− 8 · log2(0.444) ≈ 17.84 bits. (10.99)

Now we partition T using the formula “b ⇔ the body of d contains enron”:

Mb(pos) =
4

9
≈ 0.444 (10.100)

Mb(pos) =
6

9
≈ 0.667 (10.101)

IMb
(label(T b)) ≈ −4 · log(0.444)− 5 · log(0.556) ≈ 8.92 (bits) (10.102)

IM
b
(label(T b)) ≈ −6 · log(0.667)− 3 · log(0.333) ≈ 8.26 (bits) (10.103)

IMB
(label(T)) ≈ 8.92 + 8.26 = 17.18 (bits) (10.104)

IG(B) = IM − IMB
≈ 0.66 (bits). (10.105)

To build a decision tree, some set of possible formulae is searched at each step, and the

one yielding the greatest information gain is selected. It is important not to search too many

possible formulae, or to construct complex formulae, or to partition D into too many sets.

Each choice will tend to overfit the model to the training data. This caveat is well-founded in

information theory: In computing information gain, we should consider the information content

of the formula itself in addition to the information content of the training labels. If the formula

is selected from a fixed set of n candidates, its information content is log2(n) bits. If the

formula is more complex, its information content may be much larger. When the combined

information content of the formula and the training labels shows a negative information gain,

further partitioning is likely to be counterproductive.

10.8 Experimental Comparison

In this section we apply representative examples of the methods we have described to the three

concrete examples introduced in Section 10.1. For ease of comparison, we repeat the BM25

baseline results. The results presented here may be used to form a general impression of the

10.8 Experimental Comparison 367

effectiveness of various approaches. They also serve as input and a baseline for comparison with

the combination and fusion methods described in Chapter 11.

10.8.1 Topic-Oriented On-Line Filtering

In Table 10.23 the columns labeled “Historical Training” show the result of applying various

methods to the topic-oriented filtering problem detailed in Section 10.1.2. The columns labeled

“Adaptive Training” show the effect of adaptive training when supported by the method. Adap-

tive training processes the historical and test examples as one common sequence, classifying and

then training on each document in turn. That is, the approach is exactly the same as the one

described for spam filtering in Section 10.1.5. For comparison the summary measures consider

only the classification results for the test examples (i.e., the Financial Times documents from

1993 and later).

The first row shows the result for BM25, as described in Section 10.1.2. For historical training

examples the results are reproduced from the bottom row of Table 10.6 (page 319). The results

in the row labeled NB are those of a näıve Bayes classifier, configured as follows:

• Byte 4-grams were used as binary features.

• Smoothing parameters γ = ε = 1 were used.

• The 30 features with the largest score, and the 30 features with the smallest score, were

selected for each document.

The results in the row labeled LR (gradient descent) employ on-line gradient descent logistic

regression, detailed in Section 10.3.3, in the following configuration:

• Character 4-grams are used as binary features.

• Each feature vector x[d] is mapped to a length-normalized form X [d] = x[d]√
|x[d]| .

• The rate parameter was δ = 0.004.

• Adaptive training was used. For each new training example exactly one gradient step was

taken. Following this step, a historical example of the complementary class was selected

at random and used as a training example. The overall effect is that an equal number of

training steps was taken for relevant and nonrelevant examples.

The results in the row labeled DMC applied the DMC compression method to the textual

representation of the document. The remaining methods use batch training methods, so results

are presented for historical training only. LR (batch) is logistic regression:

• The LibLinear package, version 1.33, was used with flag −s 0 (L2 regularized logistic

regression) and default parameters.

• Binary 4-gram features were used.

Chapter 10 Categorization and Filtering368

Table 10.23 Classifier results for TREC topic 383 (Figure 10.2 on page 313).

Historical Training Adaptive Training

Method P@10 AP P@10 AP

BM25 1.0 0.56 0.8 0.30

NB 0.0 0.00 0.4 0.06

LR (gradient descent) 0.7 0.39 1.0 0.55

DMC 0.0 0.01 0.1 0.06

LR (batch) 0.8 0.48

SVM (batch) 0.8 0.49

DT (n=2) 0.1 0.03

DT (n=8) 0.9 0.53

DT (n=256) 0.8 0.53

For SVM:

• The SVMlight package, version 6.02, was used with no flags (linear kernel, default

parameters).

• Binary 4-gram features were used.

For DT:

• The FEST10 (Fast Ensembles of Sparse Trees) package was used. The flag -d 1 (depth

1, decision stump) was used for the results labeled n = 2; -d 3 was used for n = 8; -d 8

was used for n = 256.

It is perhaps unremarkable that BM25 performs better than the others with historical training

because it is engineered specifically for this purpose. Its performance, on the other hand, is

worsened by adaptive training. This effect is most likely due to the fact that our configuration

uses the 20 highest-scoring features as feedback terms, and this set of features may change as

more training examples are encountered. In contrast, the other adaptive methods show improved

results with adaptive training.

Näıve Bayes, DMC, and decision stumps fare poorly. However, the other learning methods

do quite well. Although it would be inappropriate to conclude which is best from this single

example, these methods are certainly worthy of consideration.

Table 10.24 shows the result of applying essentially the same methods to language catego-

rization. All methods were applied as described in Section 10.1.4. The documents were ranked

according to each of the 60 languages, and the resulting scores were used to rank the categories

10 www.cs.cornell.edu/∼nk/fest/

10.8 Experimental Comparison 369

Table 10.24 Classifier results for language categorization.

Document Ranking Categorization

Method MAP Micro-Avg. Error (%) MRR

BM25 0.78 20.6 0.86

NB 0.44 27.0 0.80

LR (gradient descent) 0.76 22.9 0.84

LR (batch) 0.82 20.0 0.86

SVM (batch) 0.83 20.0 0.80

DMC 0.74 20.0 0.86

DT (n=2) 0.33 64.1 0.44

DT (n=8) 0.54 43.7 0.63

DT (n=256) 0.63 34.8 0.70

Table 10.25 Classifier results for on-line spam filtering.

Classification Error (%)

Method fpr fnr Macro-Avg. Logistic Avg. 1-AUC CPU Time

BM25 32.85 0.01 16.43 0.77 0.190 8m

NB 1.21 1.21 1.21 1.21 0.062 24s

LR (gradient descent) 0.41 0.47 0.44 0.44 0.012 12s

ROSVM 0.32 0.42 0.37 0.37 0.013 4d

DMC 0.31 0.54 0.42 0.37 0.013 6m

for each document. For the document ranking we report MAP over the 60 rankings, and for

categorization we report the error rate as well as MRR over the 4012 test documents. For doc-

ument ranking, SVM appears to work best, but this advantage does not translate to category

ranking. All in all, there is little to choose among DMC, LR, SVM, and BM25 for categoriza-

tion performance. NB and DT (for all n) yield substantially poorer results for both document

ranking and categorization.

10.8.2 On-Line Adaptive Spam Filtering

Table 10.25 shows the results achieved by adaptive methods when applied to on-line spam

filtering, as outlined in Section 10.1.5. Figure 10.18 summarizes the results as an ROC curve.

BM25, NB, LR, and DMC are as described previously, except for the following differences:

• Following practice that has been shown at TREC to work well, only the first 2500 bytes

of each message are used.

Chapter 10 Categorization and Filtering370

50

10

1

0.1

0.01

0.001

0.001 0.01 0.1 1 10 50

%
 S

pa
m

 e
rr

or
 r

at
e

(lo
gi

t s
ca

le
)

% Ham error rate (logit scale)

LR (gr. desc.)
ROSVM
DMC
BM25
NB (4-gram)

Figure 10.18 ROC curves for on-line spam filters.

• For BM25 the number of feedback terms was unlimited, rather than restricted to 20,

as in topic-oriented filtering. Also, separate scores were computed considering spam and

ham to be relevant, and the difference was used as the overall score.

ROSVM is the relaxed online SVM (Sculley and Wachman, 2007), which was among the two

best-performing filters at the TREC 2007 Spam Track (Cormack, 2007). ROSVM is specifically

engineered for efficient adaptive filtering, an application to which classical SVM methods are

not inherently well suited. Even so, Sculley’s ROSVM implementation for the TREC toolkit is

about 25,000 times slower than gradient descent LR. An open-source version may be downloaded

from the Web.11

By all measures, DMC, LR, and ROSVM show about the same effectiveness. The ROC curve

suggests that NB is better than BM25, but both are substantially inferior to the other methods.

11 www.eecs.tufts.edu/∼dsculley/onlineSMO

10.9 Further Reading 371

10.9 Further Reading

Information retrieval and statistical learning methods evolved within largely separate research

communities. A good but somewhat dated introduction to machine learning is provided by

Mitchell (1997). A comprehensive theoretical treatment is given by Hastie et al. (2009). Support

vector machines in particular are the subject of Joachims (2002). Logistic regression is a well-

established method for general data analysis (Hosmer and Lemeshow, 2000), and has been

shown to work well for text classification (Komarek and Moore, 2003), but has not attracted as

much attention as other learning methods.

Within the IR community the primary focus has been on search, with categorization and

filtering often an afterthought. Belkin and Croft (1992) discuss the relationship between search

and filtering. Within the machine learning community, text categorization has typically been

regarded as an application of supervised learning for classification, in which the features hap-

pen to represent documents. Sebastiani (2002) surveys learning methods for text categorization,

covering aspects that we have mentioned only in passing. Among them are methods for dimen-

sionality reduction by term selection and comparative results from the literature using F1 and

the RCV1 standard benchmark collection derived from Reuters news articles (Lewis et al., 2004).

The Fβ measure is introduced as a measure for set-based retrieval by van Rijsbergen (1979),

and justified on the basis of its mathematical properties, as opposed to a measure of user

satisfaction. Lewis (1991) introduces the notion of micro-averaging, observing that when each

document may belong to several categories, hard classification may be viewed as the problem

of retrieving all pairs (d, q) from the collection D × Q in which document d is in category q.

Micro-averaged set-based measures such as precision, recall, and Fβ compare the retrieved set

Ret ⊆ D ×Q against the relevant set Rel ⊆ D ×Q.

Swets (1963, 1969) proposed the use of signal detection theory for IR evaluation. However,

these methods were not widely adopted for ranked retrieval. True positive rate and false positive

rate are equivalent to the IR measures recall and fallout, so recall-fallout and ROC curves are

equivalent. Recently, ROC analysis has become standard in machine learning (Fawcett, 2006),

and was used in the TREC Spam Track (Cormack and Lynam, 2005). LAM was introduced

with the Spam Track, and was subsequently shown to be equivalent to the diagnostic odds ratio

(Glas et al., 2003; Cormack, 2008), which is a measure used in epidemiology and medicine. The

Spam Track also introduced the aggregate summary measure, which is the soft classification

equivalent of micro-averaging.

TREC 1 through TREC 11 (1992–2002) included various routing and filtering tasks (Robert-

son and Callan, 2005). TREC 14 through TREC 16 (2005–2007) included the Spam Track.

At TREC, the routing task is batch filtering, in which the collection from the previous year’s

adhoc task (including documents, topics, and qrels) are the historical examples, and systems

are required to rank a new collection of documents by relevance. Standard ranked retrieval

evaluation measures are applied to the results. Filtering, according to TREC, requires systems

Chapter 10 Categorization and Filtering372

to return an unordered set that is evaluated according to several set-based measures, includ-

ing linear utility and Fβ . Ranked retrieval alone will not optimize these measures; a method of

threshold setting is also required. Batch filtering uses the same historical examples and new doc-

uments as routing. Adaptive filtering is on-line filtering in which only those documents labeled

relevant are available for use as training examples after they are classified. The problem of

optimal threshold setting for adaptive filtering is particularly challenging because few training

examples are available for calibration (Callan, 1998; Robertson, 2002). Sculley (2007) addresses

a similar problem within the context of on-line spam filtering. The Spam Track evaluated filters

using the methods detailed in this chapter. Several variants of the task explored the impact of

incomplete and delayed feedback, interuser feedback, and active learning. A survey of Spam

Track and related methods and results is given by Cormack (2008).

10.10 Exercises

Exercise 10.1 Download the TREC Spam Filter Evaluation Toolkit, and run several of the

sample filters on the sample corpus.

Exercise 10.2 Identify the Financial Times documents in the TREC45 collection. Fetch the

updated qrels for these documents.12 Create a test corpus suitable for evaluation with the spam

filter toolkit.

Exercise 10.3 Download one or more batch-oriented classifiers. Perform feature engineering

on one of your corpora to prepare training and test input files for your classifiers. Evaluate the

results. Note that SVMlight, Liblinear, LibSVM and FEST use a common file format. Systems

like Weka and R each implement many methods.

Exercise 10.4 Fetch random pages from at least two different editions of Wikipedia and use

them to prepare a corpus to evaluate categorization methods.

Exercise 10.5 Use a search engine to find one or more of the classical corpora for text cate-

gorization and filtering. Examples are Reuters, 20 Newsgroups, Spambase, Ling Spam, and the

TREC collections used over the years for the routing, filtering, and spam tasks. Find the results

of studies using these corpora. From these results can you determine which methods work best?

Can you reproduce the results? How do the same methods compare when you test them on your

corpora?

Exercise 10.6 Implement your own filter, and evaluate it. Your filter need not be complicated:

methods such as näıve Bayes, logistic regression and perceptron are very simple if you use binary

features. Practically any data compression method may be used as a filter: Simply measure the

12 trec.nist.gov/data/qrels eng/qrels.trec8.adhoc.parts1-5.tar.gz

10.11 Bibliography 373

output length as an estimate of cross-entropy. Implementations of DMC and other sequential

methods may be downloaded from the Web. The model building code may be extracted from

these implementations, and the coding part discarded. Sculley’s on-line SVM is available on the

Web.

Exercise 10.7 On a major highway 70% of the traffic exceeds the speed limit, and 80% of

all two-car accidents on the same highway involve at least one car that is exceeding the speed

limit. What is the odds ratio of having an accident when speeding?

Exercise 10.8 Of these two-car accidents 50% involve one vehicle that is stopped. What

additional information do you need to calculate the odds ratio of having an accident when

speeding, relative to driving at the speed limit?

Exercise 10.9 Suppose you had a complete log of the speed and plate number for each vehicle

passing a certain point and also the plate number of each vehicle involved in an accident within

the next hour. How would you estimate the probability that a particular vehicle will be involved

in an accident in the next hour?

Exercise 10.10 The Highway Patrol identified but failed to catch a red car whose plate

number begins with Q. In court the prosecution expert testified that 1
36 of all plate numbers

begin with Q, 1
20 of all cars are red, and 1

1400 are fast enough to outrun police. A search of

the registration database reveals that Mr. X owns a red Ferrari. Mr. X is charged with evading

police, and the prosecutor argues that the odds of Mr. X being innocent were a million to one,

because 1
20 ·

1
36 ·

1
1400 = 1

1008000 . You have been hired as an expert witness for the defense. Can

you earn your fee?

10.11 Bibliography

Belkin, N. J., and Croft, W. B. (1992). Information filtering and information retrieval: Two

sides of the same coin? Communications of the ACM, 35(12):29–38.

Bratko, A., Cormack, G. V., Filipič, B., Lynam, T.R., and Zupan, B. (2006). Spam filtering
using statistical data compression models. Journal of Machine Learning Research, 7:2673–

2698.

Callan, J. (1998). Learning while filtering documents. In Proceedings of the 21st Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 224–231. Melbourne, Australia.

Cleary, J. G., and Witten, I. H. (1984). Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, 32(4):396–402.

Cormack, G. V. (2007). TREC 2007 Spam Track overview. In Proceedings of the 16th Text

REtrieval Conference. Gaithersburg, Maryland.

Chapter 10 Categorization and Filtering374

Cormack, G. V. (2008). Email spam filtering: A systematic review. Foundations and Trends in

Information Retrieval, 1(4):335–455.

Cormack, G. V., and Horspool, R. N. S. (1987). Data compression using dynamic Markov

modelling. The Computer Journal, 30(6):541–550.

Cormack, G. V., and Lynam, T. R. (2005). TREC 2005 Spam Track overview. In Proceedings

of the 14th Text REtrieval Conference. Gaithersburg, Maryland.

Domingos, P., and Pazzani, M. J. (1997). On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning, 29(2-3):103–130.

Drucker, H., Wu, D., and Vapnik, V. N. (1999). Support vector machines for spam

categorization. IEEE Transactions on Neural Networks, 10(5):1048–1054.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–

874.

Glas, A. S., Lijmer, J. G., Prins, M. H., Bonsel, G. J., and Bossuyt, P.M. M. (2003). The

diagnostic odds ratio: A single indicator of test performance. Journal of Clinical Epidemiology,

56(11):1129–1135.

Hastie, T., Tibshirani, R., and Friedman, J.H. (2009). The Elements of Statistical Learning

(2nd ed.). Berlin, Germany: Springer.

Hosmer, D. W., and Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). New York:

Wiley-Interscience.

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines. Norwell,
Massachusetts: Kluwer Academic.

Komarek, P., and Moore, A. (2003). Fast robust logistic regression for large sparse datasets with

binary outputs. In Proceedings of the 9th International Workshop on Artificial Intelligence
and Statistics. Key West, Florida.

Lewis, D. D. (1991). Evaluating text categorization. In Human Language Technologies Confer-

ence: Proceedings of the Workshop on Speech and Natural Language, pages 312–318. Pacific
Grove, California.

Lewis, D. D., and Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised

learning. In Proceedings of the 11th International Conference on Machine Learning, pages
148–156.

Lewis, D. D., Yang, Y., Rose, T.G., and Li, F. (2004). RCV1: A new benchmark collection for

text categorization research. Journal of Machine Learning Research, 5:361–397.

McNamee, P. (2005). Language identification: A solved problem suitable for undergraduate

instruction. Journal of Computing Sciences in Colleges, 20(3):94–101.

Mitchell, T. M. (1997). Machine Learning. Boston, Massachusetts: WCB/McGraw-Hill.

Robertson, S. (2002). Threshold setting and performance optimization in adaptive filtering.

Information Retrieval, 5(2-3):239–256.

10.11 Bibliography 375

Robertson, S., and Callan, J. (2005). Routing and filtering. In Voorhees, E.M., and Harman,

D. K., editors, TREC — Experiment and Evaluation in Information Retrieval, chapter 5,
pages 99–122. Cambridge, Massachusetts: MIT Press.

Rocchio, J. J. (1971). Relevance feedback in information retrieval. In Salton, G., editor, The

SMART Retrieval System: Experiments in Automatic Document Processing, chapter 14, pages
313–323: Prentice-Hall.

Sculley, D. (2007). Practical learning from one-sided feedback. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 609–618.
San Jose, California.

Sculley, D., and Wachman, G. M. (2007). Relaxed online support vector machines for spam

filtering. In Proceedings of the 30th ACM SIGIR Conference on Research and Development
on Information Retrieval, pages 415–422. Amsterdam, The Netherlands.

Sculley, D., Wachman, G. M., and Brodley, C. E. (2006). Spam classification with on-line linear

classifiers and inexact string matching features. In Proceedings of the 15th Text REtrieval
Conference. Gaithersburg, Maryland.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing

Surveys, 34(1):1–47.

Siefkes, C., Assis, F., Chhabra, S., and Yerazunis, W. S. (2004). Combining winnow and

orthogonal sparse bigrams for incremental spam filtering. In Proceedings of the 8th European

Conference on Principles and Practice of Knowledge Discovery in Databases, pages 410–421.
Pisa, Italy.

Swets, J. A. (1963). Information retrieval systems. Science, 141(357):245–250.

Swets, J. A. (1969). Effectiveness of information retrieval systems. American Documentation,

20:72–89.

van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). London, England: Butterworths.

Willems, F. M. J., Shtarkov, Y. M., and Tjalkens, T. J. (1995). The context-tree weighting

method: Basic properties. IEEE Transactions on Information Theory, 41:653–664.

Witten, I. H., and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and

Techniques (2nd ed.). San Francisco, California: Morgan Kaufmann.

11 Fusion and Metalearning

In the preceding chapters we have considered a number of core methods for search, categoriza-

tion, and filtering. Many of these methods have parameters — such as BM25’s k1, vtitle, vbody,

btitle, and bbody — that alter their effectiveness. When one considers all the possible parameter

settings of the core methods, along with other design choices such as tokenization and feature

selection, one is left with a near-infinite space of methods from which to choose.

This vast space gives rise to an obvious question: Which combination of choices works best?

Surely, if we knew the answer to this question, we could fix those choices to come up with the

best method, and dispense with the rest. Perhaps surprisingly, it is often possible to improve

on the best single method by combining the results of several, without necessarily identifying

which is best.

The specific approaches we shall examine are the following:

• Fusion or aggregation, in which the results returned by several IR methods are combined

into one (Section 11.1).

• Stacking, in which the best combination of several classifiers is learned, forming a meta-

classifier. Section 11.2 considers stacking for adaptive filtering, and Section 11.3 considers

stacking for nonadaptive filtering and categorization.

• Bagging, or bootstrap aggregation, in which the training examples are randomly resampled

to generate a set of classifiers whose results are averaged (Section 11.4).

• Boosting, in which the training examples are progressively weighted to emphasize mis-

classified examples thus generating a set of classifiers whose results are combined as a

weighted average (Section 11.5).

• Multicategory ranking and categorization, in which the results of many binary classifiers

are combined (Section 11.6).

• Learning to rank, in which a ranking function is learned from distinct example rankings

(Section 11.7).

Before considering specific illustrative examples, we offer a few general comments. All of the

methods considered here aggregate evidence from separate methods into stronger evidence per-

tinent to the user’s information need. Although some items of evidence may be more compelling

than others, an appropriate combination of all available evidence, taken as a whole, is in gen-

eral more compelling than any individual item. This phenomenon is not unique to information

retrieval; it is commonly known as the wisdom of crowds (Surowiecki, 2004).

11.1 Search-Result Fusion 377

The evidence we shall consider takes one of three general forms:

1. Categorical. A discrete result indicating that a document or set of documents is relevant

or belongs to a particular category. The problem of determining a categorical result is

commonly known as classification.

2. Ordinal. A ranking or score that orders documents by the weight of evidence that they

are relevant or belong to some category. The problem of determining an ordinal result

is commonly known as ranking.

3. Quantitative. A calibrated score, typically a probability, indicating the weight of

evidence that a document is relevant or belongs to some category. The problem of

estimating a calibrated score is commonly known as regression.

Regression may be reduced to ranking through the use of a sort, and ranking to classification

through the use of a cutoff rank or threshold. Each of these steps loses information. Sometimes

the reduction is inherent in the method and therefore unavoidable. The more these losses are

avoided, the more compelling the overall weight of evidence.

To illustrate the various methods of combining evidence, we consider the problems that

have been addressed in previous chapters: ranked retrieval, topic-oriented filtering, language

categorization, and on-line spam filtering. For each problem we take as input the results of the

individual methods that we have evaluated for each purpose, and compare the aggregate result

against the best individual method. In addition we illustrate learning-to-rank methods using

the LETOR 3 data set,1 a standard benchmark derived from several TREC corpora.

11.1 Search-Result Fusion

The simplest approach to combining evidence that we shall consider is search-result fusion, in

which the lists of documents returned by several search engines are combined into one. No

information other than the lists, and perhaps the ranks or scores of documents within the lists,

is used. We investigate three variants of this approach: (1) fixed-cutoff retrieval, in which a fixed

number of documents from each list is considered without regard to rank; (2) rank aggregation,

in which the rank of each document within each list is considered; (3) score aggregation, in

which the rank and score of each document within each list is considered.

To describe search-result fusion, we introduce the following notation. Consider a set of n

systems returning document lists Res1, Res2, . . . , Resn from collection D in response to some

query q. We wish to construct a better list Res that aggregates the evidence of the n lists. For

each Resi we define the ranking function ri(d) to be the position of d in Resi, or some large

number c if d is not in Resi:

1 research.microsoft.com/en-us/um/beijing/projects/letor

Chapter 11 Fusion and Metalearning378

Table 11.1 29 separate runs used for the fusion and learning-to-rank examples in this chapter. Bold numbers
indicate the best run(s) in each column.

TREC45 GOV2

1998 1999 2004 2005

Method Stop Stem P@10 MAP P@10 MAP P@10 MAP P@10 MAP

bm25 No No 0.424 0.178 0.440 0.205 0.471 0.242 0.534 0.277

bm25 No Yes 0.440 0.199 0.464 0.247 0.500 0.266 0.600 0.334

bm25 Yes No 0.424 0.178 0.438 0.205 0.467 0.243 0.538 0.276

bm25 Yes Yes 0.440 0.199 0.464 0.247 0.500 0.266 0.592 0.333

bm25 b=0 No No 0.402 0.177 0.406 0.207 0.418 0.171 0.538 0.207

bm25 notf b=0 No No 0.256 0.141 0.224 0.147 0.069 0.050 0.106 0.083

dfr-gb2 No No 0.426 0.183 0.446 0.216 0.465 0.248 0.550 0.269

dfr-gb2 No Yes 0.448 0.204 0.458 0.253 0.471 0.252 0.584 0.319

dfr-gb2 Yes No 0.426 0.183 0.446 0.216 0.465 0.248 0.550 0.269

dfr-gb2 Yes Yes 0.448 0.204 0.458 0.253 0.471 0.252 0.584 0.319

lm-dirichlet-1000 No No 0.450 0.193 0.428 0.226 0.484 0.244 0.580 0.293

lm-dirichlet-1000 No Yes 0.464 0.204 0.434 0.262 0.492 0.270 0.600 0.343

lm-dirichlet-1000 Yes No 0.448 0.193 0.430 0.226 0.494 0.247 0.568 0.291

lm-dirichlet-1000 Yes Yes 0.462 0.204 0.436 0.262 0.488 0.272 0.602 0.341

lm-jelinek-0.5 No No 0.390 0.179 0.432 0.208 0.416 0.211 0.494 0.257

lm-jelinek-0.5 No Yes 0.406 0.192 0.434 0.248 0.437 0.225 0.522 0.302

lm-jelinek-0.5 Yes No 0.390 0.179 0.432 0.209 0.414 0.212 0.482 0.253

lm-jelinek-0.5 Yes Yes 0.406 0.192 0.436 0.249 0.445 0.225 0.508 0.298

lm-unsmoothed No No 0.354 0.114 0.396 0.141 0.402 0.171 0.492 0.231

lm-unsmoothed No Yes 0.384 0.134 0.416 0.180 0.433 0.196 0.538 0.285

lm-unsmoothed Yes No 0.352 0.114 0.394 0.141 0.400 0.172 0.484 0.230

lm-unsmoothed Yes Yes 0.384 0.134 0.416 0.180 0.439 0.196 0.518 0.283

prox No No 0.396 0.124 0.370 0.146 0.424 0.173 0.560 0.230

prox No Yes 0.418 0.139 0.430 0.184 0.453 0.207 0.576 0.283

prox Yes No 0.396 0.123 0.370 0.146 0.422 0.173 0.546 0.232

prox Yes Yes 0.416 0.139 0.430 0.184 0.447 0.204 0.556 0.282

vsm-lintf-logidf No No 0.266 0.106 0.240 0.120 0.298 0.092 0.282 0.097

vsm-logtf-logidf No No 0.264 0.126 0.252 0.135 0.120 0.060 0.194 0.092

vsm-logtf-noidf-raw No No 0.342 0.132 0.328 0.154 0.400 0.144 0.466 0.151

11.1 Search-Result Fusion 379

ri(d) =

⎧⎨⎩k (Resi[k] = d)

c (d /∈ Resi)
. (11.1)

The choice of c is arbitrary, so long as c > |Resi|. Reasonable choices are c = ∞, c = |D|,
c = |D|

2 and c = |Resi|+ 1. For our examples we use c =∞.

For score aggregation we assume that each system returns a nonincreasing list Scorei, where

Scorei[k] is the relevance score associated with Resi[k]. For each Scorei, we define the scoring

function si(d) to be the score of d in Reli, or the smallest score if d is not in Reli:

si(d) =

⎧⎨⎩Scorei[k] (Resi[k] = d)

Scorei[|Scorei|] (d /∈ Resi)
. (11.2)

Typically, we assume that Scorei is normalized so that

Scorei[|Scorei|] = min
d
{si(d)} = 0 , Scorei[1] = max

d
{si(d)} = 1 . (11.3)

We illustrate result fusion by applying three methods to the results of n = 29 variants of

the search methods we have considered in previous chapters, as listed in Table 11.1. For each

method the table shows P@10 and MAP results over each of the four TREC collections, with

the best result indicated in bold font.

11.1.1 Fixed-Cutoff Aggregation

Consider the problem of combining the results in Table 11.1 so as to optimize P@10. For now

we shall consider each of the results to be categorical, consisting of a set of 10 documents per

topic in no particular order. For our set of 29 example methods, the union of these 29 sets

contains somewhere between 10 and 290 documents per topic, from which we wish to identify

the 10 most likely to be relevant; that is, to maximize P@10.

An obvious, if hypothetical, approach is to identify exactly those ten documents returned by

the “best” system. But which is the best? Perhaps, based on previous evaluation, we are able

to guess that BM25 or LMD is the most effective. There is no single method or set of parameter

settings that is best for all four corpora. The reader has the luxury of consulting the table as an

oracle, so as to come up with an idealized result for comparison: the best individual result. It is

important to note that the “best individual result” is an upper bound on the effectiveness that

can be achieved by selecting one result; it is an upper bound that cannot reliably be achieved

in practice.

A simple and practical approach is to use an “election” strategy to select ten documents from

among those “nominated” by the various methods. The study of election strategies is remarkably

nuanced, but for now we will simply select the 10 documents that occur most frequently among

the 29 results, breaking ties arbitrarily. In effect we are combining several categorical results

Chapter 11 Fusion and Metalearning380

Table 11.2 P@10 categorical fusion results for retrieval
methods and TREC collections discussed in this book.

TREC45 GOV2

1998 1999 2004 2005

Method P@10 P@10 P@10 P@10

Best 0.464 0.464 0.500 0.602

Median 0.406 0.430 0.445 0.538

Election 0.452 0.460 0.492 0.554

into a ranked result, and then applying a cutoff (10 documents) to arrive at a new categorical

result. The result of our effort is shown as “election” in Table 11.2. For each corpus our simple

voting strategy approaches, but does not equal or exceed, the idealized best result.

11.1.2 Rank and Score Aggregation

Consider now the problem of optimizing MAP over the same four collections. Each of the

results Resi is a list from which a ranking ri is derived. These rankings are combined to yield

an aggregate ranking r. The approach is known as rank aggregation, fusion, or metasearch.

Perhaps the simplest and most effective rank-aggregation strategy is reciprocal rank fusion

(RRF; Cormack et al., 2009). RRF simply sorts the documents according to a näıve scoring

formula

RRFscore(d) =
∑

i

1

k + ri(d)
, (11.4)

where k = 60 has been found to work well for typical search results. The intuition in choosing

this formula is that although highly ranked documents are more important, the importance

of lower-ranked documents does not vanish. The harmonic series has these properties. The

constant k mitigates the impact of high rankings by rogue methods.

More considered (but not necessarily more effective) methods are based on the theory of

elections in which voters express preferences instead of categorical choices. Condorcet fusion

(Montague and Aslam, 2002) combines rankings by sorting the documents according to the

pairwise relation r(d1) < r(d2), which is determined for each (d1, d2) by majority vote among

the input rankings.

Some other approaches are not pure rank-aggregation methods in that they use score (which

is quantitative, albeit arbitrarily calibrated, evidence) in addition to rank. CombMNZ (Lee,

1997), for example, sorts the documents according to the scoring formula

CMNZscore(d) = |{i | d ∈ Resi}| ·
∑

i

si(d) . (11.5)

11.2 Stacking Adaptive Filters 381

Table 11.3 Rank-based fusion results for retrieval methods and TREC collections discussed in this book.

TREC45 GOV2

1998 1999 2004 2005

Method P@10 MAP P@10 MAP P@10 MAP P@10 MAP

Best (by MAP) 0.462 0.204 0.434 0.262 0.500 0.272 0.602 0.341

Best (by P@10) 0.464 0.204 0.464 0.247 0.500 0.266 0.602 0.341

RRF (k=60) 0.462 0.215 0.464 0.252 0.543 0.297 0.570 0.352

Condorcet 0.446 0.207 0.462 0.234 0.525 0.281 0.574 0.325

CombMNZ 0.448 0.201 0.448 0.245 0.561 0.270 0.570 0.318

That is, CMNZscore multiplies the number of results in which the document occurs by the sum

score, which yields a combined score that determines the ranking. Table 11.3 shows the results

of these three methods when used to fuse the results of 29 IR methods. For three of the four

corpora, RRF improves on the best MAP score. Condorcet also improves, but not by as large

a margin. CombMNZ, although competitive with the best MAP scores, does not substantially

better them. For comparison with our previous results, we also report P@10, computed by

applying a cutoff of 10 to our combined ranking. The P@10 score derived from RRF in all cases

exceeds that derived from voting, and is comparable to the best P@10.

Overall, rank and score aggregation methods are valuable because they match and often

improve on the best ranking without any knowledge of the relative quality of the individual

results. They may be used in conjunction with other approaches described in this chapter, such

as bootstrap aggregation (Section 11.4).

11.2 Stacking Adaptive Filters

Consider again the problems of combining the categorical or quantitative results of on-line

spam filters presented in Table 10.25 (page 369). The categorical result is simply an indication

of whether each message, in turn, is spam or ham. We may use a simple majority vote to combine

the results; because there is an odd number of filters, we need not concern ourselves with ties. In

effect, the vote yields a ranking that is converted to a categorical result by comparing it against

a threshold t. We can consider t of the five results to be necessary to label the message as spam.

Majority vote performs about as well as the best individual filter (see Table 11.4). In practical

terms, t = 4 or t = 5 might yield more satisfactory results for the intended purpose — filtering

spam.

Rank aggregation is not applicable per se to an on-line filter because it requires that we sort

the scores. Instead we calibrate the score si of document di, using past examples to approximate

Chapter 11 Fusion and Metalearning382

Table 11.4 Combining on-line spam filters through voting.

Classification Error (%)

Method False Positive Rate False Negative Rate Logistic Average

Best 0.32 0.42 0.37

Majority vote 0.42 0.34 0.37

1 of 5 32.88 0.00 0.61

2 of 5 1.54 0.02 0.54

3 of 5 0.42 0.34 0.37

4 of 5 0.19 0.61 0.34

5 of 5 0.08 1.50 0.36

Table 11.5 Combining on-line spam filters through log-odds averaging and regression.

Classification Error (%)

Method False Positive Rate False Negative Rate Logistic Average 1-AUC

Best (by AUC) 0.41 0.47 0.44 0.012

Majority vote 0.42 0.34 0.37 0.095

NB stacking 0.37 0.34 0.36 0.008

LR stacking 0.39 0.27 0.33 0.006

the log-odds that di is spam:

logOdds[di ∈ spam] ≈ log
|{dj<i ∈ spam | s(dj) ≤ s(di)}|
|{dj<i /∈ spam | s(dj) ≥ s(di)}|

. (11.6)

These scores may be averaged in the same way as the features of a probabilistic classifier.

The use of a (meta-)learning method to combine the results is known as stacking. For log-odds

averaging, the metalearning method is equivalent to näıve Bayes (Section 10.3.2). Other adaptive

metalearning methods, such as gradient descent logistic regression, may be used instead.

Table 11.5 shows spam filtering results for stacking using näıve Bayes and logistic regression

metaclassifiers applied to log-odds transformed results. Both näıve Bayes and logistic regression

lead to a considerable improvement over the best individual filter.

Now consider the results for topic-oriented filtering from Table 10.23 (page 368). Adaptive

stacking methods may be applied directly to the four methods for which adaptive training

results are shown. These methods were in fact trained sequentially on the entire data set,

but the results are reported only for the test examples. We apply the same methodology as

for spam filter stacking: Over the entire data set the scores are converted incrementally to

log-odds and either averaged or combined using adaptive logistic regression. The results are

reported only for the test examples. Table 11.6 shows that the effect of stacking is consistent

11.3 Stacking Batch Classifiers 383

Table 11.6 Stacking results for TREC topic
383, adaptive training. The numbers shown in
this table may be compared with the “Adaptive
Training” part of Table 10.23 (page 368).

Historical + Online

Method P@10 AP

Best individual 1.0 0.55

NB stacking 1.0 0.59

LR stacking 1.0 0.60

with that for spam filtering: Both methods show substantial improvement over the best, with

logistic regression somewhat better. All but one of the methods whose results are combined are

substantially inferior to the best. Nonetheless, they offer evidence that, when harnessed using

stacking, improves on the best.

11.3 Stacking Batch Classifiers

Stacking the results of batch-trained filters is problematic because it is difficult to calibrate the

scores returned by these filters in terms of log-odds or any other meaningful quantity. Even

methods such as logistic regression that directly estimate log-odds, do so only for the training

set T . Due to overfitting, it is not at all obvious that these estimates generalize to the test set.

Methods such as SVM and decision trees are in even worse shape: It is not at all uncommon for

these methods to achieve perfect scores on the training examples; these scores may bear little

resemblance to scores on the test examples.

Subject to these caveats, we adapt Equation 11.6 to calibrate the score si of document di ∈ D

based on the scores of training documents dj ∈ T :

logOdds[di ∈ spam] ≈ log
|{dj ∈ (T ∩ spam) | s(dj) ≤ s(di)}|
|{dj ∈ (T \spam) | s(dj) ≥ s(di)}|

. (11.7)

Table 11.7 shows the result of stacking the batch training results for all nine methods from

Table 10.23. The overall effect is similar to that in our previous examples: Näıve Bayes stacking

affords substantial improvement; (batch) logistic regression yields further improvement.

11.3.1 Holdout Validation

Our estimation of log-odds from training results is an example of regression — estimation of a

quantitative result from available data. In particular we are estimating the performance of each

Chapter 11 Fusion and Metalearning384

Table 11.7 Stacking results for TREC topic
383, batch training. The numbers shown in this
table may be compared with the “Historical
Training” part of Table 10.23 (page 368).

Historical Training

Method P@10 AP

Best individual 1.0 0.56

NB stacking 1.0 0.62

LR stacking 1.0 0.65

method in terms of its classification effectiveness as a function of the score s(d). These estimates

allow us to construct a better combined ranking method (or classifier).

However, the technique used in the previous section estimates log-odds from s(d), where

d ∈ T , and is therefore subject to generalization error. This source of error may be avoided

by calculating log-odds (or any other regression quantity) using s(d) from a separate validation

set V ⊂ D, where T ∩ V = ∅. That is, the method is trained on T and then used to score (or

classify or rank) V .

The most obvious way to construct V is the holdout approach: We partition some larger set L

of labeled examples, sampled from D, such that L = T +V . Assuming that L is an independent

and identically distributed (i.i.d.) sample of D, and T is a random subset of L, both T and

V may be considered i.i.d. samples of D. Thus our log-odds calculation uses an independent

sample of D and is not influenced by the classifier overfitting to T . (However, our regression

may overfit to V , but that is a separate matter.) V is known as a validation set and, in this

particular circumstance, a holdout set. The overall method is known as holdout validation.

The main limitation of holdout validation derives from the scarcity of labeled examples. In

general the size of L is limited by the cost and availability of labels, so there is a direct trade-off

between the sizes of T and V . In general a larger T will yield a better base method, whereas a

larger V will yield better validation. Each comes at the expense of the other.

A second limitation derives from the fact that the prevalence of positive examples may be

different in T and V . Some methods, particularly classification methods that depend on a

threshold setting, are very sensitive to prevalence. This limitation is mitigated through the use

of stratified sampling to create T (and hence V) from L. In stratified sampling, the examples

of each category in L are sampled separately so that T (and hence V) has roughly the same

proportion of each category as L.

11.3.2 Cross-Validation

Cross-validation is a regression method in which the set of labeled examples L is partitioned into

k splits (T1, V1), (T2, V2), . . . , (Tk, Vk). The learning method is trained separately on each of

the Ti and is used to score each d ∈ Vi. Regression is performed on the combined results, which

11.4 Bagging 385

Table 11.8 Stacking results for TREC topic
383, using 22-fold stratified cross-validation.

Historical Training

Method P@10 AP

Best individual 1.0 0.56

NB stacking 1.0 0.64

LR stacking 1.0 0.69

are regarded as one big validation set V =

k⋃
i=1

Vk. The commonest approach is k-fold cross-

validation, in which the validation sets are of equal size and pairwise disjoint: ∀i�=jVi ∩ Vj = ∅.
Each training set consists of the examples not in the validation set: Ti = L\Vi. For large k,

Ti ≈ L and V = L. Thus, V is a reasonable approximation of an independent holdout set of

the same size. The extreme case of k = |L| is called leave-one-out validation.

If stratified sampling is to be used, k is limited by the least prevalent category. In our

topic-based filtering example, T contains exactly 22 relevant documents, so we use 22-fold

cross-validation with each Vi containing a single relevant document. When not limited by strat-

ification, k may be limited by efficiency considerations because the training effort is proportional

to k. Five-fold cross-validation (k = 5) and ten-fold cross-validation (k = 10) are common. The

results in Table 11.8 show that 22-fold cross-validation substantially improves both the average

and the stacked fusion results for topic 383.

An important role of cross-validation is in selection or tuning of learning methods. In this role

cross-validation is used to estimate some overall effectiveness measure, and the space of methods

and parameter settings is searched to optimize this measure. As we mentioned at the outset

of this chapter, and have demonstrated through examples, selecting the single best method or

parameter setting does not necessarily yield the best overall result.

11.4 Bagging

When a learning method is trained on the examples from a particular training set T and applied

to documents from D, the resulting categorization, ranking, or regression is subject to two kinds

of error: training error and generalization error. Both would be reduced if instead of a single

training set T , we were to average the results achieved from training the same method separately

on N training sets T1, T2, . . . , TN , where each Ti is an independent sample of D and the same

size as T .

The reason is quite straightforward. Let ideal(d) be the score returned by an ideal classifier

for a document d ∈ D. A particular method trained on Ti will compute ci(d) ≈ ideal(d). More

specifically, ci(d) = ideal(d) + Ei, where Ei is a random variable modeling the error associated

Chapter 11 Fusion and Metalearning386

Table 11.9 Bootstrap aggregation (bagging) for decision trees on TREC topic 383. The numbers in
this table represent AP values and may be compared with those in Table 10.23 (page 368).

Number of Bootstrap Samples (N)

Method 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

DT (n=2) 0.38 0.22 0.56 0.37 0.52 0.50 0.51 0.51 0.51 0.52 0.52 0.53 0.52

DT (n=8) 0.21 0.33 0.47 0.55 0.59 0.58 0.57 0.58 0.57 0.59 0.58 0.59 0.58

DT (n=256) 0.13 0.44 0.45 0.47 0.55 0.54 0.56 0.55 0.55 0.55 0.55 0.55 0.54

with training on Ti. Now suppose we average the results to form a combined result

c(d) =
1

N
·

N∑
i=1

(ideal(d) + Ei) = ideal(d) + E , (11.8)

where

E =

N∑
i=1

Ei

N
. (11.9)

If the Ei are pairwise independent, the variance of E is generally smaller than the variance of

any particular Ei. In the particular situation where the σ2
Ei

are all equal, σ2
E is a factor of N

smaller:

σ2
E ≈

σ2
Ei

N
. (11.10)

If the Ti are in fact i.i.d. samples of D, then the Ei are independent and have equal variance,

so the standard error σE is reduced by a factor of
√

N compared with training on a single Ti.

In general, little is gained from splitting the set of labeled examples L into independent

training sets, because training on one large set T = L works just as well, if not better. Instead,

a technique known as the bootstrap may be used to simulate T1, T2, . . . , TN , each of the same

size as L (see Section 12.3.2). The bootstrap uses L as a proxy for D, selecting each member of

Ti independently and at random from L. Because elements are selected independently, the same

element may be repeated in Ti, and some elements may not appear at all. For any reasonable

sample size (N > 20) of Ti, the probability that a given element d ∈ L will occur k times is well

approximated by the Poisson formula:

Pr[|{d ∈ Ti}| = k] ≈ 1

k! · e . (11.11)

That is, about 1
e ≈ 36.8% of the documents will not appear in any given Ti,

1
e ≈ 36.8% will

occur once, 1
2e ≈ 18.4% twice, and so on. These bootstrap samples have sufficient independence

that the error variance is reduced. Provided L is large enough to contain a good representation

of the sorts of documents in D, and provided the learning method treats duplicate examples as

11.5 Boosting 387

Table 11.10 Boosting (AdaBoost) results for decision trees on TREC topic 383. The numbers in this
table represent AP values and may be compared with those in Tables 10.23 (page 368) and 11.9.

Number of Boosting Iterations (N)

Method 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

DT (n=2) 0.19 0.31 0.38 0.52 0.48 0.50 0.49 0.53 0.54 0.59 0.60 0.61 0.59

DT (n=8) 0.21 0.22 0.27 0.41 0.54 0.59 0.60 0.63 0.61 0.62 0.64 0.64 0.63

DT (n=256) 0.60 0.51 0.54 0.54 0.53 0.49 0.55 0.57 0.56 0.56 0.57 0.57 0.57

separate individuals that happen to have the same properties, bootstrap training sets closely

resemble training sets drawn from D instead of L (Efron and Tibshirani, 1993).

The technique of bootstrap aggregation or bagging averages the results from using bootstrap

samples as training sets. Although bagging may be applied to any learning technique, it is most

effective and most commonly used for unstable learning methods whose result is highly depen-

dent on the particular training examples. Table 11.9 shows the results of bootstrap aggregation

for decision tree methods and TREC topic 383. The improvement for decision stumps (n = 2)

is the most dramatic. Larger trees with n = 8 and n = 256 leaves show reduced effectiveness

for small N but very good effectiveness for N ≥ 32. Little is gained for N ≥ 128 because the

results appear to approach their asymptote.

11.5 Boosting

Boosting, like bagging, is a method of perturbing the training examples so as to produce an

ensemble of methods whose results are combined. Boosting systematically manipulates the

training data to minimize training error, unlike bagging, which manipulates the training data

randomly to minimize generalization error. In both cases the net effect is a better classifier,

although the underlying assumptions are quite different.

In boosting, the overall training set T is a random sample of D, as for any supervised learning

method. But T is not used directly for training; instead, each d ∈ T is given a weight wd ∈ R

such that 1 =
∑

d wd. The base learning method assumes that the prevalence ρd of documents

like d in D is ρd = wd, as opposed to that suggested by the proportion in T (i.e., ρd ≈ 1
|T |). For

base methods such as decision trees, the assumption is easily accommodated by multiplying the

contribution of each d by wd during classifier construction.

Boosting proceeds by computing a series of k weight vectors w[1], w[2], . . . w[k] and associated

classifiers c[1], c[2], . . . c[k] learned using T and the corresponding weights. Initially, w
[1]
d = 1

|T | for

all d ∈ T . In subsequent steps the weight w
[i+1]
d is increased (relative to w

[i]
d) for examples that

are incorrectly classified by c[i](d) , normalized so that 1 =
∑

d w
[i+1]
d . The overall classifier is

Chapter 11 Fusion and Metalearning388

itself the weighted sum of the first k classifier results:

c(d) =

k∑
i=1

αic
[i](d) , (11.12)

where the weights αi are chosen to minimize the overall error. Various methods of computing

w and α give rise to a family of boosting methods. Perhaps the best known is AdaBoost,

which is applied to decision trees; its results for TREC topic 383 are shown in Table 11.10.

It has been shown that boosting bears a strong resemblance to logistic regression and other

optimization-based methods (Schapire, 2003).

11.6 Multicategory Ranking and Classification

For multicategory ranking and classification problems, we require a score s(d, q) that acts as a

surrogate for the probability that document d ∈ D belongs to category q ∈ Q (i.e., Pr[d ∈ q]).

For our language categorization example (Section 10.1.4), the categories are the 60 possible

languages, so each qj ≡ lj . For topic-oriented search or filtering, the categories are the sepa-

rate topics, so each qj ≡ tj . We shall use language categorization as our principal motivating

example, and return later to topic-oriented problems. By “acts as a surrogate for probability”

we mean:

• If s(d, q) is categorical, it is correct more often than chance.

• If s(d, q) is ordinal, the rankings implied by it are positively correlated with probability.

• If s(d, q) is quantitative, then for some known function f

f(s(d, q)) ≈ Pr[d ∈ q] . (11.13)

Using score as a surrogate for probability is not unique to multicategory ranking. It is the crux

of relevance ranking and the fusion methods we have discussed so far. The difference here is the

assumption that s(d, qj) and s(d, qk) are comparable even when qj 	= qk:

s(d, qj) < s(d, qk) ⇔ Pr[d ∈ qj] < Pr[d ∈ qk] . (11.14)

That is, s(d, q) aptly ranks categories within documents, not just documents within categories.

In this section we consider several different ways to compute, and to combine, families of

score functions {s[f] : D×Q→ R} for the purpose of multicategory ranking and classification.

11.6 Multicategory Ranking and Classification 389

11.6.1 Document Versus Category Scores

In our language categorization example (Section 10.1.4), for each language l we computed a

scoring function sl(di) that is a surrogate for Pr[di ∈ l]. To rank the languages that a particular

document d may contain, we require sd(lj), a surrogate for Pr[d ∈ lj]. The method we have used

so far simply sets sdi
(lj) = slj (di). The assumption underlying this choice is that s(di, lj) =

slj (di) fulfills our previously stated criterion for s: that it is an apt surrogate for Pr[di ∈ lj]

over all di and lj , not just for some specific language l. Under this assumption the most likely

language for a document d is

arg max
lj
{s(d, lj)} . (11.15)

Furthermore, the possible languages lj that d may have are ranked by s(d, lj).

For logistic regression this assumption is reasonably well justified, because the method esti-

mates probability (as log-odds) directly. For other linear and generalized linear classifiers, the

signed distance from the separating hyperplane often yields an amenable, if uncalibrated, score.

Nonlinear methods such as nearest neighbor typically use some sort of internal score that may

be amenable, such as the proximity to the nearest neighbor or the prevalence of lj among the k

nearest neighbors. Decision trees partition D into discrete sets: A score may be derived from the

prevalence of lj among the partition to which d belongs. A hard classifier yields an extremely

coarse estimate; the average of many such estimates using bagging, boosting, or stacking is itself

a quantitative estimate.

If s(d, l) is not a good surrogate, it may yield a good document ranking but poor categorization

accuracy. This effect may be observed by the many inversions in Table 10.24 (page 369) between

the document ranking effectiveness (MAP) and categorization effectiveness (1−error or MRR).

In particular, NB yields a MAP result of 0.44 and an MRR of 0.8, whereas DT (n=8) yields

superior MAP (0.54) but inferior MRR (0.64). Also, DMC achieves both the best MRR (0.86)

and error (20.0%) results (tied with LR), but mediocre MAP (0.74). It is perhaps not surprising,

given the assumptions behind the method, that logistic regression shows superior effectiveness

for both document and category ranking.

When categorical or ordinal values of s(d, l) are considered, a category ranking may not be

uniquely defined. That is, arg max may be ill-defined and as there may be ties in the ranking

according to s(d, lj). In this event a tie breaking strategy is required. If ties are rare, random

tie breaking might be acceptable. Or ties might be resolved in favor of the category known to

have highest prevalence, a technique that optimizes micro-averaged (but not macro-averaged)

error rate. More generally, ties may be resolved by deferring to a secondary surrogate measure

s[2](d, l). For the specific case of resolving by prevalence, s[2](d, l) = prev(l).

The use of a secondary surrogate measure is a special case of a still more general approach:

combining several s[f] to form an aggregate scoring function. Instances of this approach are the

following:

Chapter 11 Fusion and Metalearning390

Table 11.11 Document rank fusion results for language categorization. The
numbers in this table may be compared with those in Table 10.24 (page 369).

Dual Ranking Categorization

Method MAP Error (%) MRR

Best (category ranking) 0.82 20.0 0.86

Best (document ranking) 0.83 20.0 0.80

RRF 0.83 18.9 0.87

NB stacking 0.84 19.2 0.87

LR stacking 0.82 18.6 0.87

Bagging (DT; n=8, N=1024) 0.77 25.9 0.82

Boosting (DT; n=8, N=1024) 0.75 35.7 0.69

• Document rank fusion. For each l, combine the results of k document scoring methods

s
[1]
l , s

[2]
l , . . . , s

[k]
l to form an overall score sl(d); set the category scoring method sd(l) =

sl(d).

• Category rank fusion. For each d, combine the results of k category ranking methods

s
[1]
d , s

[2]
d , . . . , s

[k]
d to form an overall score sd(l), which is used to rank the categories.

• Multicategory methods. Consider d and l in combination in order to compute s(d, l).

11.6.2 Document Versus Category Rank Fusion

Table 11.11 shows the results of five methods of combining the nine language-specific document

ranking methods whose results are listed in Table 10.24 (page 369). For comparison the results

of the best individual methods are shown as well, as measured by categorization effectiveness

and by document ranking effectiveness. RRF is applied exactly as for topic-oriented retrieval,

in order to combine the nine separate document rankings into one. The score from RRF is then

used to rank the languages for each document. Three of the base ranking methods (NB, DMC,

and gradient descent LR) are on-line methods, so log-odds was estimated using Equation 11.6

(page 382). The other six are batch methods, so log-odds was estimated using Equation 11.7.

The results were averaged to yield the result labeled “NB stacking” and combined using logistic

regression on the training examples to yield the result labeled “LR stacking”. Bagging and

boosting were used to build ensembles of 1024 decision trees (n=8). The other document ranking

methods played no role in the bagging and boosting results.

Table 11.12 shows the result of category rank fusion, which combines the various scores on a

per-document basis. The fusion methods are a bit different because the languages to be ranked

are not partitioned into training and test sets. Thus it is not immediately apparent how to

convert the scores into probability estimates. Instead we directly apply the RRF and Condorcet

rank aggregation methods, which require no estimate, as well as logistic regression to the scores

11.6 Multicategory Ranking and Classification 391

Table 11.12 Category rank fusion results for language cat-
egorization.

Categorization

Method Error (%) MRR

Reciprocal rank fusion (RRF) 27.0 0.80

Condorcet 19.5 0.87

Logistic regression (LR) 18.0 0.88

returned by the various methods. RRF performs relatively poorly, while Condorcet improves on

the best base method. Logistic regression yields a further improvement. The logistic regression

method is a special case of learning to rank, which is detailed in Section 11.7.

11.6.3 Multicategory Methods

A number of binary classification, ranking, or regression methods may be adapted to solve the

category ranking problem directly; we call these methods multicategory. In the literature they

are often characterized as multinomial or polytomous, as opposed to binomial or dichotomous.

One versus rest

The approach we have presented so far is first to solve the document ranking problem, then

combine the results to solve the category ranking problem. This approach is generally known

as one versus rest because it combines the results of n binary classification problems, each of

which distinguishes one category from the rest. We have so far assumed that a soft classification

result is an indication of confidence, and have chosen the category that is indicated with highest

confidence among the n one versus rest results.

For hard binary classifiers the one versus rest strategy is problematic. It may be that exactly

one of the classifiers yields a positive result, in which case the category is determined. But if no

result is positive, or if many results are positive, some sort of tie breaking scheme is necessary.

One versus one

An alternative, one versus one, is to reduce the problem to n(n− 1)/2 binary problems, one for

each pair of categories. The n(n−1)/2 results are combined in an election to select the category

for a particular document or to rank the categories. A wide variety of election strategies have

been studied; a comprehensive discussion is beyond the scope of this book. Perhaps the simplest

is to count the number of wins (i.e., positive results) for each category and to rank by this

number. The possibility of a tie still exists, but only in the event that the binary results are

inconsistent. Various runoff strategies can be used to resolve these ties. In many circumstances

the tie may be resolved by repeating the election among only the tied categories. The confidence

of soft classifiers may also be taken into account.

Chapter 11 Fusion and Metalearning392

Multicategory logistic regression

Logistic regression is particularly easy to adapt to multicategory regression, and hence to

ranking. Recall that (binomial) logistic regression estimates

logOdds[x] = log

(
Pr[x]

Pr[x̄]

)
= log

(
Pr[x]

1− Pr[x]

)
, (11.16)

where x is some binary quantity of interest, and x̄ is its complement.

In our language categorization example we used logistic regression for multicategory ranking

in the following way. For each category qi(1 ≤ i ≤ n), let xi denote the membership d ∈ qi of

some document d in the category. Compute li ≈ logOdds[xi] separately for each category using

logistic regression. For the purpose of ranking, this method works reasonably well because li is

a reasonable indication of the strength of the evidence that d ∈ qi. It is also possible to derive

a probability estimate:

pi = logit−1(li) =
1

1 + e−li
≈ Pr[xi] , (11.17)

but this estimate is unsatisfactory when the categories are exclusive (as they are in our language

example). It fails to incorporate the constraint that the probabilities must sum to 1:

1 =

n∑
i=1

Pr[xi] . (11.18)

Post-hoc attempts to fit this constraint yield poor estimates. We mention two solely to rec-

ommend that they be avoided. One is to normalize the pi so that they sum to 1 as per

Equation 11.18; the other is to estimate all but one of the pi using logistic regression and

then solve for the nth using Equation 11.18.

A better approach is to use logistic regression to estimate the ratio between pairs of

probabilities

rij ≈
Pr[xi]

Pr[xj]
(11.19)

and to compute pi so as to satisfy both 11.18 and 11.19. This approach requires that we compute

only n−1 of the n(n−1)
2 possible rij that might be estimated; the rest are redundant. The choice

of which rij to compute is arbitrary, so long as they form a basis from which all rij may be

derived.

A standard choice is the baseline category logit model. In this model we arbitrarily deem x1

to be the baseline and compute ri1 for all i. For i = 1, by definition

r11 = 1 . (11.20)

11.6 Multicategory Ranking and Classification 393

Table 11.13 Results for one versus rest and multicategory language categorization.

One versus rest Multicategory

Method Error (%) MRR Error (%) MRR

LR 20.0 0.86

SVM (C=0.01) 20.1 0.85 29.9 0.79

SVM (C=1) 20.0 0.86 31.8 0.74

SVM (C=100) 20.0 0.86 22.8 0.84

SVM (C=10000) 20.0 0.86 19.7 0.86

Boosted stumps (N=1024) 46.4 0.63 32.2 0.76

For i > 1, we first note that it is possible to reformulate rij as the odds of xi over xj when all

other categories are eliminated:

rij ≈
Pr[xi]

Pr[xj]
= Odds[xi |xi or xj] . (11.21)

Therefore,

r1j = eli1 (i > 1) , (11.22)

where

li1 ≈ logOdds[xi |x1 or xi] . (11.23)

That is, li1 is calculated by applying logistic regression to training documents d with categories

q1 or qj , but not the rest: d ∈ (q1 ∪ qj) ∩ T . For i, j > 1,

rij =
ri1

r11
· r11

rj1
=

ri1

rj1
(i, j > 1) . (11.24)

Given {ri1}, the computation of pi is straightforward:

pi =
ri1∑n
i=1 ri1

. (11.25)

For reasons beyond the scope of this exposition, the calculation of pi yields the same result

regardless of which category q1 is chosen as the baseline (Agresti, 2007).

Multicategory SVM

Recall that a (binary) support vector machine finds a separating hyperplane between two classes,

thus balancing a trade-off between the size of the margin and the number (and severity) of mis-

classified points. A multicategory SVM (Crammer and Singer, 2002) constructs n hyperplanes

as for document ranking, but considers all margins and all misclassified points in a common

optimization problem. That is, it trades off maximizing the size of the smallest of the n margins

Chapter 11 Fusion and Metalearning394

with the overall number (and severity) of misclassified points. Thus, it more directly addresses

categorization error, in contrast to logistic regression, which is concerned with the probability

distribution over all classes.

Multicategory boosting

A similar approach may be applied to boosting. Instead of computing w and α separately for

each category, multicategory boosting optimizes the training error over all categories (Schapire

and Singer, 2000).

Table 11.13 shows the results of one versus rest and multicategory methods for TREC topic

383. Overall, it is difficult to conclude from these results that any one of them yields a startling

benefit. Multicategory SVM (SVM-Multiclass2) is worse except for the extreme setting of

C=10,000, in which case it is marginally better. Multicategory boosting (Boostexter3) shows a

definite improvement, but over a very weak baseline.

11.7 Learning to Rank

The term learning to rank refers to the problem of estimating the correct order

≺: R×R

among a set of objects R. In contrast, classification and regression estimate some ideal function

on elements of R:

ideal : R→ {true, false} or ideal : R→ R.

Under this broad characterization we have already considered many examples of learning to

rank. For instance, when R ⊆ D, we have document ranking with respect to some assumed

notion of relevance; for example, binary relevance to some particular query q:

d1 ≺ d2 =def (d1 /∈ relq and d2 ∈ relq) . (11.26)

For document ranking, the learner l takes as input a training set T ⊂ D and a labeling function

label : T → {rel, non}, and produces a scoring function s : D → R. The result is recast in terms

of learning to rank by defining its output to be �: D × D, which approximates the specified

correct order ≺:

d1 � d2 =def s(d1) < s(d2) . (11.27)

2 svmlight.joachims.org/svm multiclass.html
3 www.cs.princeton.edu/~schapire/boostexter.html

11.7 Learning to Rank 395

It is important to note that ≺ is typically a partial order. There may be pairs of documents

d1 	= d2 such that d1 ⊀ d2 and d2 ⊀ d1. For Equation 11.26 this situation arises whenever

either d1, d2 ∈ relq or d1, d2 /∈ relq. The estimate � may also be a partial order. However,

ranked IR evaluation measures such as MAP and P@k assume that it is total. If it is not,

because s(d1) = s(d2) for some d1 	= d2, evaluation software such as trec eval (Section 2.3.2)

arbitrarily assumes either d1 ≺ d2 or d2 ≺ d1.

11.7.1 What Is Learning to Rank?

In the literature the phrase “learning to rank” suggests a more general learning problem than our

introductory example, in which q and D are fixed and ≺ is binary relevance. Although there is

no commonly accepted definition of what is or is not learning to rank, the term connotes several

of the following aspects:

• Metalearning, where the feature representation x[d] of d is the result of applying many

different feature engineering and ranking formulae to q and d.

• A more general characterization of ≺, as opposed to binary relevance (Equation 11.26).

For example, graded relevance assumes an ordered set of k relevance categories

rel
[1]
q , . . . , rel

[k]
q , where rel

[1]
q is the least relevant to q and rel

[k]
q is the most relevant

(see Section 12.5.1). Under graded relevance,

d1 ≺ d2 ⇔ d1 ∈ rel[i]q and d2 ∈ rel[j]q (i < j) . (11.28)

• The problem of learning a family of rankings, where ≺q and �q are both parameterized

by q ∈ Q.

• Query-limited training labels, where d1 ≺q d2 is known only for q ∈ QT and QT is a set

of training queries, a very small subset of Q.

• Pairwise training, where d1 ≺q d2 is known only for (q, d1, d2) ⊂ QT × DT × DT and

DT ⊆ D is a set of training documents.

• A standard example of learning to rank for IR, illustrated by the LETOR test data sets.4

In LETOR the training set T consists of a number of triples (q, x[d,q], r) ∈ QT ×Rk ×Z,

where QT ⊂ Q is a set of training queries, x[d,q] = s1(d, q), s2(d, q), . . . , sk(d, q) is the

feature representation derived by applying k different scoring functions to d with respect

to q , and r represents ≺:

∀q∈QT
: r1 < r2 ⇔ (q, d1) ≺q (q, d2) . (11.29)

4 research.microsoft.com/en-us/um/beijing/projects/letor

Chapter 11 Fusion and Metalearning396

• A standard example of using clickthrough data (Joachims et al., 2005) to derive pairwise,

uncertain training examples. Suppose that a search engine presents a ranked list Res

to the user in response to query q. Suppose also that the user inspects the kth-ranked

document dk = Res[k] but does not inspect a higher-ranked document dj = Res[j],

where j < k. From this information we infer that, on balance of probability,

dj ≺q dk . (11.30)

This inference is uncertain in that it may be wrong, and incomplete in that d1 ≺q d2 is

defined for only a subset of (d1, d2) ∈ DT ×DT .

11.7.2 Learning-to-Rank Methods

Methods for learning to rank may be generally characterized as pointwise, pairwise, or listwise,

depending on how they are trained (Cao et al., 2007). Pointwise methods reduce the problem to

scoring each (d, q) according to the probability that document d is relevant to query q. Logistic

regression directly estimates this probability (as log-odds) and maximizes the overall likelihood

of the labeled examples. Other methods, such as linear regression, ranking perceptrons, and

neural networks, generally give a higher score to (d, q) when d is labeled as relevant to q and a

lower score when d is labeled as nonrelevant. A support vector machine seeks to find a hyperplane

that separates relevant (d, q) examples from nonrelevant ones.

The pointwise SVM method illustrates a possible shortcoming in pointwise methods. Although

by definition we have

(d1, q1) ⊀ (d2, q2) (for q1 	= q2) , (11.31)

the SVM will attempt to separate all relevant (d1, q1) from nonrelevant (d2, q2) even when

q1 	= q2. A ranking SVM considers only the cases in which q1 = q2 in optimizing both margin

and training error. In effect the ranking SVM builds |QT | distinct separating hyperplanes, one

for each q ∈ QT . Other pointwise methods may be adapted to pairwise training in a similar

manner.

The listwise approach considers the ordering of the entire set DT × {q} separately for each

q ∈ QT . A possible advantage of this approach is that it is easy to place more weight on the

highest-ranked documents in each DT , to emphasize precision or any other aspect of retrieval

effectiveness. On the other hand, there are |DT |! possible permutations of DT , so finding a

compact and generalizable representation of the best one presents a challenge.

11.7.3 What to Optimize?

Every learning method optimizes some objective function (minimizes some loss function) subject

to a number of constraints. In learning to rank, perhaps the most obvious loss function is the

11.7 Learning to Rank 397

number of inversions; pairs for which the learned and ideal orders are opposite:

inv = |{(d1, q1), (d2, q2) | (d1, q1) ≺ (d2, q2) and s(d2, q2) < s(d1, q1)}| . (11.32)

When ≺ is binary relevance, minimizing inv is equivalent to minimizing AUC, the area under

the ROC curve. When ≺ is a total order, minimizing inv is equivalent to maximizing Kendall’s

τ correlation:

τ = 2 · (1− inv) . (11.33)

Minimizing inv may not maximize retrieval effectiveness, which typically emphasizes precision

over recall. Measures such as MAP, P@k, and nDCG are all improved when inversions among

top-ranked documents are given higher weight than the rest. In general it is not feasible to opti-

mize these measures directly, since they are discontinuous and nonconvex. A number of methods

use continuous, convex surrogate loss functions that asymptotically bound these measures.

11.7.4 Learning to Rank for Categorization

The methods we employed for category rank fusion (Section 11.6) are examples of learning to

rank, albeit with the senses of D and Q reversed from the presentation above. We wish to

compute �: (D × L)× (D × L) that nearly satisfies

(d, l′) ≺ (d, l) ⇔ d has language l 	= l′ . (11.34)

Our two measures of “nearly” are accuracy (1−error) and MRR. The features representing each

(d, l) comprise

x[d,l] = (r, s1(d, l), s2(d, l), . . . sk(d, l)) , (11.35)

where

r =

⎧⎨⎩1 (d has language l)

0 (d has language l′ 	= l)
(11.36)

sm(d, l) = the score for d and l from base method m . (11.37)

In Table 11.12 the results of RRF and Condorcet are fixed rules rather than learning methods,

but they compute the same result as logistic regression, a pointwise learning method.

To employ a pairwise or listwise method, it is necessary to distinguish the particular document

d in the feature representation of (d, l), so that the subsets with a common d are known:

x[di,l] = (r, i, s1(di, l), s2(di, l), . . . , sk(di, l)) . (11.38)

Table 11.14 repeats the LR pointwise result and shows the result of ranking SVM (SVMlight)

applied to the language category ranking problem, for two values of the regularization parameter

C. For both settings, ranking SVM yields slightly better categorization results than pointwise

logistic regression.

Chapter 11 Fusion and Metalearning398

Table 11.14 Ranking SVM results for language
categorization.

Method Error (%) MRR

LR (pointwise) 18.0 0.88

Rank SVM (C=0.01) 17.3 0.88

Rank SVM (C=0.1) 17.6 0.88

Table 11.15 Logistic regression learning-to-rank results, trained on
one year’s runs and tested on the next year’s topics.

Corpus TREC45 GOV2

Train 1998 2004

Test 1999 2005

Measure P@10 MAP P@10 MAP

RRF 0.464 0.252 0.570 0.352

LR 0.446 0.266 0.588 0.309

Rank SVM (C=0.02) 0.420 0.234 0.556 0.268

11.7.5 Learning for Ranked IR

Table 11.3 on page 381 shows that fixed-combination methods effectively combine the ranked

results from various IR methods. Because exactly the same methods were employed for all four

experiments, we explore the possibility of using learning-to-rank methods to come up with a

better combination method. To this end we identify the TREC45 1998 and GOV2 2004 runs

and qrels as training examples and labels, and the TREC45 1999 and GOV2 2005 runs as the

corresponding test examples. Each example (d, qj) was represented as a query vector

x[d,qj] = (r, j, s1(d, qj), s2(d, qj), . . . , sk(d, qj)) , (11.39)

where k = 29 is the number of methods. We applied (pointwise) logistic regression and ranking

SVM to the problem.

Table 11.15 shows the results of logistic regression and ranking SVM compared with the

baseline of reciprocal rank fusion. It is difficult to argue that the LR result is substantively

different from that of the baseline. Rank SVM (SVM-Rank5) appears to be inferior, and requires

roughly four days of CPU time to process the GOV2 data set, as opposed to a few seconds for

RRF and a few minutes for LR.

5 www.cs.cornell.edu/people/tj/svm light/svm rank.html

11.7 Learning to Rank 399

Table 11.16 Learning-to-rank results for 583,850 document-query
pairs in the LETOR 3 corpus. The P@10 and MAP scores are
the averages of the scores for 680 topics over the seven LETOR
3 data sets. RRF, Condorcet, and CombMNZ fuse the results of the
separate learning-to-rank methods.

Method P@10 MAP

ListNet (Cao et al., 2007) 0.1853 0.5846

LR (gr. desc.) 0.1821 0.5837

AdaRank-MAP (Xu and Li, 2007) 0.1789 0.5778

RankSVM (Joachims, 2002) 0.1811 0.5737

LR (batch) 0.1780 0.5715

RankBoost (Freund et al., 2003) 0.1836 0.5622

RRF 0.1902 0.6051

Condorcet 0.1907 0.5917

CombMNZ 0.1893 0.6107

11.7.6 The LETOR Data Set

LETOR, a benchmark data set for learning to rank (Liu et al., 2007), is a test collection for

evaluating learning-to-rank methods. At the time of writing, version 3 of the LETOR data

set was current. LETOR 3 consists of seven data sets, each containing examples of the form

shown in Equation 11.39. The examples are divided into five standard splits for the purpose

of five-fold cross-validation. Six of the data sets use selected documents from the TREC GOV

(not GOV2) collection and topics from the TREC 2003 and TREC 2004 Web Track tasks. One

of the data sets uses selected documents and topics from the OHSUMED collection. For the

TREC documents relevance is binary, and there are 64 features representing different features of

the query and the document. For the OHSUMED documents relevance is ternary (not relevant,

relevant, very relevant) and there are 45 content-based features. Standard evaluation tools are

supplied with the corpus.

Included with the LETOR data set are raw results Resi and Scorei for several state-of-the-art

learning-to-rank methods:

• ListNet (Cao et al., 2007) uses gradient descent to optimize a listwise objective function.

• AdaRank-MAP (Xu and Li, 2007) uses AdaBoost with a surrogate objective function

specifically intended to optimize average precision.

• RankBoost (Freund et al., 2003) uses AdaBoost to minimize inversions between pairwise

training examples and the resulting ranked list.

• RankSVM is the same SVMlight implementation we used for language categorization,

which minimizes inversions between pairwise training examples.

Chapter 11 Fusion and Metalearning400

For each of the 680 topics there are up to 1000 documents. Although the methods were trained

separately on the seven data sets, we averaged the 680 per-topic P@10 and AP scores to yield the

summary results shown in Table 11.16. We also included results from the LR (batch) pointwise

method used in the previous examples. LR (gr. desc.) uses the gradient descent pairwise LR

method with an objective function that gives increased weight to inversions involving highly

ranked nonrelevant documents.

The fusion methods RRF, Condorcet, and CombMNZ combine the results of the six learning-

to-rank methods, improving both P@10 and MAP effectiveness. At the time of writing, no

learning-to-rank method surpasses these fusion results. Furthermore, statistical analysis fails to

show any significant difference among the six individual methods (Cormack et al., 2009).

11.8 Further Reading

Belkin et al. (1995) report early efforts to combine search results generated by different queries,

both manually and automatically derived from a TREC topic. A family of methods for score

combination — of which CombMNZ is one — is presented. These methods are investigated

in a number of subsequent studies and are found to be effective in combining a variety of

retrieval results (e.g., Lee, 1997). Montague and Aslam (2002) survey and evaluate score com-

bination and election methods, and propose Condorcet as the method of choice. Voorhees et al.

(1995) consider test-collection fusion in which the same query is applied to disjoint collections

of documents. The term metasearch is usually taken to mean the combination of results from

autonomous search engines, as surveyed by Meng et al. (2002).

Vogt and Cottrell (1999) investigate the use of linear regression to combine search results

based on training examples. Stacked generalization (stacking), proposed by Wolpert (1992), is

a standard technique in machine learning. The particular method of log-odds transformation

and gradient descent used in our examples is due to Lynam and Cormack (2006). Bootstrap

aggregation (bagging; Breiman, 1996) and boosting (Schapire, 2003), like stacking, are staples

of machine learning. Most machine learning textbooks (e.g., Hastie et al., 2009) treat ensemble

methods such as stacking, bagging, and boosting as major topics.

Multicategory logistic regression, like logistic regression itself, is a standard technique for

general data analysis (Hosmer and Lemeshow, 2000). Crammer and Singer (2002) describe

practical algorithms for multiclass support vector machines. Schapire and Singer (2000) describe

the application of boosting to multicategory problems.

Learning to rank has been the subject of workshops at NIPS 2005, SIGIR 2007, and SIGIR

2008. Even so, a precise definition of what is meant by the term remains elusive. Seminal

papers by Burges et al. (2005) and Joachims et al. (2005) tacitly define the problem to be one of

minimizing inversions between learned and target rankings: Burges et al. use gradient descent

in a method known as Ranknet, whereas Joachims et al. use support vector machines.

11.9 Exercises 401

Li et al. (2007) frame learning to rank as a multiple category classification problem in which

each graded relevance level corresponds to a category. Herbrich et al. (2000) and Freund

et al. (2003) describe pairwise methods. Xu and Li (2007) describe the AdaRank-MAP list-

wise method; Burges et al. (2006) descibe the LambdaRank listwise method. Svore and Burges

(2009) demonstrate that LambdaRank can outperform BM25 using an equivalent feature set.

Yilmaz and Robertson (2010) discuss the use of IR evaluation measures as optimization targets

for learning to rank. The LETOR data set (Liu et al., 2007) provides a standard benchmark

for evaluating learning-to-rank methods. Liu (2009) surveys current approaches for learning to

rank. The sofia-ml package by D. Sculley provides a new suite of fast incremental algorithms

for machine learning.6

11.9 Exercises

Exercise 11.1 Download a TREC test collection and one or more search engines. Run var-

ious configurations of the search engines on the topics, and combine their results using RRF,

CombMNZ, and Condorcet. Compare the results.

Exercise 11.2 Download the TREC Spam Filter Evaluation Toolkit, and run several of the

sample filters on the sample corpus. Combine the results using voting, näıve Bayes, and logistic

regression. Evaluate the results.

Exercise 11.3 Use RRF, CombMNZ, and Condorcet to combine the results of your spam filter

runs. Does this experiment aptly model the use of a spam filter? Do these methods improve on

voting, näıve Bayes, and logistic regression?

Exercise 11.4 Download the LETOR 3 data set. Apply one or more learning-to-rank methods

(e.g., SVMlight) to the data set and compare your results against the published baselines.

Exercise 11.5 Apply straightforward logistic regression (e.g., LibLinear) to the LETOR 3

data set, ignoring the qid field. Compare the results with those achieved by the learning-to-rank

methods.

11.10 Bibliography

Agresti, A. (2007). An Introduction to Categorical Data Analysis (2nd ed.). New York: Wiley-

Interscience.

6 code.google.com/p/sofia-ml

Chapter 11 Fusion and Metalearning402

Belkin, N., Kantor, P., Fox, E., and Shaw, J. (1995). Combining the evidence of multiple query

representations for information retrieval. Information Processing & Management, 31(3):431–
448.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

Burges, C. J. C., Ragno, R., and Le, Q.V. (2006). Learning to rank with nonsmooth cost

functions. In Proceedings of the 20th Annual Conference on Neural Information Processing

Systems, pages 193–200. Vancouver, Canada.

Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender,

G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd International

Conference on Machine Learning, pages 89–96. Bonn, Germany.

Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F., and Li, H. (2007). Learning to rank: From pair-

wise approach to listwise approach. In Proceedings of the 24th International Conference on

Machine Learning, pages 129–136. Corvalis, Oregon.

Cormack, G. V., Clarke, C. L. A., and Büttcher, S. (2009). Reciprocal rank fusion outperforms

Condorcet and individual rank learning methods. In Proceedings of the 32nd Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 758–759. Boston, Massachusetts.

Crammer, K., and Singer, Y. (2002). On the algorithmic implementation of multiclass kernel-

based vector machines. Journal of Machine Learning Research, 2:265–292.

Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton, Florida:

Chapman & Hall/CRC.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research, 4:933–969.

Hastie, T., Tibshirani, R., and Friedman, J.H. (2009). The Elements of Statistical Learning

(2nd ed.). Berlin, Germany: Springer.

Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large margin rank boundaries for ordinal

regression. In Bartlett, P. J., Schölkopf, B., Schuurmans, D., and Smola, A. J., editors,

Advances in Large Margin Classifiers, chapter 7, pages 115–132. Cambridge, Massachusetts:
MIT Press.

Hosmer, D. W., and Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). New York:

Wiley-Interscience.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of

the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 133–142. Edmonton, Canada.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2005). Accurately interpreting

clickthrough data as implicit feedback. In Proceedings of the 28th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 154–161.
Salvador, Brazil.

11.10 Bibliography 403

Lee, J.H. (1997). Analyses of multiple evidence combination. In Proceedings of the 20th

Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 267–276.

Li, P., Burges, C., and Wu, Q. (2007). McRank: Learning to rank using multiple classification

and gradient boosting. In Proceedings of the 21st Annual Conference on Neural Information
Processing Systems, pages 897–904. Vancouver, Canada.

Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in

Information Retrieval, 3(3):225–331.

Liu, T. Y., Xu, J., Qin, T., Xiong, W., and Li, H. (2007). LETOR: Benchmark dataset

for research on learning to rank for information retrieval. In Proceedings of SIGIR 2007

Workshop on Learning to Rank for Information Retrieval, pages 481–490. Amsterdam, The
Netherlands.

Lynam, T. R., and Cormack, G. V. (2006). On-line spam filter fusion. In Proceedings of the 29th

Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 123–130. Seattle, Washington.

Meng, W., Yu, C., and Liu, K. L. (2002). Building efficient and effective metasearch engines.

ACM Computing Surveys, 34(1):48–89.

Montague, M., and Aslam, J. A. (2002). Condorcet fusion for improved retrieval. In Proceedings

of the 11th International Conference on Information and Knowledge Management, pages

538–548. McLean, Virginia.

Schapire, R. (2003). The boosting approach to machine learning: An overview. In Denison,

D. D., Hansen, M. H., Holmes, C. C., Mallick, B., and Yu, B., editors, Nonlinear Estimation

and Classification, volume 171 of Lecture Notes in Statistics, pages 149–172. Berlin, Germany:
Springer.

Schapire, R., and Singer, Y. (2000). BoosTexter: A boosting-based system for text

categorization. Machine learning, 39(2):135–168.

Surowiecki, J. (2004). The Wisdom of Crowds: Why the Many Are Smarter Than the Few

and How Collective Wisdom Shapes Business, Economies, Societies and Nations. New York:

Doubleday.

Svore, K.M., and Burges, C. J. (2009). A machine learning approach for improved BM25

retrieval. In Proceedings of the 18th ACM Conference on Information and Knowledge

Management, pages 1811–1814. Hong Kong, China.

Vogt, C., and Cottrell, G. (1999). Fusion via a linear combination of scores. Information

Retrieval, 1(3):151–173.

Voorhees, E. M., Gupta, N. K., and Johnson-Laird, B. (1995). Learning collection fusion strate-

gies. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 172–179. Seattle, Washington.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5:241–259.

Chapter 11 Fusion and Metalearning404

Xu, J., and Li, H. (2007). Adarank: A boosting algorithm for information retrieval. In Proceed-

ings of the 30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 391–398. Amsterdam, The Netherlands.

Yilmaz, E., and Robertson, S. (2010). On the choice of effectiveness measures for learning to

rank. Information Retrieval.

IV Evaluation

12 Measuring Effectiveness

The purpose of evaluation is to measure how well IR methods achieve their intended purpose.

Evaluation is essential to estimating the effectiveness of an IR method in a given situation,

comparing it against the effectiveness of a different method in the same situation or predicting

its effectiveness in a different situation. Without evaluation it is difficult to make informed

deployment decisions or to discover better approaches. To be usable, an evaluation methodology

must have the following:

• a characterization of the intended purpose of an IR method;

• a measure that quantifies the notion of how well this purpose is met;

• a precise, accurate, and economical measurement technique;

• an estimate of measurement error.

This chapter addresses the above aspects of IR evaluation. It builds directly upon the intro-

ductory material of Section 2.3, which focused on the evaluation of the basic adhoc retrieval

task.

In Section 12.1 we revisit the main effectiveness measures used in traditional IR evaluation and

discuss their corresponding retrieval tasks. Section 12.2 describes the evaluation methodology

employed at the Text REtrieval Conference (TREC), which represents the de facto standard in

IR evaluation and is followed by many researchers. The statistical analysis of evaluation results

is the topic of Section 12.3. We discuss common analysis techniques, such as confidence intervals

and significance tests as they apply to information retrieval, as well as less common methods,

such as the meta-analysis of independent experiments. We also compare several statistical tests

in terms of their power and validity, that is, how good they are at detecting differences between

competing retrieval functions and how accurate their verdicts are. In Section 12.4 we explore

ways to reduce the number of relevance judgments while maintaining the reliability of eval-

uation results. Finally, Section 12.5 covers effectiveness measures that extend — or address

problems with — the traditional measures from Section 12.1. It includes measures for graded

relevance assessments (going beyond the binary relevant/nonrelevant evaluation methodology)

and incomplete judgments, as well as novelty and diversity.

Looking beyond the current chapter, other chapters discuss evaluation in other contexts.

Chapter 10 covers evaluation for filtering and classification. Chapter 15 covers issues and mea-

sures specific to the Web. Chapter 16 provides an overview of effectiveness evaluation for XML

information retrieval.

12.1 Traditional Effectiveness Measures 407

12.1 Traditional Effectiveness Measures

Traditional information retrieval evaluation is based on two fundamental assumptions:

1. Given a user’s information need, represented by a search query, each document in a

given text collection is either relevant or nonrelevant with respect to this information

need.

2. The relevance of a document d depends only on the information need and d itself. It is

independent of the search engine’s ranking of the other documents in the collection.

Based on these two assumptions, various effectiveness measures can be defined. Some of them

have already appeared in Section 2.3.

12.1.1 Recall and Precision

Recall and precision, perhaps the two oldest measures used in IR evaluation, apply to an

unordered set of documents retrieved in response to a query. Recall is the fraction of relevant

documents contained in the set. Let Res be the set of retrieved documents, and Rel the set of

relevant documents. Then we have

recall =
|Res ∩ Rel|
|Rel| . (12.1)

As an effectiveness measure, recall quantifies how exhaustively the search results satisfy the

user’s information need. It models a retrieval task in which the user wants to find all relevant

documents, as in a literature review or legal search.

A search engine could trivially achieve a recall level of 1.0 simply by returning all documents

in the collection. Of course, if it did that, most of the documents in the result list would be

nonrelevant. Precision covers this second aspect of the result set — the fraction of relevant

documents among the documents retrieved by the system:

precision =
|Res ∩ Rel|
|Res| . (12.2)

The user model from which the precision measure is derived assumes that the user wishes to

find a reasonable number of relevant documents, considering the effort needed to examine each

document in the retrieved set. Precision is a measure of the number of relevant documents

per unit of effort. Its reciprocal is equivalent to the expected number of documents from the

retrieved set that the user needs to look at, in some arbitrary order, until she encounters a

relevant one.

Chapter 12 Measuring Effectiveness408

12.1.2 Precision at k Documents (P@k)

Although recall may have been an appropriate measure for the early information retrieval exper-

iments conducted in the 1960s, its usefulness became more and more questionable as document

collections grew larger over the years. For instance, TREC topic 426 (“law enforcement, dogs”)

has 202 known relevant documents in the TREC collections. Only the most inquisitive user

would be interested in all of them. In Web search, recall is even less meaningful because it is not

unusual for a topic to have tens of thousands of relevant documents (e.g., consider the TREC

topics “drug abuse”, “vietnam war”, and “international space station”).

Precision at k documents (“precision@k” or just “P@k”) is meant to model the satisfaction

of a user who is presented with a list of up to k highly ranked documents, for some small value

of k (typically k = 5, 10, or 20). It is defined as

P@k =
|Res[1..k] ∩Rel|

k
, (12.3)

where Res[1..k] consists of the top k documents returned by the system. Like unconstrained

precision, P@k assumes that the user inspects the results in arbitrary order, and that she

inspects all of them even after she has found one or more relevant documents. It also assumes

that if the search engine is unable to identify at least one relevant document in the top k results,

it has failed, and the user’s information need remains unfulfilled. Precision at k documents is

sometimes referred to as an early precision measure. It does not have a recall component, thus

acknowledging that no user would ever read all relevant documents about drug abuse or the

Vietnam war.

12.1.3 Average Precision (AP)

In general it is not clear how the value of k in P@k should be chosen. The value k = 10 might

suggest itself because many search engines, by default, show only the top 10 results to the user.

But because we are concerned with the evaluation of result rankings, not with evaluating a user

interface, k = 10 seems just as arbitrary as any other choice.

Average precision (AP) tries to address this problem by combining precision values at all

possible recall levels:

AP =
1

|Rel| ·
|Res|∑
i=1

relevant(i) · P@i , (12.4)

where relevant(i) is 1 if the i-th document in Res is relevant (i.e., Res[i] ∈ Rel); 0 otherwise.

Thus, for every relevant document d, AP computes the precision of the result list up to and

including d. If a document does not appear in Res, AP assumes the corresponding precision to

be 0. Thus, we may say that AP contains an implicit recall component because it accounts for

relevant documents that are not in the result list.

12.1 Traditional Effectiveness Measures 409

12.1.4 Reciprocal Rank (RR)

The measures discussed so far assume that there is a set of relevant documents, that all docu-

ments in this set are equally useful, and that the user is interested in seeing a number of relevant

documents. Although this assumption is reasonable for adhoc retrieval tasks, there are situa-

tions in which a user wants a single relevant document, and this document should be ranked

as high as possible. For instance, consider the query 〈“white”, “house”, “official”, “website”〉.
There is exactly one relevant result for this query (www.whitehouse.gov), and returning it in

position 1 is clearly better than returning it in position 5 or 10.

Reciprocal rank is a measure that focuses on the top few results and that strongly favors

rankings in which the relevant document is returned at the very top. It is defined as

RR =
1

min{k | Res[k] ∈ Rel} . (12.5)

Note that Equation 12.5 allows the existence of more than one relevant document. If |Rel| > 1,

then the assumption is that the user’s task is completed as soon as she encounters the first

relevant document. On the other hand, if there is exactly one relevant document, |Rel| = 1,

reciprocal rank is equivalent to average precision.

12.1.5 Arithmetic Mean Versus Geometric Mean

Aggregate results are given by averaging over multiple topics (calculating the arithmetic mean).

The corresponding measures are mean average precision (MAP), mean reciprocal rank (MRR),

and so forth. Curiously, for some measures “mean” is not explicitly included in the name. For

example, mean precision at k is usually referred to as just P@k, not as MP@k.

Recently it has been argued that computing the arithmetic mean may not be the best way

to aggregate effectiveness measures over multiple topics (Robertson, 2006). As an illustrative

example consider two topics T1 and T2, each of which has exactly one relevant document. Further

consider the two result lists

Res(T1) = 〈−, +,−,−,−, . . .〉, Res(T2) = 〈−, +,−,−,−, . . .〉, (12.6)

where “+” denotes a relevant document and “−” denotes a nonrelevant document. The average

precision for both lists is 0.5. Thus the MAP over both topics is 0.5 as well. Now consider an

alternative scenario:

Res′(T1) = 〈+,−,−,−,−, . . .〉, Res′(T2) = 〈−,−,−,−,−, . . .〉, (12.7)

where AP for Res′(T1) is 1 and AP for Res′(T2) is 0. The MAP is the same in both cases (12.6

and 12.7), even though the overall utility for the user is likely to be considerably higher in 12.6

than in 12.7.

Chapter 12 Measuring Effectiveness410

This observation leads to the definition of geometric mean average precision (GMAP)

(Robertson, 2006):

GMAP(AP1, . . . ,APn) = n

√√√√ n∏
i=1

(APi + ε)− ε, (12.8)

where ε is a constant whose role is to eliminate pathologies due to one of the APi’s being 0.

Setting ε = 0.01, we obtain

GMAP(0.5, 0.5) = 0.5, GMAP(1.0, 0.0) =
√

1.01 · 0.01 ≈ 0.10 (12.9)

for the examples in 12.6 and 12.7, which is consistent with our intuition that the overall utility

of Res(T1) and Res(T2) is greater than that of Res′(T1) and Res′(T2).

Because the geometric mean of a set of AP values is equivalent to the arithmetic mean of

logarithmic AP values, it may be argued that the problem is not caused by taking the arithmetic

mean but by the AP measure itself.

12.1.6 User Satisfaction

Virtually all ranking functions devised in the last twenty years were evaluated using one or

more of the effectiveness measures described above. Given their importance in IR evaluation,

one might assume that the relationship between user satisfaction and, say, average precision

has been thoroughly studied and is well understood. Unfortunately, this is not the case. User

studies trying to find correlations between user satisfaction and various effectiveness measures

are a relatively recent phenomenon. Initial results suggest that the correlation may in fact be

quite low for AP (Turpin and Scholer, 2006) but reasonably high for early precision measures

such as P@10 (Kelly et al., 2007). Nonetheless, AP still is, and will remain for the next while,

the most widely used measure in IR evaluation.

12.2 The Text REtrieval Conference (TREC)

Section 2.3 provides a brief outline of the classic approach to measuring effectiveness, as codified

by TREC and emulated by many other evaluation efforts. The TREC methodology provides

a framework within which the evaluation measures from the previous section can be applied.

It represents the de facto standard for IR evaluation; measurements taken using the TREC

methodology dominate published results, especially for adhoc retrieval. Under this approach,

the organizers of an evaluation experiment develop a set of topics and distribute them, along

with a target document collection, to the groups participating in the experiment. Traditionally

the document collection is relatively homogeneous, consisting of professionally written and

edited material, such as newspaper or journal articles. Each group creates queries from the

topics and executes them over the document collection. Usually these queries must be created

12.2 The Text REtrieval Conference (TREC) 411

automatically from the topics, without human intervention, but manual creation or modification

of queries may also be permitted in some experiments.

A typical topic set comprises 50 or more topics. In many cases the organizers create topics in

which one of the fields is explicitly intended to be used as a query with little or no modification.

In the example topic shown in Figure 1.8 (page 25), the title field (“law enforcement, dogs”) is

intended for this purpose. The remainder of the topic provides additional details and resolves

potential ambiguity caused by the brevity of the title. Ideally, the topic precisely and completely

specifies the requirements for a relevant document. TREC topics rarely contain typographical

or spelling errors, which are common in real-world queries.

After executing their queries over the collection, each group returns a ranked list of up to k

document identifiers for each topic: k=1000 is a typical value for TREC experiments; k=10,000

was used for the experiments in this book. A set of ranked lists for an entire topic set is called

a run in TREC jargon. Depending on the experiment, the organizers may permit each group

to return several runs, allowing them to easily test different aspects of their system.

After receiving one or more runs from each group, the organizers create a pool of documents

for evaluation. This pool is constructed as the union of the top documents from each run, where

a per-run pool depth of 100 is typical. Human assessors judge each document on a binary scale:

relevant or nonrelevant.1 These judgments, called qrels in the TREC vernacular, are then used

to compute recall, precision, average precision, and other measures, as described in the previous

section. In computing these measures, documents that do not form part of the pool (because

they were not returned in the top documents by any run) are considered to be nonrelevant.

The topics and judgments, together with the document collection, form a test collection. A

central goal of TREC is to create test collections that may be re-used for later experiments.

For instance, if a new IR technique or ranking formula is proposed, its inventor may use an

established test collection to compare it against standard methods. Reusable test collections may

also be employed to tune retrieval formulae, adjusting parameters to optimize performance. If

a test collection is to be reusable, it is traditionally assumed that the judgments should be as

exhaustive as possible. Ideally, all relevant documents would be located. Thus, many evaluation

experiments actively encourage manual runs (involving human intervention) in order to increase

the number of known relevant documents.

The pooling method can require substantial judging effort. With 50 topics, dozens of groups,

and a pool of depth 100, assessors may need to make tens of thousands of judgments. For the

TREC-8 adhoc task in 1999, 71 runs contributed to the pool (Voorhees and Harman, 1999). In

theory the size of this pool could have been as large as 71 · 50 · 100 = 355,000 if none of the

runs had overlapped. Fortunately, the runs did overlap to a substantial extent, particularly at

earlier ranks. Nonetheless, the total pool for all 50 topics included 86,830 documents. Assuming

1 Some TREC experiments involve judgments on a ternary scale: nonrelevant, relevant, highly relevant.
For the purpose of evaluating the individual runs, however, relevant and highly relevant documents are
usually treated as equivalent.

Chapter 12 Measuring Effectiveness412

we allow an assessor just 30 seconds to judge a single document, these 86,830 documents would

correspond to a total of 724 hours of assessor time, enough to keep a team of ten assessors busy

for two weeks.

12.3 Using Statistics in Evaluation

Given a test collection consisting of documents, topics, and qrels, we can use the measures from

Section 12.1 to compute the effectiveness of some retrieval method A on the given test collection,

and to compare it with the effectiveness of some other method B. However, the outcome of such

an evaluation tells us only how the two methods compare with each other on the given test

collection. Ideally, we would like to know which of the two methods is better in general, and by

how much, for all possible collections of documents, topics, and relevance assessments.

Statistical analysis may be used to estimate how well an evaluation result predicts a system’s

performance beyond the particular test collection used to measure it. When we report AP for a

particular topic or MAP over a set of topics, we are tacitly asserting that similar results would

be achieved on other topics, because the intended purpose of the system surely extends well

beyond these specific evaluation topics. Without statistical analysis, however, it is difficult to

argue that the assertion holds or that measured results reflect how well the system fulfills its

intended purpose.

Statistical analysis may be used to yield either an estimate of the precision of a quantitative

measurement (e.g., “How good is method A?” or “How much better is A than B?”) or an

estimate of the force of evidence supporting a particular hypothesis (e.g., “Method A is better

than method B!”). The traditional hypothesis test, which occupies many pages of experimental

methodology books, declares a result to be statistically significant when the force of evidence

exceeds an arbitrary threshold. Such a test yields strictly less information than a quantitative

estimate of the force of evidence and is easily misinterpreted. Hypothesis tests have lost favor in

fields such as medicine (Gardner and Altman, 1986). In the IR literature, statistical estimates

and hypothesis tests are commonly absent or misapplied. We hope to influence this practice for

the better.

This section is long, reviewing a range of foundational material and discussing its application

to the evaluation of IR methods. Although you may be familiar with much of the foundational

material, we take a viewpoint different from those traditionally taken by the mathematical or

applied statistics literature. We consider the role of statistics in the scientific method, as opposed

to statistics for its own sake or statistical tests that are applied as an afterthought, often for no

reason other than to fulfill a condition of publication.

If statistics is a distant memory, and you wish to avoid digging through this material, you can

skip or skim the remainder of this section (all the way to page 441). The “bottom line” of this

material is essentially as follows: (1) establish an appropriate baseline for your IR experiment;

(2) compare the effect of an alternative method or technique against this baseline; (3) report the

12.3 Using Statistics in Evaluation 413

magnitude of the difference, considering whether or not this magnitude will have any meaningful

impact on users; and (4) report a measure of statistical confidence, such as a a p-value or

confidence interval. For the last step a paired t-test is usually an acceptable choice.

12.3.1 Foundations and Terminology

In some sense, effectiveness measurements in IR evaluation are quite similar to physical measure-

ments. Suppose that one of the authors of this book wants to determine his own height for the

purpose of ordering a suit. He uses a ruler and measures it to be 5 feet 8 inches. Just to be sure

he measures it again using a tape, obtaining the result 173cm. After making an exact conversion

to a common unit, he gets values of 1727.2mm and 1730mm, respectively. Confused, he mea-

sures more precisely with the ruler and comes up with 5 feet 8 3
8 inches (exactly 1736.725mm).

Is one of the measurements wrong? What is the author’s true height? The answers are “No, the

measurements agree as well as would be expected, given the technique of using a ruler or tape,”

and “It doesn’t matter, because he’ll get the same size suit regardless.” Statistical methods help

us answer questions like these.

If a more precise answer is required, he might average the measurements on a calculator to

arrive at 1731.308333mm. If enough independent measurements are averaged, he can come up

with a very precise estimate of his height but never one precise enough to justify reporting it

to ten figures as shown, because our common understanding of a person’s height breaks down

under such close inspection. Should we measure the person’s height in the morning or the

evening, wearing heavy clothing or not? Does height include hair? It is utterly pointless to try

to measure more precisely than our understood definition of height. Nevertheless, the notion of

“true height” is a useful abstraction in characterizing the precision of our estimate; that is, to

address the question “How close is the estimate to the true value?” For this purpose it is useful

to define “true height” as the average of an infinite number of measurements that differ from

each other only by chance. We may then think of the amount by which individual measurements

differ from the true value as random error. Random error contrasts with systematic error, or

bias, which might occur, for example, if the tape measure becomes stretched from overuse.

Precision of measurement2 is the degree to which a measurement is free from random error.

Validity is the degree to which the measure itself truly reflects what it is intended to measure (in

our case, overall retrieval effectiveness). Our concern in this section is, in particular, the precision

of measurement afforded by information retrieval experiments. If an experiment measuring an

IR system’s effectiveness were to be repeated using exactly the same technique but different

topics, documents, or relevance assessments, how similar would the result be? Is it possible,

without actually repeating the experiment, to predict this degree of similarity? Although these

questions are largely amenable to statistical inference, they may be understood only in the

2 Precision of measurement is known simply as precision in the statistics literature. When necessary for
clarity, we use the longer name to distinguish it from the IR effectiveness measure.

Chapter 12 Measuring Effectiveness414

context of a general investigative framework that includes questions of validity that are not

necessarily statistical. Instead they are addressed by the tools of scientific inquiry — observation,

induction, deduction, and experiment.

The notion of population is central to any discussion of statistical analysis and has been the

subject of historical and current philosophical debate (Lenhard, 2006). We adopt the notion of

an infinite hypothetical population, which is due to Ronald Fisher (Fisher, 1925):

If, in a Mendelian experiment, we say that the probability is one half that a mouse born

of a certain mating shall be white, we must conceive of our mouse as one of an infinite

population of mice which might have been produced by that mating. The population

must be infinite for in sampling from a finite population the fact of one mouse being white

would affect the probability of others being white, and this is not the hypothesis which

we wish to consider; moreover, the probability may not always be a rational number.

Being infinite the population is clearly hypothetical, for not only must the actual number

produced by any parents be finite, but we might wish to consider the possibility that the

probability should depend on the age of the parents, or their nutritional conditions. We

can, however, imagine an unlimited number of mice produced upon the conditions of our

experiment, that is, by similar parents, in the same age, in the same environment. The

proportion of white mice in this imaginary population appears to be the actual meaning

to be assigned to our statement of probability. Briefly, the hypothetical population is

the conceptual resultant of the conditions which we are studying. The probability, like

other statistical parameters, is a numerical characteristic of that population.

With respect to the author’s height, we are concerned with the outcome of using a ruler or

tape to measure it. The population of immediate interest is the set of similar measurements

(not, as one might casually think, the set of similar authors). With respect to IR evaluation, the

outcome of interest is some effectiveness measure, such as MAP or P@k, applied to a system

(or perhaps the difference in MAP or P@k between two systems), and the population is the

set of similar measurements. We characterize the set of similar measurements as those resulting

from experiments using exactly the same method but different documents, topics, or relevance

assessments. The different documents, topics, and relevance assessments themselves represent

hypothetical populations: the topics that might be presented to a system, the collections of

documents from which the system may be expected to retrieve relevant documents, and the set

of relevance assessments.

As with height we characterize “true effectiveness” as the average of all possible measurements.

Also as with height the notion of effectiveness is necessarily inexact, as manifested by our

inability to specify these populations exactly. Working definitions might be “all topics like those

presented to an adhoc IR system, past, present, and future”; “all documents presented to a

filter, past, present, and future”; “all assessments of the relevance of a particular document to

a particular topic, past, present, and future.” Because these populations, in part, have yet to

exist, they certainly cannot be enumerated for the purpose of measurement.

12.3 Using Statistics in Evaluation 415

Instead of trying to enumerate a hypothetical population, we use readily available data and

observations (e.g., in the form of the topics, documents, and qrels in a TREC collection) and

treat them as being drawn from the hypothetical population “all data like that which we col-

lected”. This hypothetical population is known as the source population, as opposed to the actual

(but intangible) population of interest, which is known as the target population. The source

population approximates the hypothetical target population. The better the approximation,

the better a measurement using the source population will reflect a hypothetical measurement

using the target population. The accuracy of the measurement may be thought of as having

three separate aspects: the precision of the measurement; the validity of the measurement with

respect to the true value as defined by the source population; and the validity of the measure-

ment with respect to the target population. The two forms of validity are known as internal

validity and external validity, respectively. External validity is also known as transferability or

generalizability.

Statistical inference is concerned exclusively with precision and internal validity; that is, how

good is the measurement with respect to the true value as defined by the source population?

External validity is established not by statistical inference but by scientific inquiry in which (a)

characteristics are identified that differ between the source population and the target population

and may affect external validity; (b) a new source population is identified which differs in these

characteristics; (c) effectiveness is measured with respect to the new source population; (d)

the effect of the difference is assessed. For example, the original TREC collections consisted

mostly of newswire and similar articles and the topics concerned current events. The TREC

Web Track investigated the differences that might result from the use of Web pages and Web

queries instead. The idea is not to find the ultimate source population that best represents the

target population but to identify populations that illustrate possible differences. If the measured

outcomes are similar, our confidence in the external validity of both increases. If the measured

outcomes differ, the difference is worthy of further scientific investigation.

Any experimental technique has assumptions and limitations that affect its external validity.

Such limitations are not cause for us to discard a particular technique. Instead they should be

identified, and their impact assessed using the methods of scientific inquiry. The overall body of

evidence afforded by these experiments serves to increase our understanding of IR effectiveness

on an ongoing basis. This body of evidence may itself be treated as a population, and statistical

inferences may be drawn from it using a technique known as meta-analysis. Current best practice

in fields such as medicine involves meta-analysis, taking into account, for example, all known

results concerning the effect of a particular treatment.3

In IR evaluation, as in many disciplines, assessment of external validity presents a challenge.

For a laboratory experiment, which is our principal focus here, it may not be possible to obtain

a realistic test collection. For instance, most of the collections used at TREC are free of spam

(unwanted documents engineered by an adversary to appear relevant); the topics are usually

3 www.gradeworkinggroup.org

Chapter 12 Measuring Effectiveness416

Table 12.1 Effectiveness results and with 95% confidence intervals for selected retrieval methods discussed in
this book. The intervals were computed under the assumption that the topics were sampled from a hypothetical
population and that the measurement error followed a normal (i.e., Gaussian) distribution.

TREC45 (1998) GOV2 (2005)

Method P@10 MAP P@10 MAP

Cosine (2.2.1) 0.264 (0.19-0.34) 0.126 (0.09-0.16) 0.194 (0.13-0.26) 0.092 (0.06-0.12)

Proximity (2.2.2) 0.396 (0.30-0.49) 0.124 (0.08-0.17) 0.560 (0.48-0.64) 0.230 (0.18-0.28)

Cosine (raw TF) 0.266 (0.19-0.34) 0.106 (0.07-0.14) 0.282 (0.20-0.36) 0.097 (0.07-0.13)

Cosine (TF docs) 0.342 (0.27-0.42) 0.132 (0.10-0.17) 0.466 (0.37-0.56) 0.151 (0.11-0.19)

BM25 (Ch. 8) 0.424 (0.34-0.51) 0.178 (0.14-0.22) 0.534 (0.46-0.61) 0.277 (0.23-0.32)

LMD (Ch. 9) 0.450 (0.37-0.53) 0.193 (0.15-0.24) 0.580 (0.50-0.66) 0.293 (0.25-0.34)

DFR (Ch. 9) 0.426 (0.34-0.51) 0.183 (0.14-0.23) 0.550 (0.47-0.63) 0.269 (0.22-0.32)

composed for evaluation rather than being examples of information needs arising in any real

situation; the topics are often vetted using standard IR methods; and the topics’ title fields,

meant to be used as search queries, rarely contain misspellings. Moreover, even in cases in

which realistic examples of queries can be obtained, the intent of a given query is not always

obvious, and there is no guarantee that the relevance judgments are consistent with the user’s

information need. On the other hand, experiments with live systems and humans are logistically

difficult due to a number of considerations, not the least of which include privacy, interactions

between the experiment and user behavior, the difficulty of determining information need and

relevance, and the difficulty of controlling differences for the purpose of repeatability and system

comparison. The net effect is that live evaluations have their own limitations: They are very

expensive and time consuming, and typically yield imprecise results. That said, the statistical

precision estimation techniques described here may be used to estimate the precision of both

laboratory and live measurements.

12.3.2 Confidence Intervals

A confidence interval c = [l, u] is a range of values likely to contain the hypothetical “true

value” of an experimentally measured quantity m (such as P@k or MAP computed using a

particular test collection). “Likely” is quantified by the confidence level 1−α, where α is known

as the significance level. The “true value” t = E[M] is the expected value of M , a random

variable characterizing the possible values of m over all materially similar experiments that differ

only in their selection of examples from the subject population. Let C be a random variable

characterizing the possible values of c resulting from similar measurements. A confidence interval

with confidence level 1− α asserts that

Pr[t ∈ C] ≥ 1− α . (12.10)

12.3 Using Statistics in Evaluation 417

A confidence interval may be reported as a pair consisting of a lower confidence limit and an

upper confidence limit [l, u] that bound the interval or as a tolerance relative to the estimated

value (e.g., ±δ). The confidence level associated with the interval, typically 95%, must be stated.

Table 12.1 reproduces the results of the experiments reported in the first and the last columns of

Table 2.5 (page 72), augmenting each estimate with a 95% confidence interval computed using

the classical method detailed below. We see that for all results the confidence limits are about

±20% of the measured effectiveness.

Confidence intervals indicate the precision of the experimental technique used for measure-

ment. When the same technique is used repeatedly, the resulting intervals may be expected to

contain the true value with a frequency at least equal to the confidence level 1− α. That is, no

more than α of the confidence intervals would fail to contain the true value. Thus we expect

about 5% of the 28 intervals in Table 12.1 (i.e., about 1 or 2) could miss the mark. Without

additional information it is impossible to know which do miss the mark.

For a given confidence level 1− α, a measurement that yields a smaller confidence interval is

more precise. Precision of measurement depends on sample size, the measure that is estimated,

and the method used. The design of an experiment to measure IR system effectiveness involves

a trade-off among the size, cost, and practicality of measurement on the one hand, and precision

and validity on the other.

Calculating confidence intervals

In describing how to compute a confidence interval, we return briefly to Fisher’s mouse born of

a certain mating. The color of the mouse is either white or black, so the outcome is completely

characterized by

Pr[Color = white] = 1− Pr[Color = black] . (12.11)

If the outcome m of our experiment has many possible values, it is necessary to estimate Pr[M =

m] for all possible m. Such an estimate is a probability distribution. When m is a continuous

quantity, there is an infinite number of possible values. Such a distribution is characterized by

a probability density function. For computing confidence intervals we are interested not in the

distribution per se, but in the cumulative distribution characterized by the cumulative density

function

cdf(x) = Pr[M ≤ x] . (12.12)

The confidence interval is computed using an estimate of the distribution for M . The various

methods for computing confidence intervals differ in how they characterize and estimate this

distribution.

• Measurements of natural quantities are typically assumed to follow a normal dis-

tribution (also known as Gaussian distribution), with mean μ and variance σ2. The

Chapter 12 Measuring Effectiveness418

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-3 -2 -1 0 1 2 3

Number of standard deviations

Gaussian (normal) distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Number of standard deviations

Cumulative density function

Figure 12.1 Probability density and cumulative probability density for the Gaussian distribution with mean
μ = 0 and variance σ2 = 1.

probability density function for such a distribution is the Gaussian function

ϕμ,σ2(x) =
1

σ
√

2π
· e−

(x−μ)2

2σ2 , (12.13)

shown in Figure 12.1. The corresponding cumulative density function, also shown, is

Φμ,σ2(y) =

∫ y

−∞
ϕμ,σ2 (x) dx . (12.14)

The computation of Φ is complex and best left to mathematical software. Historically

the value of Φ has been determined by consulting statistical tables. Some values of Φ

are used so commonly, for reasons that will shortly become clear, that they are easily

recognized and remembered:

Φμ=0,σ=1(−1.96) ≈ 0.025 , Φμ=0,σ=1(1.96) ≈ 0.975 . (12.15)

• The binomial distribution arises from counting the number of positive results from a

set of independent tests known as Bernoulli trials, where the probability q of a positive

result is the same for every trial. For example, we observe the birth of N = 100 mice and

count the number n that are white. The parameters N , the number of trials, and q, the

fixed probability of a positive result, completely characterize the binomial distribution.

Given N and q, the probability of any particular value of n is simply(
N

n

)
· qn · (1− q)N−n . (12.16)

12.3 Using Statistics in Evaluation 419

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1 2 3 4 5 6 7 8

Number of positive outcomes (n)

Binomial distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

Number of positive outcomes (n)

Cumulative binomial distribution

Figure 12.2 Binomial distribution and cumulative distribution for N = 8, q = 0.5.

Because the values of n are discrete, the cumulative probability is a summation:

cdf(y) =
∑
n≤y

Pr[B = n] , (12.17)

where B is a random variable with the specified distribution (characterizing, in our exam-

ple, mouse births). The binomial and cumulative binomial distributions are illustrated

in Figure 12.2.

When classical statistics was developed in the early 20th century, computation was per-

formed by hand or with very simple calculators, and it was difficult to compute the

cumulative probability for typical values of N . Simpler approximations were developed

to mitigate computational effort. These methods remain in common use, although mod-

ern computers can compute the distribution exactly for almost any value of N that might

arise in practice.

One such approximation is worthy of note and finds application beyond simply reducing

computational effort. Given 0 	= q 	= 1, as N →∞ the binomial distribution approaches

a normal distribution with μ = N · q and σ2 = N · q · (1 − q). As a rule of thumb, if

σ2 > 10, the normal distribution may be considered a reasonable approximation of the

binomial. That is, it is important to have a reasonable sample size and a reasonable

number of positive and negative outcomes.

• The normal and binomial distributions are known as parametric distributions because

any particular one is completely characterized by a few parameters. Thus the problem of

estimating the distribution reduces to that of estimating the parameters. An empirical

distribution, on the other hand, is simply a multiset of observed values; for example, our

height measurements H = {1727.2, 1730, 1736.725} or the colors of some newborn mice

B = {black, white, white, black, white}. In an empirical distribution the probability of

Chapter 12 Measuring Effectiveness420

any value is its frequency, so for height we have

Pr[H = 1727.2] = Pr[H = 1730] = Pr[H = 1736.725] =
1

3
, (12.18)

and for mice we have

Pr[B = white] =
3

5
, Pr[B = black] =

2

5
. (12.19)

If the values are ordered, the cumulative probability is a simple summation; for instance,

Pr[H ≤ 1735] =
2

3
. (12.20)

More formally, an empirical distribution is characterized by a discrete multiset, or sample,

s of values, assuming that each element is equally probable. For a random variable X

with this distribution, we have:

Pr[X = x] =
|{i ∈ s | i = x}|

|s| . (12.21)

The cumulative probability is

Pr[X ≤ x] =
|{i ∈ s | i ≤ x}|

|s| . (12.22)

The mean and variance of the empirical distribution are given by the familiar formulae

μs =
1

|s| ·
∑
i∈s

i (12.23)

and

σ2
s =

1

|s| ·
∑
i∈S

(i− μs)
2 . (12.24)

The empirical distribution arising from measuring a natural phenomenon (such as the

height of humans) often resembles a normal distribution with the same parameters.

From distribution to confidence interval

In the hypothetical situation in which the mean μM of the distribution is known with certainty,

the problem of computing a confidence interval is moot: t = μM , so c = [μM , μM] with 100%

confidence. More illuminating is the situation (also hypothetical) in which all aspects of the

distribution except μM are known. Define E, a random variable characterizing measurement

error, such that M = t + E. The distribution of E is identical to that of M except for its

mean μE = 0. We first consider how the confidence interval is constructed, assuming that the

distribution is known except for t, and then how to estimate the distribution.

12.3 Using Statistics in Evaluation 421

For any a, b ≥ 0 such that

Pr[E > a] + Pr[E < −b] ≤ α , (12.25)

c = [m−a, m+b] is a confidence interval with confidence level 1−α. To see that this construction

meets the definition, observe that the experimentally measured value m is an instance of M , so

C = [M − a, M + b]. Rearranging the above inequality, we have

Pr[t + E > t + a] + Pr[t + E < t− b] ≤ α , (12.26)

Pr[M > t + a] + Pr[M < t− b] ≤ α , (12.27)

Pr[t < M − a] + Pr[t > M + b] ≤ α . (12.28)

Typically a and b are chosen such that a = b, yielding a symmetric interval around m. In some

circumstances a or b may be set to be a known limiting value such as 0 or∞, yielding a one-sided

or single-tailed interval.

Given an estimate of the distribution of E, calculating the confidence interval is straightfor-

ward. For a symmetric interval, which assumes the underlying distribution to be symmetric, we

find a = b such that

Pr[E < −b] ≤ α

2
. (12.29)

For an asymmetric distribution the quasi-symmetric interval is yielded by finding a and b such

that

Pr[E < −b] ≤ α

2
, Pr[−E < −a] ≤ α

2
. (12.30)

For the normal distribution these values are given directly by the inverse cumulative density

function Φ−1. For binomial and empirical distributions, appropriate values may be found by

using binary search.

Estimating the distribution

The overwhelming majority of reported IR results consider only that the topics vary from

measurement to measurement, with the documents and relevance assessments fixed. This

assumption — that the choice of topics represents the only source of chance — renders the

problem amenable to classical estimates of precision. More sophisticated estimation methods

are necessary to account for chance differences in documents or relevance assessments. Such

methods have been proposed for IR (Savoy, 1997; Cormack and Lynam, 2006; Voorhees, 2000),

but are not commonly used.

The estimation techniques we consider here assume that the individual documents, top-

ics, or relevance assessments used in a particular measurement are selected independently and

at random from a hypothetical infinite population of similar documents, topics, or relevance

assessments. For exposition, we assume that only one class (documents, topics, or relevance

assessments) differs from one measurement to the next, while the others are held constant. We

refer to the elements that vary as individuals (denoted i), to the set of individuals used in

Chapter 12 Measuring Effectiveness422

a particular measurement as a sample s, and to the population of individuals simply as the

population P .

Under the assumptions stated above, our measure m may be characterized as a function f

applied to the sample s:

m = f(s) . (12.31)

A sample from the set of all possible samples may be viewed as a uniformly distributed random

variable S, and M = f(S) as a dependent variable. At this point we make no assumptions about

f other than that it is a function in the mathematical sense: Its value depends on the sample

and nothing else.

Classical estimation

The classical approach imposes the assumption that f is the mean of some elementary function

g applied to each individual; that is,

f(s) =
1

|s| ·
∑
i∈s

g(i) . (12.32)

For example, if we consider the individuals to be topics, the assumption is met by f = MAP

and g = AP. When the classical assumption is not met, it may be possible to transform f into

an amenable pair f ′ and g′, using a bijective transfer function t:

f ′(y) = t(f(y)) , g′(x) = t(g(x)) . (12.33)

For example, GMAP is the geometric mean, rather than the arithmetic mean, of the sample

AP values. The logarithm is a suitable transfer function, so f ′ = log(MAP) and g′ = log(AP)

meet the assumptions. Transfer functions such as log and logit find common use among values

such as AP that fall within the range [0, 1]. An alternative is to use the binomial distribution

(see Section 12.3.6).

If f conforms to this assumption, the population mean E[g(P)] is synonymous with the

true value t = E[M] = E[f(S)] = E[g(P)]. The population distribution g(P) is assumed to

be normal with population variance σ2
g(P). The population standard deviation σg(P) is almost

always referred to simply as “the standard deviation”.

The sample s yields an empirical distribution {g(i) : i ∈ s} from which the (population)

standard deviation is estimated. This estimate is in turn used to compute the standard error

σE , and hence the confidence interval. A näıve approach is to use the empirical sample variance

as our estimate of the population variance σ2
s ≈ σ2

g(P). The error variance is then σ2
E = σ2

M =
σ2

g(P)

|s| ≈ σ2
s

|s| . Given this estimate of variance, confidence intervals may be computed using the

inverse normal distribution.

The näıve approach involves two approximation errors that manifest themselves for small

sample sizes. First, the sample variance is not the best estimate of population variance, as is

12.3 Using Statistics in Evaluation 423

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-3 -2 -1 0 1 2 3

Number of standard deviations

Student’s t-distribution

ν=∞
ν=8
ν=2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Number of standard deviations

Cumulative density function

ν=∞
ν=8
ν=2

Figure 12.3 Probability density and cumulative density for Student’s t-distribution with degrees of freedom
ν = 2, ν = 8, and ν =∞ (the t-distribution with ν =∞ is equivalent to the Gaussian distribution).

illustrated by the extreme case of a sample size |s| = 1. The empirical distribution s has variance

σ2 = 0, which is surely not a good estimate. In the vernacular, “sample size of 1” is a synonym

of “measurement of unknown precision”. For small |s| > 1, there is still a problem, as illustrated

by the case of |s| = 2. In this case, it is not hard to show that σs ≈ 1
2σg(P). Generalizing, we

arrive at the better estimate, familiar from introductory statistics texts:

σ2
P ≈

∑
i∈s(i− μs)

2

|s| − 1
. (12.34)

Note that this formula differs from that for σ2
s only in that the denominator is ν = |s| − 1

instead of |s|, where ν is the degrees of freedom.

A second approximation error derives from uncertainty in measuring σ2
s . The formula above

assumes that σ2
s is the “true” variance, in the sense of truth we have previously introduced. If

we use any particular value and the associated normal distribution Φ0,σ2
s
, the confidence interval

will reflect the error in σ2
s . For N = |s| > 30, the error is unlikely to be noticed, but for N ≤ 30 it

may be noticeable. The t-distribution developed by William Sealy Gosset, compensates for this

effect. Gosset published under the pseudonym The Student because he worked for the Guinness

brewing company, which considered his discoveries to be trade secrets. Student’s t-distribution

(Figure 12.3) is the average of all Φ0,σ2
s

weighted by the probability distribution of σ2
s with ν

degrees of freedom. That is, the t-score is an estimate of the “true” distribution in the same

sense of truth. Recall that sample size N = ν + 1.

The procedure for computing confidence intervals is identical to that of the näıve method,

except that the cumulative t-distribution with ν = N − 1 is used instead of Φ. Like Φ the

computation of t is best deferred to mathematical software. Unless otherwise stated, reported

results and statistics packages may be assumed to use this classical estimation method. For

N ≤ 30, the t-distribution should be used; for N > 30, Φ is fine.

Chapter 12 Measuring Effectiveness424

Bootstrapping

The bootstrap (Efron and Tibshirani, 1993) is a method for simulating an empirical distribution

modeling f(S) by sampling the sample s. Because “sampling the sample” is somewhat awkward

sounding, the process is referred to as resampling. Although the bootstrap can emulate the

results of classical estimation, it is not bound by its assumptions about f or the population

distribution, and is therefore applicable in situations in which the classical method is not.

The process of resampling is very simple: We treat the sample s as a surrogate for the source

population. We then generate a multiset R = {rj | 1 ≤ j ≤ k} of independent and identically

distributed samples of s, each the same size as s (|rj | = |s|) is created. The independence

condition implies that some individuals from s might be repeated in some rj , whereas others

might be absent. That is, individuals in rj are drawn from s with replacement. The assumption

is that repeated individuals act as surrogates for other members of the hypothetical infinite

population that are indistinguishable in the computation of f . For example, in counting white

and black mice it would make no difference whether we counted a particular black mouse ten

times or ten different black mice once.

Once R is created, confidence intervals may be computed from the empirical distribution

f(R) in one of two ways:

1. By estimating σM = σf(S) ≈ σf(R) and using the cumulative normal distribution Φ as

described above

2. By computing a very large number of auxiliary samples (|R| � 100) and using the

cumulative empirical distribution directly (that is, Pr[f(S) < x] ≈ Pr[f(R) < x]).

12.3.3 Comparative Evaluation

Let us return to our main goal of measuring the effectiveness of IR methods and generalize the

results using statistical inference. In practice we are often interested not so much in measuring

the effectiveness of a system in isolation as we are in comparing it with others. The results and

confidence intervals shown in Table 12.1 (page 416) give us a general impression of the relative

performances of the individual methods listed in the table. However, with the exception of

Cosine with raw TF (Section 2.2.1), which is clearly outperformed by the three methods at the

bottom of the table, these results do not allow us to infer with confidence that any particular

method is better than any other.

Let mA be the measured effectiveness of system A and mB the measured effectiveness of

system B. Provided mA and mB are measured under similar conditions, mA > mB may be taken

as evidence that A is more effective than B. But it gives no indication of the following:

• How much more effective is A than B?

• Is the difference substantive?

• How strong is the evidence that the difference is substantive?

12.3 Using Statistics in Evaluation 425

Table 12.2 Pairwise comparisons of MAP results for various ranking functions,
along with 95% confidence intervals and p-values indicating the significance levels of
the individual differences.

TREC45 (1998)

Method A Method B MAPA−B (95% c.i.) p-value

LMD DFR 0.010 (-0.002 - 0.021) 0.09

DFR BM25 0.005 (-0.004 - 0.013) 0.29

BM25 Cosine (TF docs) 0.046 (0.018 - 0.075) 0.002

Cosine (TF docs) Cosine 0.006 (-0.021 - 0.033) 0.66

Cosine Proximity 0.002 (-0.036 - 0.040) 0.92

Proximity Cosine (raw TF) 0.018 (-0.021 - 0.056) 0.36

A measure of the difference, mA−B = mA − mB, addresses the first question, whereas the

second is addressed by considering how large a difference is necessary to distinguish A from

B within the context of its intended purpose. For example, when comparing the height of two

people, it is hard to imagine a situation in which a difference of less than 1mm would matter,

so we would consider any such difference insubstantive. If we measured carefully enough, we

could perhaps determine the difference between two people whose height differed by less than

1mm, but the conclusion that “A is taller than B” would be incorrect for most purposes. The

third question — regarding the strength of the evidence — is addressed by a confidence interval

for the measured difference. If the confidence interval contains only substantive differences, we

may conclude with confidence 1 − α that A is substantively better than B. If it contains only

insubstantive differences, we may conclude with confidence 1 − α that A is insubstantively

different from B. If it contains both substantive and insubstantive differences, the proportion

reflects the balance of probability.

Table 12.2 shows the results of comparing systems from Table 12.1, ranked by MAP for

TREC topics 351–400. The differences between consecutively ranked systems are given, with

confidence intervals and p-values estimated using the classical method discussed below.

Significance

The strength of the evidence is sometimes expressed as statistical significance or, more com-

monly, significance. “Significant difference” means that the 1 − α confidence interval does not

contain 0; that is, it indicates strong evidence that there is some difference, regardless of whether

or not the difference is substantive. Without an estimate of the difference or substantiveness,

significance alone conveys little useful information. Significance does not imply substantiveness:

A “significant” measurement may be strong evidence of insubstantiality, or strong evidence of

substantiality, or neither.

Chapter 12 Measuring Effectiveness426

P-values

An alternative to reporting a confidence level with some fixed significance level α (typically

0.05) is to report a significance estimate or p-value. For a given measurement p is the smallest α

such that the result is significant with significance level α. Put another way, it is the α value for

the largest confidence interval that does not include 0. Coupled with a measure of the difference

mA −mB, the p-value simply recasts the same precision estimate afforded by the confidence

interval. The confidence interval holds α constant and computes the size of the interval; the

p-value computes α for a specific interval that includes mA − mB and is bounded by 0 on

one side. Confidence intervals and p-values are computed using exactly the same cumulative

probability estimate. There is no harm in reporting both, because they provide different views of

the same precision estimate. A p-value should never be reported without a quantitative estimate

of mA −mB for the reasons illustrated above (and expanded upon in the next section).

Although p-values are commonly applied to differences, p may be computed for any measure-

ment m. A two-sided p-value is the significance level α for the symmetric or quasi-symmetric

confidence interval c = (0, x] or c = [x, 0), whichever contains m. For a symmetric interval we

have x = 2m. The difference mA−B necessarily yields a symmetric interval, provided A and B

are selected independently from a common population.

A one-sided p-value presupposes that t ≥ 0 (i.e., it assumes that the “true” value of the effect

being measured is greater than 0) and chooses α such that c = (0,∞]. In general (assuming

the underlying distribution is symmetric or quasi-symmetric), the two-sided p-value is exactly

double the one-sided p-value for the same experiment. It is important to note whether a p-value

is one-sided or two-sided, and it is important that one-sided p-values be used only when the

hypothesis that t ≥ 0 is explicitly formulated prior to the measurement. Once m, the outcome

of the measurement, is known, it is too late to form such a hypothesis. In particular, if A and

B are selected at random from a common population, it is never appropriate to use a one-sided

p-value to estimate the significance of mA−B.

Despite these problems, one-sided p-values can be useful in assessing substantiveness. Con-

sider the situation in which we wish to determine whether or not tA−B > δ, where δ is the

minimum amount we consider substantive. The one-sided p-value for t′ = tA−B − δ allows us

to assess whether the evidence that A is substantively better than B is significant.

The methodology presented here is well established in fields such as medicine. The measured

difference is referred to as effect size, and substantiveness is known as substantive significance

or clinical significance. In medicine, results are no longer publishable unless the hypothesis and

predicted outcome, along with methods and measures to test the outcomes, are submitted to

a public registry prior to conducting the experiment (De Angelis et al., 2004). This standard

helps assure that hypotheses and the methods to test them are sound and subject to review.

The collective body of evidence, materialized in the registry, grows more compelling with every

experiment.

12.3 Using Statistics in Evaluation 427

12.3.4 Hypothesis Tests Considered Harmful

As illustrated in the previous section, a measure of the difference between systems, coupled with

an estimate of the precision of that measurement (e.g., in the form of a confidence interval),

provides much more insight than an estimate of whether or not the difference is “significant

with significance level α” for some arbitrarily chosen α. The use of such an estimate, known as

a hypothesis test, should be avoided and is no longer accepted practice in fields such as medicine.

Hypothesis tests arise from the misinterpretation of a philosophical debate nearly a century

ago between Ronald Fisher and Karl Pearson, pioneers of modern statistics. The basic idea

is sound: Before performing any measurement, you should decide what you are looking for.

Call your shot, so to speak. More formally, the scientific method, espoused by the influential

philosopher of science Karl Popper, demands that you form a falsifiable research hypothesis,

then use this research hypothesis to predict an event that is unlikely if the hypothesis is untrue.

If the event occurs as predicted, confidence in the research hypothesis is increased. It is always

possible that the event occurs for some reason other than the hypothesis being true; α is an

estimated upper bound on the probability that the event occurs by chance.

The research hypothesis is often called the alternative hypothesis, denoted HA. The alternative

hypothesis stands in opposition to the null hypothesis, denoted H0, which supposes that the

predicted event e occurs by chance. A significant result asserts that

Pr[e |H0] ≤ α . (12.35)

The all-too-common abuse of hypothesis tests derives from several factors:

1. Assumption of the vacuous hypothesis that tA 	= tB (i.e., tA−B 	= 0). The difference

tA−B is typically a real number with a continuous distribution, so Pr[tA = tB |A 	=
B] ≈ 0. That is, H0 is false by definition. All you need is an experiment with enough

precision of measurement to show it.

2. A better alternative hypothesis is that tA > tB, which at least gives the null hypothesis

H0 ≡ tA ≤ tB a fighting chance. But it is all too common to measure mA and mB first,

then to form the hypothesis based on observing mA > mB and to claim significance

based on a single-tailed test. Such a claim is deceptive, because it in fact tests the com-

pound hypothesis mA > mb ∨mA < mB, which is equivalent to our vacuous hypothesis

mA 	= mB, under-reporting α by a factor of 2. This is not to say that the inappropri-

ate use of a single-tailed test is repaired by doubling α: Without the prior hypothesis

tA > tB, the single-tailed test is fundamentally useless, just like the two-tailed test. The

result of bad science cannot be repaired by any simple adjustment.

3. The verdict of “significant” or “not significant” relative to the fixed significance thresh-

old α gives no indication of the weight of the evidence or, in the case of “not significant”,

even the polarity of the evidence. That is, whether it is evidence, albeit weak evidence,

supporting or falsifying the alternative hypothesis.

Chapter 12 Measuring Effectiveness428

4. Beyond the fact that a categorical verdict (“significant” or “not significant”) fails to

communicate information that is derivable from its underlying precision estimate, it is

susceptible to many specious interpretations that are commonplace:

• It is incorrect to conclude that a significant result proves the alternative

hypothesis.

• It is incorrect to conclude that a significant result shows that the alternative

hypothesis is true with probability ≥ 1− α.

• It is incorrect to conclude that a significant result shows that the null hypothesis

is false with probability ≥ 1− α.

• It is incorrect to conclude that a nonsignificant result is evidence against the

alternative hypothesis.

• It is incorrect to conclude that a nonsignificant result yields no evidence in favor

of the alternative hypothesis.

• It is incorrect to disregard nonsignificant results in forming an overall evaluation

of an alternative hypothesis.

• It is incorrect to use significance as an estimate of the effect size.

• It is incorrect to use significance as an estimate of substantiveness of the result.

The correct use of hypothesis tests is to avoid categorical statements of significance altogether.

A measure of the difference, coupled with a confidence interval or quantitative estimate of sig-

nificance (p-value), provides strictly more information. Unfortunately, a large body of published

IR research exists that reports the outcome of a hypothesis test, but no p-values or confidence

intervals. When trying to interpret such results, some information may be salvaged:

• Look for an estimate of the magnitude of the difference, then determine whether this

difference, if true, is substantive. If separate measurements are available, an estimate of

the difference may be obtained by simple subtraction.

• Determine the number u of discarded nonsignificant results from the same study or

experiment. Apply a Bonferroni correction to yield p < (u + 1) · α. This correction

assumes the hypothesis H that any of the u + 1 results is true, so H0 is that none

of them are. Assuming H0 to be true, each result may be deemed “significant” with

probability α. The combined probability of some result being “significant” therefore may

be as high as

1− (1− α)u+1 ≈ (u + 1) · α, (12.36)

for small α. Hence, the collective weight of evidence for H is p < (u + 1) · α. If many

of the results are significant, or if the results are correlated (as in the case of related

measures or the paired differences among ranked results), more sophisticated methods,

such as the Bonferroni-Holm correction (Holm, 1979), may yield a tighter estimate.

12.3 Using Statistics in Evaluation 429

12.3.5 Paired and Unpaired Differences

The näıve way to measure mA−B is to compute mA and mB separately, and then to calcu-

late mA−B = mA −mB . The precision of mA−B may be estimated from separate parametric

estimates for mA and mB by summing the variances of their error distributions:

σ2
EA−B

= σ2
EA

+ σ2
EB

. (12.37)

A rough estimate of the two-tailed p-value may be obtained from the measurements and their

corresponding 1 − α confidence intervals mA, cA, mB, and cB. If mA ∈ cB or mB ∈ cA, we

know that p� α. If cA ∩ cB = ∅, we know that p
 α. Given cA and cB, we may estimate the

standard error σEA
and σEB

for each from their sizes, effectively reversing their computation.

As a rule of thumb, if |cA ∩ cB| < 1
2
√

2
|mA −mB| (that is, the intervals overlap less than 1

3 of

the distance between mA and mB), we may assume that p < α. More precisely, if the size of

each interval is divided by
√

2, these smaller intervals touch but do not overlap when p = α.

The paired-difference method takes advantage of the standard assumption (Section 12.3.2)

that mA and mB are both means over the same sample s; that is,

mA = fA(s) =
1

|s| ·
∑
i∈s

gA(i) , (12.38)

mB = fB(s) =
1

|s| ·
∑
i∈s

gB(i) . (12.39)

Under this assumption the difference may be computed in two different ways, yielding estimates

mA−B and m′
A−B, which are identical for the sample s but which have error terms E and E′

with different distributions.

mA−B = fA(s)− fB(s) =
1

|s| ·
∑
i∈s

gA(i)− 1

|s| ·
∑
i∈s

gB(i) =
1

|s| ·
∑
i∈s

gA−B(i) , (12.40)

m′
A−B = f(s) =

1

|s| ·
∑
i∈s

(gA(i)− gB(i)) =
1

|s| ·
∑
i∈s

gA−B(i) , (12.41)

where gA−B(x) = gA(x)− gB(x).

In most situations gA(i) and gB(i) are strongly positively correlated, so although m′
A−B =

mA−B, the variance of the error is substantially smaller:

σ2
E′ ≈

σ2
gA−B(s)

|s| − 1

 σ2

E ≈
σ2

gA(s) + σ2
gB(s)

|s| − 1
. (12.42)

The paired-difference method yields much tighter confidence intervals for the same α, and a

much smaller p-value for the same difference.

Chapter 12 Measuring Effectiveness430

Table 12.3 Comparing BM25 and LMD on TREC topics 351–358. mBM25 and mLMD denote the
measured effectiveness (AP) of the respective method on each of the eight topics. mBM25−LMD

denotes the per-topic difference, which underlies the t-test. The rows labeled wAB and rAB give
the win rate and signed-rank surrogate measures underlying the sign test and the Wilcoxon test
respectively.

Topic ID 351 352 353 354 355 356 357 358

mBM25 0.343 0.040 0.223 0.114 0.078 0.012 0.294 0.134

mLMD 0.409 0.045 0.311 0.105 0.149 0.019 0.311 0.105

mBM25−LMD −0.066 −0.005 −0.088 +0.009 −0.071 −0.007 −0.017 +0.029

wAB 0 0 0 1 0 0 0 1

rAB −6 −1 −8 +3 −7 −2 −4 +5

12.3.6 Significance Tests

Table 12.3 shows an example measurement result that will guide us through three classical

methods of computing p-values for paired differences: the t-test, the sign test, and the Wilcoxon

signed-rank test. In general a p-value for a difference is computed in much the same way as a

confidence interval for the difference: by estimating the cumulative error probability and using

it to solve for p. For one-sided significance

p = Pr[EA−B ≥ mA−B] (12.43)

where, as before, EA−B is the error of the measurement, and for two-sided significance

p = Pr[|EA−B | ≥ |mA−B|] . (12.44)

That is,

p = Pr[EA−B ≥ |mA−B|] + Pr[EA−B ≤ −|mA−B|] . (12.45)

From these formulations it is apparent that the one-sided p-value is the probability that chance

accounts for a positive difference at least as large as the measured value mA−B, and the two-

sided p-value is the probability that chance accounts for any difference whose magnitude is at

least as large as mA−B. It is further apparent that the two-sided p-value is double the one-sided

p-value for a symmetric distribution, as is common for the distribution of the difference between

two similar measurements.

The t-test

The näıve method of computing the variance of EA−B (Equation 12.37) may be used to compute

p-values as described above. This method is useful for combining results when the raw data are

not available or when the measure is not a sample mean. But if mA and mB are sample means,

and if the empirical distributions over which they are means are available (as in Table 12.3),

12.3 Using Statistics in Evaluation 431

Table 12.4 Summary statistics and test outcomes derived from the individual system compar-
isons in Table 12.3. The individual means and distribution estimates are given for reference. The
näıve method, unpaired t-test, and paired t-test estimate the precision of the difference using the
t distribution and different variance estimates. The sign test uses the win rate and the binomial
distribution. The Wilcoxon test uses the signed-rank sum and the corresponding t-distribution.
Precision estimates, where meaningful, are given as 95% confidence intervals and as p-values
(two-sided).

Measure Error distribution Estimate Test p-value

mBM25 t (ν = 7, σ = 0.12) 0.155 (0.05, 0.26)

mLMD t (ν = 7, σ = 0.14) 0.182 (0.06, 0.30)

mBM25−LMD t (ν = 7, σ = 0.18) −0.027 (−0.4, 0.33) Eq. 12.37 0.9

mBM25−LMD t (ν = 14, σ = 0.07) −0.027 (−0.17, 0.11) unpaired t 0.7

mBM25−LMD t (ν = 7, σ = 0.015) −0.027 (−0.06, 0.01) paired t 0.1

wBM25−LMD binomial (N = 8, q = 0.5) 0.25 (0.03, 0.65) sign 0.3

rBM25−LMD Wilcoxon T (N = 8) −20 Wilcoxon 0.2

they may be combined to yield a better estimate of σ2
EA−B

and hence a smaller p-value. The

(unpaired) t-test effectively computes the mean of the union of the two distributions, comple-

menting the values corresponding to mB. The resulting empirical distribution is doubled in size

(assuming equal sample sizes), nearly halving the σ2
EA−B

and doubling the number of degrees of

freedom νEA−B
over the näıve method. The resulting parameter estimates and p-values may be

compared in Table 12.4. The net effect is that the näıve method’s p = 0.9 is reduced to p = 0.7

by the t-test.

The paired t-test uses exactly the method of paired differences detailed in Section 12.3.5. If

the conditions for its use are met, it almost certainly will yield a better estimate of precision

than the unpaired t-test (for Table 12.4, p = 0.1). For this reason, the paired t-test is one of

the commonest tests in IR.

The t-test and paired t-test rely on the assumption that the error E is normally distributed.

When m is the mean of a large sample, this assumption is reasonable, because the central limit

theorem states that the mean of N independent variables with the same (but not necessarily

normal) distribution and variance σ <∞ approaches a normal distribution with variance σ
N as

N approaches infinity.

The only reasons not to use the t-test are that m is not a sample mean or that N is too

small to yield a good approximation of the normal distribution. In most of these circumstances

the bootstrap provides a viable alternative. The reason that the bootstrap is absent from the

the classical list of named tests is that although methods like it are ancient, its use as a formal

statistical tool is relatively new; perhaps because it is too computationally intensive to have

been considered practical when the classical tests were developed.

Chapter 12 Measuring Effectiveness432

The sign test and the Wilcoxon signed-rank test

Instead of mA−B, the sign test and the Wilcoxon test use a surrogate measure m̂A−B ≈ tA−B,

where ≈ is interpreted quite loosely as

Pr[sgn(m̂A−B) = sgn(tA−B)] � 0.5 . (12.46)

For this reason these tests are more applicable to their historical role of hypothesis testing than

to estimating the magnitude of the difference. They quantify the degree of evidence that a

difference exists but yield marginal insight into the magnitude of the difference. Although the

sign test and the Wilcoxon test measure the wrong quantity, so to speak, they may be applicable

when the assumptions of the paired t-test are not met.

For a sign test, the underlying measure is in its own right a measure, albeit a different one,

of the relative effectiveness of IR systems. It is the win rate

wAB =
|{i ∈ s | gA−B(i) > 0}|
|{i ∈ s | gA−B(i) 	= 0}| , (12.47)

for gA−B defined previously. The meaning of wAB > 0.5 is that A is more effective than B in

more than half of all measurements. A suitable surrogate measure is easily derived from wAB:

m̂A−B = wAB − 0.5 . (12.48)

The random variable WAB , of which wAB is an instance, has a binomial distribution with

parameters N = |s| and q = tAB = E[WAB], the true win rate. The distribution of the error

term EAB = WAB− tAB depends heavily on the unknown tAB. To estimate a one-sided p-value,

we assume the worst case and choose tAB so as to maximize

p = Pr[tAB + EAB ≥ wAB] . (12.49)

It is not difficult to show that tAB = q = 0.5 maximizes p, which is the result of the one-sided

sign test. For a two-sided test we double the result.

We note that wAB = 0 and wAB = 1 are special cases for which a one-sided p-value is

appropriate, even when two-sided values are used otherwise. This is because wAB < 0 and

wAB > 1 are known in advance to be impossible. When confidence intervals are used, the

one-sided interval should be calculated to yield the specified confidence level 1− α.

For the eight topics in Table 12.3, there are two topics with mBM25−LMD > 0 and six topics

with mBM25−LMD < 0, so wAB = 0.25 and m̂A−B = −0.25. From the binomial distribution with

N = 8 and q = 0.5, we have

p = Pr[|E| ≥ | − 0.25|] = 2 · Pr[WAB ≤ 0.25] ≈ 0.3 . (12.50)

12.3 Using Statistics in Evaluation 433

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-30 -20 -10 0 10 20 30

Signed rank difference

Wilcoxon T distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

-30 -20 -10 0 10 20 30

Signed rank difference

Cumulative Wilcoxon T distribution

Figure 12.4 Wilcoxon T signed-rank sum distribution and cumulative distribution for N = 8.

The Wilcoxon test uses as a surrogate for mA−B the signed-rank difference

rAB =
∑
i∈s

rnk(gA−B(i)) · sgn(gA−B(i)) , (12.51)

where rnk(x) = |{i | x ≤ gA−B(i)}|, under the simplifying assumption that gA−B(i) 	= gA−B(j),

if i 	= j. Relaxing this assumption introduces surprising complexity into the analysis, but for

practical purposes it often makes sense to break ties at random or to assign the average rank:

rnk(x) =
1

2
+

1

2
· |{i | x = gA−B(i)}|+ |{i | x < gA−B(i)}| . (12.52)

The test models the assumption that the relative magnitude of the differences matters

(although not their exact values) and that, for instance, mBM25−LMD = −0.066 (topic 351)

is more important than mBM25−LMD = +0.009 (topic 354). It proceeds by sorting all differences

in increasing order of absolute value and assigning integer weights to them according to their

rank in the sorted list. For example, the difference for topic 352 receives weight 1 because it is

the smallest difference among the eight topics in the table, whereas the difference for topic 353

receives weight 8. The test then computes the sum of the weights, counting weights as positive

or negative, depending on the sign of the corresponding difference:

rAB = − 6 + 1− 8 + 3− 7− 2− 4 = −20 . (12.53)

The distribution of possible signed-rank differences for a given N is called the Wilcoxon T dis-

tribution (shown in Figure 12.4). The cumulative probability may be computed by enumerating

all 2N possible outcomes. For this example, of the 28 = 256 possible outcomes there are 50 of

magnitude 20 or larger. The Wilcoxon test therefore reports a p-value of 50/256 ≈ 0.2.

Chapter 12 Measuring Effectiveness434

A p-value based on a surrogate measure should be accompanied by an estimate of the true

difference. The writer should make clear which test was used, and the reader should be aware

that the actual difference estimate has unknown precision. In conjunction with a substantiveness

threshold δ, surrogate tests are more informative. A surrogate test that determines with high

confidence that mA−B > δ is more useful than a surrogate test that determines with high

confidence that mA−B > 0.

12.3.7 Validity and Power of Statistical Tests

The purpose of a statistical test is to estimate the likelihood that a particular measurement m

may be explained by chance. The test is valid if it estimates this likelihood as it is supposed

to, and is powerful if the estimate is small when the measurement is not in fact due to chance.

Together, validity and power characterize the test’s suitability for its intended purpose. Validity

is often simply assumed, and power is estimated using power analysis which itself assumes

validity. We consider the design of a meta-experiment to determine the validity and power of

statistical tests for the purpose of comparing IR systems.

Consider an IR experiment x = 〈Ax, Bx, s〉 that measures the difference in effectiveness

between systems Ax and Bx, using topic set s. Let mx be the measured difference according to

an effectiveness measure such as MAP. Let px or cx be the corresponding p-value or confidence

interval computed using some statistical test.

Let Xx = 〈Ax, Bx, S〉 be an independent experiment comparing the same two systems using

the same method and a different set of topics S, where |S| = |s|. Further, let Mx be the

difference between Ax and Bx measured using S. The true value tx of this difference is

tx = E[Mx] . (12.54)

The computation of px uses an underlying model Mx that approximates the cumulative

probability distribution of the error term Ex = Mx − tx:

Mx(e) ≈ Pr[Ex ≤ e] . (12.55)

If Equation 12.55 holds within a reasonable tolerance for all x and for all e, the p-value or

confidence interval derived from it is correct, and we say the statistical test is valid.

In general, tx is unknown, so validity must be established indirectly. Suppose we have X
[1]
x

and X
[2]
x which are independent copies of Xx. The corresponding measurements M

[1]
x and M

[2]
x

are identically distributed, as are the error terms E
[1]
x and E

[2]
x . Now consider the difference

Dx = E[1]
x − E[2]

x = (M [1]
x − tx)− (M [2]

x − tx) = M [1]
x −M [2]

x . (12.56)

Given a model M[1]
x derived from X

[1]
x , we may derive a model D[1]

x for Dx, and validate D[1]
x

by comparing it with the empirical distribution yielded by a meta-experiment. If D[1]
x (d) ≈

Pr[Dx ≤ d] for representative values of x and d, we may infer with high confidence that Dx,

and hence Mx, are valid for all x.

12.3 Using Statistics in Evaluation 435

Assuming the test to be valid, its power with respect to significance level α is

powerα = Pr[px ≤ α |H0] . (12.57)

For a two-tailed test H0 ≡ tx = 0, so power may be estimated empirically with respect to

a sample of experiments where tx 	= 0. Such a sample is well approximated by one in which

mx 	= 0 because it is extremely unlikely that tx = 0 when mx 	= 0 , and the possibility may be

discounted. For a one-tailed test, either H0 ≡ tx ≤ 0 or H0 ≡ tx ≥ 0 must be chosen beforehand.

Under the näıve assumption that tx ≥ 0 and tx ≤ 0 are equally probable, the one-tailed power

for significance level α is the same as the two-tailed power for significance level 2α.

Empirical estimates of power are useful for comparing the relative effectiveness of statistical

tests because a test that is more powerful than another over one population of experiments is

also likely to be more powerful over a different population. To predict the power of a particular

experiment, one must use power analysis to construct a modelMx from the assumed population

distribution, considering the number of topics |s|, the estimated true difference tx, and the

estimated sample variance σ2
s .

Measuring validity and power

As an example we used the results of the TREC 2004 Robust Track to represent a population

of experiments, each comparing two of the 110 runs submitted to the track using a subset of

the 249 topics to compute MAP. To compare the validity and power of the t-test, sign test, and

Wilcoxon test, we constructed pairs of similar experiments
〈
x[1], x[2]

〉
where x[1] =

〈
Ax, Bx, s[1]

〉
and x2 =

〈
Ax, Bx, s[2]

〉
; s[1] and s[2] are nonintersecting sets of 124 topics each, selected at

random without replacement from the 249 used in the track. The pairs were constructed so that

each distinct pair of runs occurred 32 times, for a total of 191, 840 examples. From these, 32

were eliminated because m
[1]
x = 0, leaving a total of 191, 808 pairs of experiments.

For each pair we constructed M[1]
x and from it derived D[1]

x , which was used to estimate

without reference to x2 the probability of discordance between m
[1]
x and m

[2]
x :

dx = Pr[m[1]
x ·M [2]

x < 0] ≈ D[1]
x (−|m[1]

x |) . (12.58)

Although it is not possible to validate any particular dx, if the method of computing dx is valid,

it must be the case over a large set of examples X that the predicted and actual discordance

rates are nearly equal:

d̂ =
∑
x∈X

dx ≈ d =

{
x ∈ X | m[1]

x ·m[2]
x < 0

}
|X| . (12.59)

Using M[1]
x , we computed the single-tailed p-value px and with it partitioned our 191, 808

examples into 6 bins. For the test to be valid, predicted and actual discordance must be nearly

Chapter 12 Measuring Effectiveness436

Table 12.5 T-test predicted discordance, observed discordance, and power as a function of p.
Error is the amount by which the ratio of the predicted and observed discordance differs from
1. RMS error summarizes the six error estimates.

Predicted Actual
Range Pairs Discordance Discordance Error

0.00 ≤ p < 0.01 131567 (68.6%) 676.5 781 -13.4%

0.01 ≤ p < 0.02 7153 (3.7%) 427.6 458 -6.6%

0.02 ≤ p < 0.05 10775 (5.6%) 1025.7 981 4.6%

0.05 ≤ p < 0.10 9542 (5.0%) 1433.2 1397 2.6%

0.10 ≤ p < 0.20 11436 (6.0%) 2592.4 2455 5.6%

0.20 ≤ p < 0.50 21335 (11.1%) 8182.5 7837 4.4%

RMS error: 7.1%

Table 12.6 Sign test predicted discordance, observed discordance, and power as a function
of p. Error is the amount by which the ratio of the predicted and observed discordance differs
from 1. RMS error summarizes the six error estimates.

Predicted Actual
Range Pairs Discordance Discordance Error

0.00 ≤ p < 0.01 125875 (65.6%) 675.0 822 -17.9%

0.01 ≤ p < 0.02 9318 (4.9%) 581.1 550 5.6%

0.02 ≤ p < 0.05 10068 (5.2%) 1009.9 965 4.6%

0.05 ≤ p < 0.10 9949 (5.2%) 1524.3 1402 8.7%

0.10 ≤ p < 0.20 10300 (5.4%) 2294.6 2107 8.9%

0.20 ≤ p < 0.50 26298 (13.7%) 10293.7 8063 27.7%

RMS error: 14.7%

equal for every bin. If they are not, the test is invalid. If they are, we may conclude with high

confidence that the test is valid for the ranges of p-values represented by the bins.

Tables 12.5 through 12.7 show the validation results for the t-test, sign test, and Wilcoxon

test. Each table shows the range of p, d̂p, and dp for each bin, along with prediction error as a

percentage:

errorp =
d̂− d

d
. (12.60)

RMS error summarizes prediction error over the six ranges:

RMS error =

√∑
p

error2
p . (12.61)

12.3 Using Statistics in Evaluation 437

Table 12.7 Wilcoxon signed-rank test predicted discordance, observed discordance, and power
as a function of p. Error is the amount by which the ratio of the predicted and observed
discordance differs from 1. RMS error summarizes the six error estimates.

Predicted Actual
Range Pairs Discordance Discordance Error

0.00 ≤ p < 0.01 137008 (71.4%) 655.2 981 -33.2%

0.01 ≤ p < 0.02 6723 (3.5%) 402.1 466 -13.7%

0.02 ≤ p < 0.05 10096 (5.3%) 956.6 1027 -6.9%

0.05 ≤ p < 0.10 8737 (4.6%) 1311.7 1382 -5.1%

0.10 ≤ p < 0.20 10267 (5.4%) 2320.1 2444 -5.1%

0.20 ≤ p < 0.50 18977 (9.9%) 7287.5 7609 -4.2%

RMS error: 15.3%

Overall, the predicted and actual discordance rates for the t-test are reasonable, though it

appears the test is optimistic for p < 0.01, yielding estimates 13.4% lower than the empirical

outcome. The sign and Wilcoxon tests are dramatically worse for p < 0.01 and for the other

ranges of p as well. Overall, the t-test gives the most consistently accurate predictions and the

lowest RMS error rate.

Table 12.8 shows RMS error as well as one-tailed power for α = 0.01 and α = 0.05 for the

three tests. The Wilcoxon test appears to have the highest power; however, this advantage is

offset by the fact that it is consistently too optimistic and therefore the true power is is not as

high as it appears: If the p-value were more accurate, the power would be lower. The sign test

has lower power and also higher error than the t-test.

Concerns that have been raised regarding the validity of the t-test are not supported by these

results; on the contrary, the lower error rate suggests that the t-test is the method of choice for

comparing IR systems.

Different sample sizes

The results in the example above pertain to experiments that measure the difference in MAP

scores over collections with n = 124 topics. To evaluate the effect of different choices of n on

the validity and power of the t-test, we alter the experiment so that X
[1]
x = 〈Ax, Bx, s〉 and

X
[2]
x = 〈Ax, Bx, S〉 where s and S contain different numbers of topics. We choose s to be a

subset of the 249 TREC topics, and S to be the remainder, so |s| = n, |S| = 249− n. In this

situation the distributions of E
[1]
x and E

[2]
x are not identical. Under the t-test model we have

μ
E

[1]
x

= μ
E

[2]
x

= 0, whereas

σ2

E
[1]
x

σ2

E
[2]
x

≈ n− 1

249− n− 1
. (12.62)

Chapter 12 Measuring Effectiveness438

Table 12.8 Validity versus one-tailed power of statistical
tests for comparing pairs of runs from the TREC 2004 Robust
Track, using difference in MAP over 124 topics. As shown in
Table 12.7, Wilcoxon systematically underestimates p-values
and thus overestimates power.

Apparent Power

RMS Error α = 0.1 α = 0.05

T-test 7.1% 0.69 0.78

Sign test 14.7% 0.66 0.76

Wilcoxon test 15.3% 0.71 0.80

Therefore, μDx
= 0 and

σ2
Dx

≈ (1 +
249− n− 1

n− 1
) · σ2

E
[1]
x

. (12.63)

Table 12.9 shows RMS error and power for various n in increments of 25. Note that the t-test

is generally valid for all values of n, with RMS error generally decreasing as n increases. It is not

surprising that RMS error increases somewhat for small n because the predicted discordance

is based on less information. It is similarly not surprising that RMS error increases for large

n = 225, because the small number of topics in S causes uncertainty in the calculation of actual

discordance. For n = 249, RMS error is undefined because |S| = 0. The RMS error results are

consistent with the validity of the t-test being invariant for 25 ≤ n ≤ 249. Although validity

remains invariant, power increases substantially with n, as expected.

12.3.8 Reporting the Precision of Measurement

A statistical test makes a well-defined, but commonly misunderstood, quantitative estimate of

the precision of measurement, expressed as a confidence limit or p-value. Thus, it augments but

does not replace the quantitative estimate itself. We regard confidence intervals as much more

appealing than p-values, because they include the same information but are more intuitive and

put the measurement front and center.

Hypothesis testing is never absolute, and hiding the measurement and precision estimates

behind a categorical declaration of “significant” or “not significant” is a mistake. The null

hypothesis of “no difference” yields no information. A proper hypothesis should predict a

nonzero difference that will be considered substantive; precision estimates quantify the force

of evidence that a measurement does or does not reflect such a difference.

It appears that the paired t-test, where possible, is the method of choice. In situations

where only win/loss results are available, the sign test works well enough. The Wilcoxon test is

not particularly intuitive and, although more powerful than the sign test and apparently more

powerful than the paired t-test, it can be spectacularly wrong for small p-values. The underlying

distribution does not arise naturally, and its variance is unbounded as sample size increases, so

12.3 Using Statistics in Evaluation 439

Table 12.9 Validity versus power for the t-test
using a varying number of topics n.

Power

n RMS Error α = 0.1 α = 0.05

25 11.4% 0.39 0.56

50 10.0% 0.53 0.67

75 6.5% 0.61 0.72

100 7.7% 0.65 0.76

125 6.8% 0.69 0.78

150 6.0% 0.71 0.80

175 3.9% 0.73 0.81

200 3.4% 0.75 0.83

225 9.2% 0.77 0.84

249 – 0.78 0.85

there is no such thing as a true (population) value of the surrogate difference: The central limit

theorem does not apply. Although the Wilcoxon test is often used in situations in which the

paired t-test does not apply, the bootstrap may be a better choice.

12.3.9 Meta-Analysis

Meta-analysis is the technique of combining several estimates into one, yielding an overall

estimate with greater confidence.4 A näıve approach simply applies the sign test (Section 12.3.6)

to a series of statistically independent experiments or measurements, each of which renders a

binary yes/no judgment. For example, if we form the hypothesis that A > B and conduct four

independent measurements that all show A−B > 0, no matter by how much, we may use the

one-tailed sign test to conclude that A > B (p < .06). The standard caveat applies to the use

of one-tailed tests. If we simply observe the same result four times out of four, without having

formed the prior hypotheses, the two-tailed test is appropriate, yielding the same conclusion

with lower confidence: A > B (p < .13). In general the sign test may be used to combine

the results of diverse experiments that compare the same things but for which effect sizes and

precision estimates are unavailable. The general approach — combining the results of separate

experiments to form a common result, with an associated precision estimate — is known as

meta-analysis. In fields such as medicine, where lives and vast sums of money are at stake,

systematic meta-analysis is de jure.

4 glass.ed.asu.edu/gene/papers/meta25.html

Chapter 12 Measuring Effectiveness440

Table 12.10 Meta-analysis of the MAP difference between LMD
(Equation 9.32) and DFR (Equations 9.51 and 9.52): MAPLMD−DFR.
The combined significance level of all experiments (0.02) is lower than
the significance level of each experiment alone.

Experiment MAPLMD−DFR p (two-sided t-test)

TREC 1998 0.010 (-0.002 - 0.021) 0.09

TREC 1999 0.009 (-0.006 - 0.025) 0.24

GOV2 2005 -0.004 (-0.027 - 0.020) 0.75

GOV2 2006 0.023 (-0.000 - 0.047) 0.05

Sign test > 0 - 0.13

Fixed-effect model 0.010 (0.002 - 0.018) 0.02

Fixed-effect model meta-analysis, as detailed below, is a much more powerful approach

because it harnesses the effect size and precision estimates of the individual studies — informa-

tion that is lost in the sign test — to yield a much more precise overall estimate. The first four

rows of Table 12.10 show the results of comparing LMD and DFR. Three of the four results

show LMD to be superior; the fourth shows the opposite. None of the results is significant

(α = 0.05). The reported p-value of 0.05 was rounded from 0.051. Hairsplitting aside, it would

be inappropriate to cherry-pick this result in the face of contrary evidence (albeit weak). The

sign test yields p ≈ 0.13, less than compelling evidence. The fixed-effect model, on the other

hand, gives an estimate of the difference along with a precision estimate indicating p ≈ 0.02.

The fixed-effect model combines a set of results R = {(mi, πi)} where each mi is an indepen-

dent measurement of a quantity with a common true value t and each πi is its precision. In our

example the quantity in question is MAPLMD−DFR over a perhaps more diverse hypothetical

population. Precision, in the context of meta-analysis, is typically expressed as the reciprocal

of the variance of the measurement:

πi = σ−2
i . (12.64)

Reciprocal of variance is just another method of conveying the same information as a confidence

interval or p-value; one can be recast as another provided the assumed distribution is valid. In

meta-analysis contexts in which the term “precision” is used without qualification to refer to a

number, the reader would be safe to assume that it means reciprocal of variance.

The first step in meta-analysis is to ensure that the individual measurements use the same

measure and units, and in fact measure the same thing. The second step is to recast confidence

intervals or p-values as reciprocal of variance by reversing the process used to calculate them.

The common estimate and its precision are computed by averaging the individual measurements,

12.4 Minimizing Adjudication Effort 441

weighted by precision:

m =

∑
i

mi · σ−2
i∑

i

σ−2
i

, σ−2 = (
∑

i

σ−2
i)−1 . (12.65)

A confidence interval or p-value for the combined result may computed in the normal way, using

σ and the cumulative probability distribution.

The 2008 United States presidential election presents a case study of the use and misuse of

statistics. Although polls consistently reported Obama to be in the lead, pundits repeatedly

pronounced that the results were “within the margin of error” or “a statistical dead heat” or

“too close to call”. In contrast, meta-analysis of the paired differences arising from individual

state-by-state polls showed that Obama had a significant and substantive lead, and in the end

predicted the outcome to within one electoral vote.5

12.4 Minimizing Adjudication Effort

Substantial manual effort is required to adjudicate documents to produce a set of judgments

for IR evaluation. To this point in the chapter, we have assumed that judgments are complete:

that a binary relevance judgment is available for each document with respect to each query. The

pooling method attempts to satisfy this assumption by requiring a judgment for each document

in the pool and declaring documents outside the pool to be nonrelevant. In this section we weaken

this assumption, first by modifying the pooling method to reduce the number of judgments, and

second by modifying our method for estimating MAP to account for unjudged documents within

the pool.

The judgments (in the form of qrels) are used as a gold standard of relevance for two distinct

kinds of evaluation:

1. The evaluation of the systems whose results influenced the decision on what documents

to judge (e.g., the systems that participated in a given TREC task)

2. The evaluation of systems whose results did not influence that decision.

Our concern here is the efficiency and effectiveness of adjudication strategies for these two

purposes. Efficiency is measured in terms of human effort, and effectiveness is measured in

terms of the validity and precision of the measurement, when using the qrels as a gold standard.

5 election.princeton.edu/history-of-electoral-votes-for-obama

Chapter 12 Measuring Effectiveness442

Throughout this section we assume MAP to be our primary effectiveness measure. That is,

the various adjudication strategies covered are examined with respect to their ability to measure

the systems’ “true” AP.

Before we discuss the individual strategies, it is worthwhile to consider the properties of an

ideal set of qrels that yield the most precise valid measurement possible, given a set of topics,

documents, and systems to be used for measurement. The ideal set of qrels would represent the

true relevance of every document with respect to every topic, independent of the systems to be

measured. Thus there would be no distinction between the two purposes stated above.

Any real set of qrels will necessarily depart from the ideal for two reasons: imprecision in

defining relevance, and the validity and precision of methods to estimate relevance, given a

particular definition. The notion of true relevance is as intangible as any notion of truth. “Sat-

isfying the user’s information need” is perhaps a close approximation, but it is impossible to

know with certainty what need the user was expressing or whether that need was met. Asking

the user yields an approximation with unknown validity and precision. The need of an Ameri-

can searching for “cancer treatment” may or may not be well served by a report published by

a Mexican laetrile clinic. Assuming the user meant “established cancer treatment”, and if we

agree that laetrile is not an established treatment in the United States, the user’s need is not

met. But the user may be uncertain whether or not laetrile is an established treatment, and

therefore mistaken regarding relevance. A third-party adjudicator may be more informed about

the efficacy of laetrile but not know with certainty whether the user meant “established cancer

treatment” or “last-hope cancer treatment”.

These issues notwithstanding, human adjudication constitutes best practice for assessing

relevance. Whether the human is the user or a third party, the effort involved in adjudication

is substantial and one of the principal factors limiting the scope of IR evaluation efforts. The

obvious approach, exhaustive adjudication, is to have an assessor or a team of assessors label

each document in the collection as relevant or nonrelevant for each topic. For modern collections

the effort required for exhaustive adjudication is prohibitive. A small TREC corpus contains

50 topics and about 500,000 documents. Exhaustive judging would require 25 million separate

judgments: about 20 person-years at 30 seconds per judgment. Even so, the qrels would be

imprecise because the adjudicators would make mistakes or be uncertain in many situations.

Better precision could be achieved, at the expense of 40 more person-years’ effort, by having

three independent adjudicators label each document and use the majority opinion as the qrel.

In general, more human effort yields increased precision. However, there are far more efficient

strategies than exhaustive adjudication to achieve similar or better measurements.

Regardless of the level of effort, a certain number of errors in the qrels is inevitable. The

substantiveness of these errors is determined by observing their impact on the validity and

precision of the IR effectiveness measurements that use them.

12.4 Minimizing Adjudication Effort 443

12.4.1 Selecting Documents for Adjudication

The TREC pooling method avoids the effort of exhaustive adjudication by forming for each topic

a pool of the top-ranked k documents from each system under test. Only the documents in the

pool are adjudicated; all others are assumed to be nonrelevant. The typical value of k = 100

appears to work well for test collections with 50 topics and 500,000 documents. However, the

effort of conducting an evaluation is substantial even for a collection of this size (recall from

Section 12.2 that the 86,830 relevance assessments for TREC-8 would correspond to about 724

hours of assessor time, even if we allow only 30 seconds per judgment). For larger collections with

more documents, more topics, or both, the effort can be prohibitive. Yet, larger collections are

desirable both to simulate large-scale information retrieval tasks and to improve the precision

of measurement. We investigate the efficiency and effectiveness of alternative strategies to select

documents for adjudication.

A true random sample of the documents in the collection could work, but unless the sample

is quite large, it will contain very few relevant documents, thus compromising its utility for

measuring IR effectiveness. Instead, a biased sampling technique is used, which is more likely to

yield relevant documents. The pooling method is one example of such a technique: The highly

ranked documents retrieved by systems under test (i.e., those in the pool) are much more likely

to be relevant than randomly selected documents. Moreover, these documents are more likely

to discriminate among systems than documents — even relevant ones — with lower rank.

With any biased sampling technique there is a risk that a measurement reflects not a system’s

effectiveness but the extent to which it agrees with the sample bias. In particular, the systems

whose results determine the pool may receive higher scores than equally effective ones whose

results do not. For TREC collections with 50 topics and 500,000 documents, the bias appears

insubstantive; experiments have shown that the same system receives a similar score whether

or not it contributes to the pool. The net effect is that TREC collections are useful as archival

benchmarks: New systems and methods may be tested using the existing qrels, and the mea-

surements compared with others conducted using the same collection. The TREC method sets

the standard against which other methods are compared.

Interactive search and judging

Interactive search and judging (ISJ) is a straightforward but effective way of selecting and

adjudicating documents. A skilled searcher simply uses a search engine to find and label as many

relevant documents as possible. The particular search engine does not appear to matter much;

useful features include relevance feedback, the ability to amend queries to explore different

aspects of the topic, a mechanism to record the judgments, and a mechanism to suppress

previously adjudicated documents from further consideration. Prior to TREC 6, Cormack et al.

(1998) used ISJ to form a set of qrels for the adhoc task, using proximity ranking and a user

interface supporting the features described above. The process took about two hours per topic,

100 hours in total — approximately one-seventh of the TREC adjudication effort. Studies by

Cormack et al. (1998) and Voorhees (2000) showed that evaluation results using these qrels

Chapter 12 Measuring Effectiveness444

were similar to the official TREC results. Shorter ISJ efforts were simulated by considering only

the qrels yielded by the (chronologically) first documents examined in the larger effort. Efforts

requiring an order of magnitude less effort yielded evaluation results that were also quite similar

to TREC efforts. The question of “How similar is similar enough?” is addressed later.

Move-to-front pooling

Move-to-front pooling (MTF) selects documents for adjudication incrementally, giving priority

to highly ranked documents from well performing systems (Cormack et al., 1998). Conceptually,

the documents returned by each system are considered in sequence. Each document in turn is

adjudicated, if it has not been previously, and the qrel is recorded. Documents from the system

continue to be examined in sequence until r consecutive ones are found to be nonrelevant, for

some r. In practice we interleave the process for all systems, using a priority queue. Whenever

a relevant document is selected, the system contributing it is moved to the front of the queue.

MTF selects a much higher proportion of relevant documents than the pooling method; the

resulting qrels yield similar evaluation results. How similar is addressed below.

Shallow pooling

A simple way to adjust the effort associated with pooling is to alter the pooling depth k. That is,

exactly k documents from each system are selected without regard to the system’s performance,

whereas MTF selects more from the better systems. Depth-k pooling yields a lower density of

relevant documents than MTF does but still finds common use, under the assumption that it

yields lower bias. In particular it has been suggested that for small k, using P@k as a surrogate

for MAP might yield lower bias (Sanderson and Zobel, 2005) than using MAP directly. The

rationale behind this is that when measuring MAP, the result depends on the relevance of

unadjudicated documents. On the other hand, when measuring P@k using pool depth k, we

know that the relevance of every document on which P@k depends is known. Thus, measuring

P@k as a surrogate for MAP might yield higher precision and lower bias. As shown in our

example below, this rationale is not fully supported by experience.

More or fewer topics?

A less direct way to adjust the effort of pooling is to use a collection with more or fewer

topics (Sanderson and Zobel, 2005). Overall adjudication effort is roughly proportional to k ·n,

where k is the pool depth and n is the number of topics (although the result overlap between

different systems is usually larger at higher ranks). There is a direct trade-off between the

number of documents judged per topic and the number of topics. As shown in Table 12.9

(page 439), the validity and power of system comparisons increase with n. On the other hand,

these same quantities also increase with pool depth. Larger k and larger n both increase precision

of measurement. The question is: For a fixed adjudication effort, is it better to use more topics

and a shallow pool, or fewer topics and a deep pool? The same question applies to other

approaches, such as ISJ and MTF.

12.4 Minimizing Adjudication Effort 445

Evaluating pooling strategies

In evaluating strategies for selecting documents to adjudicate, one must consider the effect on

measuring system effectiveness. If the true effectiveness is known, we can use it as the basis for

comparison. The best gold standard we have is a set of results derived from the pooling method

and some large k. Traditionally, pooling and adjudication strategies have been evaluated only

on their ability to order systems by effectiveness, so that more effective systems are ranked

before less effective ones. One ranking is compared with the other, and if they are similar, the

difference is deemed to be insubstantive. The assumption — with which we do not entirely

agree — is that the only purpose of measuring system effectiveness is to rank systems, and that

the measurements themselves (e.g., the MAP values computed according to a given strategy)

are irrelevant (Buckley and Voorhees, 2005). Whether or not one accepts this premise, good

system ranking is evidence of the general validity of an approach.

Two different system rankings are traditionally compared using the Kendall τ rank correlation

coefficient, named after its inventor, the British statistician Maurice Kendall. τ indicates the

number of inversions between two rankings: An inversion is a pair (x, y) such that x comes

before y in one ranking and after y in the other. If the two rankings are equal, τ = 1; if they

are opposite, τ = −1; if they are uncorrelated, τ ≈ 0.

In the context of IR evaluation, consider the set of systems measured by a TREC experiment.

Res1 is the gold-standard ranking according to MAP, when evaluated using the traditional

pooling method with k = 100. Res2 is their ranking under some alternative adjudication strategy.

Without formal justification, τ > 0.9 (i.e., fewer than 5% inversions) has been taken to be good

agreement with the gold standard (Voorhees, 2000).

A serious problem with using τ is that it does not take into account the precision of mea-

surement. As we have seen in Table 12.9, the power of measuring MAP differences for n = 50,

k = 100 (the pool depth for the TREC 2004 Robust Track) is about 67% (for α = 0.05). That

is, the t-test from Section 12.3.6 is able to distinguish only 67% of all system pairs under test

with p < 0.05. Thus we expect at least 2.8% of the pairs of systems to be ranked incorrectly,

even by the gold standard. An alternative method with the same 2.8% error rate might agree

perfectly with the gold standard (τ = 1), or have up to 5.6% inversions (τ = 0.89). A method

with a 5.6% error rate might yield as few as 2.8% inversions (τ = 0.94) or as many as 8.4%

(τ = 0.83). Kendall’s τ cannot reliably distinguish between these cases.

Instead of using Kendall’s τ , we report ranking differences in terms of significant inversion rate

for some significance level α (see Cormack and Lynam, 2007; Carterette, 2009b). A significant

pair of systems is one for which the alternative pooling/adjudication method yields a significant

difference in MAP compared with the gold standard (p < α). A significant inversion is a

significant pair whose order is transposed between the alternative and gold-standard rankings.

The significant inversion rate is the fraction of all significant pairs that are significant inversions.

A method with a significant inversion rate less than α is valid, because any error due to bias is

less than random error. The precision of the alternative method is measured by its power.

Chapter 12 Measuring Effectiveness446

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000

P
ow

er

Adjudication Effort (documents)

n=249
n=124
n=75
n=50
n=25

Figure 12.5 Power as a function of the number of documents judged for shallow pooling with various
depths.

Overall, an alternative pooling method is good if it has high power and if its observed bias is

insubstantial relative to random error.

Example experiment

We describe an example experiment to illustrate the trade-off between adjudication effort and

the validity and precision of the resulting measurements (Cormack and Lynam, 2007). The

alternatives compared were those mentioned above except ISJ, which cannot easily be simulated

(but see Sanderson and Joho, 2004). As a function of the number of documents judged, and

parameterized by the number of topics, the power and bias of alternative adjudication strategies

were measured. The gold standard was the system ranking by MAP using pool depth k = 100.

The alternative pooling methods were the following:

• shallow pooling with depth k ≤ 100;

• using P@k as a surrogate for MAP, with pool depth k ≤ 100;

• move-to-front pooling with a stopping condition of r consecutive nonrelevant documents.

All three methods were simulated using the runs submitted to the TREC 2004 Robust Retrieval

Track (Voorhees, 2004), comprising 311,410 qrels for a total of 249 topics. To evaluate shallow

pooling and move-to-front pooling, the selected qrels were used to rank the systems according

to MAP and this ranking was then compared with the gold standard. To evaluate P@k as a

surrogate measure, the systems were ranked by P@k instead of MAP, using pool depth k, and

still compared with the gold standard ranked by MAP. For all pairs the one-tailed p-value was

computed using the paired t-test. The fraction of significant results (p ≤ 0.05) was taken as an

12.4 Minimizing Adjudication Effort 447

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000

P
ow

er

Adjudication Effort (documents)

n=249
n=124
n=75
n=50
n=25

Figure 12.6 Power as a function of the number of documents judged, for move-to-front pooling with
various depths.

estimate of power, and the proportion of all pairs that were significant inversions as an indication

of bias. If this proportion is less than about α = 0.05, bias is a negligible factor (compared with

random error) in the validity of the estimate and may be considered insubstantive.

Figure 12.5 shows the effect of varying k (pool depth) and n (number of topics) on adjudication

effort and power (α = 0.05) for the standard and shallow TREC pooling methods. The y-axis

is power and the x-axis is the number of relevance assessments necessary to achieve that power

for a given n. Each point represents a different value of k. Figure 12.6 (in conjunction with

Figure 12.5) shows that move-to-front pooling yields insubstantially different power for a given

number of judgments, compared with the traditional top-k pooling strategy. Figure 12.7, on the

other hand, shows that ranking by P@k is substantially less powerful than ranking by MAP

with pool depth k. That is, P@k is not nearly as good at discriminating between systems for

a given number of relevance assessments. Figure 12.8 shows the observed bias for each of the

methods, measured by significant inversions compared with the gold standard, as a function

of judging effort. We observe that move-to-front pooling exhibits substantially less bias than

methods commonly perceived to be more fair. Perception is no substitute for measurement.

Taken together, the results shown in Figures 12.5–12.8 suggest that an experimental design

using more topics and fewer judgments per topic (compared with the TREC standard of n = 50

and k = 100) is more efficient, as suggested by Sanderson and Zobel (2005). However, they do

not support the claim that fixed-depth pools or a “fully judged” measure such as P@k yields

either higher power or lower bias. We recommend that power and bias analysis be used instead

of rank correlation in assessing new pooling strategies and evaluation measures (Buckley and

Voorhees, 2004).

Chapter 12 Measuring Effectiveness448

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000

P
ow

er

Adjudication Effort (documents)

n=249
n=124
n=75
n=50
n=25

Figure 12.7 Power as a function of the number of documents judged, for shallow pooling with depth
k and using P@k as a surrogate for MAP.

 0

 0.02

 0.04

 0.06

 0.08

 10000 100000

B
ia

s
(s

ig
ni

fic
an

t i
nv

er
si

on
 r

at
e)

Adjudication Effort (documents)

Shallow pool
Shallow pool + P@k
Move to front

Figure 12.8 Bias of shallow pooling, move-to-front pooling, and use of P@k as a surrogate measure,
as a function of adjudication effort. Bias is measured as the significant inversion rate for α = 0.05 (see
page 445).

12.4 Minimizing Adjudication Effort 449

12.4.2 Sampling the Pool

As an alternative to the selective judging methods described in the previous section (ISJ or

move-to-front pooling), it is possible to leave the pool creation strategy untouched and judge

only a random subset of the documents in the pool instead of the whole pool. Sampling the

pool allows us to reduce the number of human relevance assessments while avoiding bias at the

same time. If 10–20% of the pool is chosen, the judging effort is reduced by a factor of 5 to 10.

Of course, without judging the entire pool it is impossible to actually compute AP or any

other effectiveness measure that is based on the assumption of exhaustive relevance assessments.

However, we can estimate them, based on the random sample. For AP the resulting effectiveness

measure is called inferred average precision or infAP. It provides an unbiased estimate of average

precision (Yilmaz and Aslam, 2008).

Recall the formula for average precision (Equation 12.4 on page 408) repeated here for

convenience:

AP =
1

|Rel| ·
|Res|∑
i=1

relevant(i) · P@i, (12.66)

where |Res| is the length of the ranked list returned by the system (usually 1000 or 10,000

for TREC experiments), and relevant(i) = 1 if the document at rank i is relevant; 0 if it is

nonrelevant. In practice, relevant(i) = 1 if and only if the ith document is judged relevant.

Similarly, Rel is the set of judged relevant documents.

To compute infAP, P@i is replaced by expected P@i:

infAP =
1

|Rel| ·
|Res|∑
i=1

relevant(i) · E[P@i] . (12.67)

Expected P@i in this equation may be calculated as follows: To start, consider the document

at rank i. We may assume that relevant(i) = 1, for otherwise there is no need to estimate P@i.

Thus,

E[P@i] =
1

i
+

i− 1

i
· E[P@(i− 1)] . (12.68)

Now, to compute E[P@(i− 1)] consider each of the documents at ranks 1 to i − 1. For the

document at rank j, where 1 ≤ j < i, there are four possibilities:

1. If j is deep enough in the ranked list, it may not be part of the pool, in which case it is

assumed to be nonrelevant.

2. It may be part of the pool but not be part of the sample chosen, in which case it is

unjudged.

3. It may be part of the sample and be judged relevant.

4. It may be part of the sample and be judged nonrelevant.

Chapter 12 Measuring Effectiveness450

Now, let Jud be the set of judged documents, and let Pool be the set of documents in the pool.

The value |Jud|/|Pool| represents the fraction of the pool included in our random sample. We

estimate P@(i− 1) as

E[P@(i− 1)] =
|Pool ∩ Res[1..i− 1]|

i− 1
· |Rel ∩ Res[1..i− 1]|
|Jud ∩ Res[1..i− 1]| , (12.69)

where Res[1..i− 1] is the set of documents appearing as the top i− 1 items in the ranked list.

The right-hand side of this equation consists of two fractions. The first of these represents the

fraction of the top i − 1 documents that form part of the pool; the second one represents the

fraction of the judged top i−1 documents that are relevant. This second fraction is an unbiased

estimate of the precision of the top i − 1 documents that are included in the pool. The first

fraction adjusts this estimate to account for documents that are not in the pool (and thus are

assumed to be nonrelevant).

One minor problem remains: It is possible for Jud ∩ Res[1..i] to be empty, with no judged

documents appearing in the top i− 1 documents. In this case,the fraction on the right will be

0/0. To address this problem we apply a form of smoothing (see Section 1.3.4) to produce the

equation

E[P@(i− 1)] =
|Pool ∩ Res[1..i− 1]|

i− 1
· |Rel ∩ Res[1..i− 1]|+ ε

|Jud ∩Res[1..i− 1]|+ 2ε
, (12.70)

where ε is a small constant value. Combining Equations 12.68 with 12.70 and canceling i − 1

gives

E[P@i] =
1

i
+
|Pool ∩Res[1..i− 1]|

i
· |Rel ∩Res[1..i− 1]|+ ε

|Jud ∩ Res[1..i− 1]|+ 2ε
. (12.71)

As an example consider a ranked list of documents represented by the vector

Res = 〈+, ?,−, +,−, X, X, ?, X, +, ...〉. (12.72)

The vector encodes judgments for the top documents in the ranked list, where “+” represents

a judged relevant document, “−” represents a judged nonrelevant document, “?” represents an

unjudged document from the pool, and X represents a document not in the pool (which has

depth 5). Assume that ε = 0.00001, the value used in NIST’s trec eval6 program. For this

example

E[P@10] =
1

10
+

7

10
· 2 + ε

4 + 2ε
≈ 0.45. (12.73)

Of course, in more realistic cases the relative number of unjudged documents in such a list would

be much higher. Under traditional assumptions, because only three judged relevant documents

appear in the list, we would have P@10 = 0.3. The value E[P@10] is an estimate of what the

precision would be if the remaining documents in the pool were judged.

6 trec.nist.gov/trec eval

12.5 Nontraditional Effectiveness Measures 451

12.5 Nontraditional Effectiveness Measures

The traditional evaluation methodology outlined in Sections 12.1 and 12.2 has consistently

proved its worth over much of the history of information retrieval. Over the years it has served

to demonstrate the effectiveness of many now-standard theories and techniques as each has been

invented and refined. These techniques include the probabilistic model, the language modeling

approach, divergence from randomness, and pseudo-relevance feedback (all described in Part

III). As larger collections have been introduced, the methodology has held up surprisingly well,

providing reasonable results over collections as large and diverse as GOV2. Nonetheless, it is

proving inadequate in the face of recent demands. Such demands include the need for graded

relevance assessments, the need to handle missing judgments, and the need to accommodate

novelty and diversity. In this section we examine some of the many attempts to address these

demands.

12.5.1 Graded Relevance

The scale of the Web far exceeds that of even the largest test collections. The Web includes

many pages of marginal quality as well as many of extremely high quality. Some Web pages are

actively harmful, advertising dubious or dangerous products, or attempting to infect the user’s

computer with malware or viruses. At the enterprise level a typical document-management

platform or corporate intranet may be larger and more varied than most test collections. At

the individual level many people (including the authors) maintain gigabytes of e-mail and other

documents in their personal storage spaces, easily equaling the size of the smaller TREC test

collections and exceeding them in the variety of their content.

To reflect the varying extent to which a given document may satisfy the needs of a particular

user, and to address the varying quality of documents, graded relevance may be used instead

of binary relevance. For example, assessors might judge documents on a six-point scale of

“definitive”, “excellent”, “good”, “fair”, “bad”, and “detrimental” (Najork et al., 2007). On

this scale “bad” corresponds to “nonrelevant”, the “detrimental” level indicates malicious or

misleading content, and the remaining levels indicate varying degrees of relevance.

Graded relevance assessments are particularly useful in mixed navigational/information search

tasks (see Section 15.2 for details on these types of tasks). For example, consider the search

query “IBM”. For this query IBM’s Wikipedia page, which provides valuable information about

the company, might be considered of “good” or “excellent” quality, whereas IBM’s official Web

site at www.ibm.com would have to be considered “definitive”.

The Normalized Discounted Cumulative Gain (nDCG) measure takes direct advantage of

graded relevance assessments (Järvelin and Kekäläinen, 2002). It operates by comparing the

relevance values of a ranked result list with the “ideal” result that would be achieved by ranking

all the most relevant documents first, followed by all the next-most-relevant documents, and so

Chapter 12 Measuring Effectiveness452

on. To compute nDCG, a gain value must be assigned to each relevance level. These gain values

map relevance levels into a number that can be used to compute a score. Gain values should

be chosen to reflect the relative differences between the levels. For example, suppose documents

are evaluated on a four-point scale: “highly relevant”, “relevant”, “marginally relevant”, and

“nonrelevant”. We might choose gain values such as

highly relevant → 10

relevant → 5

marginally relevant → 1

nonrelevant → 0

Given a ranked list of documents, the first step in the computation of nDCG is the construc-

tion of a gain vector G. For example, suppose the first six documents in a ranked list are judged:

(1) relevant, (2) highly relevant, (3) nonrelevant, (4) relevant, (5) marginally relevant, and (6)

highly relevant. The remaining documents are all nonrelevant. The gain vector corresponding

to this list is

G = 〈5, 10, 0, 5, 1, 10, 0, 0, ...〉. (12.74)

The second step in the computation of nDCG is the calculation of a cumulative gain vector CG.

The value of the element k in CG is the sum from 1 to k of the elements in G

CG[k] =

k∑
i=1

G[i]. (12.75)

For our example

CG = 〈5, 15, 15, 20, 21, 31, 31, 31, ...〉. (12.76)

Before computing the cumulative gain vector, a discount function may be applied at each rank

to penalize documents lower in the ranking, thus reflecting the additional user effort required

to reach them. This discount recognizes that users are less like to examine documents lower in

the ranking because of the time and trouble required. A typical discount function is log2(1 + i),

although other discount functions are possible and may better reflect user effort (Järvelin and

Kekäläinen, 2002). This discounted cumulative gain is defined as

DCG[k] =

k∑
i=1

G[i]

log2(1 + i)
. (12.77)

For our example

DCG = 〈5.0, 11.3, 11.3, 13.5, 13.8, 17.4, 17.4, 17.4, ...〉. (12.78)

12.5 Nontraditional Effectiveness Measures 453

The next step normalizes the discounted cumulative gain vector against an “ideal” gain vector.

The ideal ranking is the ordering that maximizes cumulative gain at all levels. Suppose the

collection contains two highly relevant documents, two relevant documents, and two marginally

relevant documents. The remaining documents are all nonrelevant. Therefore, the ideal gain

vector is

G′ = 〈10, 10, 5, 5, 1, 1, 0, 0, ...〉, (12.79)

the ideal cumulative gain vector is

CG′ = 〈10, 20, 25, 30, 31, 32, 32, 32, ...〉, (12.80)

and the ideal discounted cumulative gain vector is

DCG′ = 〈10.0, 16.3, 18.8, 21.0, 21.3, 21.7, 21.7, 21.7, ...〉. (12.81)

As the final step in the computation of nDCG, we normalize discounted cumulative gain by

the ideal discounted cumulative gain vector:

nDCG[k] =
DCG[k]

DCG′[k]
. (12.82)

For our example

nDCG = 〈0.50, 0.69, 0.60, 0.64, 0.65, 0.80, 0.80, 0.80, ...〉. (12.83)

As is typical for IR evaluation measures, nDCG is computed over a set of topics by taking the

arithmetic mean of the nDCG values for the individual topics. nDCG is usually reported at

various retrieval depths, similar to precision and recall. In our example nDCG@4 = 0.64 and

nDCG@8 = 0.80.

The nDCG measure is popular for Web search, where pages may vary greatly in quality and

a large number of more or less relevant pages may appear in the collection (Najork et al., 2007).

It has also been employed for the evaluation of XML information retrieval (see Section 16.5). In

addition to nDCG, both CG and DCG may be used directly as evaluation measures. In a study

based on Web search results, Al-Maskari et al. (2007) provide evidence that CG and DCG may

actually correlate better with user satisfaction than nDCG.

12.5.2 Incomplete and Biased Judgments

Unjudged documents pose a problem for most effectiveness measures. When large test collec-

tions are reused, either to test new methods or to tune existing ones, unjudged documents (i.e.,

documents that do not appear in the pool) may appear at high ranks. By convention these doc-

uments are considered nonrelevant (see Section 12.2). In truth, many of them might have been

judged relevant if they had been seen by the assessor. Thus, the pooling method is inherently

Chapter 12 Measuring Effectiveness454

biased against runs that did not contribute to the pool. When test collections are reused, this

bias may distort the results regarding the relative quality of runs, and may lead to incorrect

conclusions.

Most methods for handling incomplete judgments assume an unbiased sample, in which no

system or method has an advantage over any other. For example, inferred average precision

(Section 12.4.2) allows us to measure effectiveness without judging the entire pool but requires

an unbiased sample to obtain unbiased estimates of precision at various levels.

The ability to measure effectiveness in the face of incomplete and biased judgments has

substantial practical importance. The ability to handle missing judgments is also a requirement

for the ongoing evaluation of IR systems over dynamic collections. Experiments over large

and dynamic collections often surface unjudged documents. In many cases time and expense

preclude us from making on-demand judgments to repair holes in a test collection. For example,

the operators of a Web search service might measure its performance by periodically running

a fixed set of queries against it. Although a crawler constantly adds pages to the collection

and judgments for these pages may not be immediately available, it should still be possible to

meaningfully compare today’s effectiveness with yesterday’s effectiveness.

Despite the importance of the problems posed by incomplete and biased judgments, relatively

little work has been done to address them. Of the work that has been done, several studies have

shown that one particular measure, the rank effectiveness measure or RankEff, outperforms

other proposed measures in terms of the stability of system ranking (Büttcher et al., 2007;

Ahlgren and Grönqvist, 2008). This stability suggests that if one IR system outperforms another

on RankEff, then the same relationship would hold under traditional measures with complete

judgments. However, we caution you that this stability property is not absolute, and it becomes

less certain as the number of missing judgments increases.

The formula for RankEff is reminiscent of the formula for average precision (Equation 12.4

on page 408), except that it ignores unjudged documents:

RankEff =
1

|Rel| ·
|Res|∑
i=1

relevant(i) ·
(

1− |Res[1..i] ∩ Non|
|Non|

)
, (12.84)

where relevant(i) = 1 if the document at rank i is judged relevant and 0 if it is not. In this formula

Rel is the set of judged relevant documents, Non is the set of judged nonrelevant documents,

and Res[1..i] is the set of documents appearing as the top-i documents in the ranked list. The

value
|Res[1..i] ∩ Non|

|Non| (12.85)

is essentially recall@i of judged nonrelevant documents. For each judged relevant document in

a ranked list, a penalty is applied for the fraction of judged nonrelevant documents that appear

above it. The formula treats a judged relevant document that does not appear in Res as if it

appeared below all judged nonrelevant documents, thus contributing nothing to the score.

12.5 Nontraditional Effectiveness Measures 455

As an example consider a ranked list of documents represented by the vector

Res = 〈+, ?,−, +,−, ?, ?, ?, ?, +〉. (12.86)

The vector encodes judgments for the documents in a ranked list of length 10, where “+”

represents a judged relevant document, “−” represents a judged nonrelevant document, and “?”

represents an unjudged document. Suppose there are four judged relevant documents (|Rel| = 4)

and six judged nonrelevant documents (|Non| = 6). Then RankEff may be computed as

1

4
·
((

1− 0

6

)
+

(
1− 1

6

)
+

(
1− 2

6

))
=

5

8
= 0.625. (12.87)

For comparison, the AP value for the same vector would be

1

4
·
(

1

1
+

2

4
+

3

10

)
=

9

20
= 0.450. (12.88)

12.5.3 Novelty and Diversity

Classic IR evaluation methodology assumes that the relevance of each document can be judged

independently of other documents. Redundancy is rewarded. Suppose a test collection contains

a number of nearly identical documents (and many do). If one of these documents is relevant, all

are relevant. Returning them all in the top ranks may produce a high score on classic measures

such as AP, but would certainly be viewed unfavorably by a real user. Collections crawled from

the Web are especially prone to this problem. Bernstein and Zobel (2005) examined the presence

of near duplicates in the GOV2 collection and found that more than 17% of its documents were

essentially duplicates of other documents. The expedient solution of deleting duplicates from

the collection merely sweeps the problem under the rug. Instead, the evaluation measure itself

should directly accommodate the possibility of duplicates, rewarding documents that provide

novel information instead of simply repeating information that is already known to the user

from previous (i.e., more highly ranked) documents.

Another problematic assumption of classic IR evaluation is that relevance is judged with

respect to a fully specified information need, as expressed through the topic. Consider TREC

topic 426 in Figure 1.8 (page 25) in which the title (“law enforcement, dogs”) is intended for

use as a query. In the classic evaluation experiment for which it was created, this query had

one interpretation: Only documents providing “information on the use of dogs worldwide for

law enforcement purposes” are considered relevant. However, as illustrated by the example on

page 277, this query has a second interpretation: as a request for information on the enforcement

of laws regarding dogs (e.g., leash bylaws). Although this second interpretation is perfectly valid

and may be desired by an actual user, documents reflecting this interpretation will be judged

nonrelevant. Note that by simply changing the description and narrative, we can switch from

one interpretation to another (turning a relatively easy query into a relatively hard one). At

the time of writing, running this query on a commercial Web search engine returned a mixture

of documents strongly favoring the first interpretation.

Chapter 12 Measuring Effectiveness456

Table 12.11 Possible results for the Web query “UPS”, covering different interpretations of the query.

Rank Page Title URL

1 UPS Global Home www.ups.com

2 UPS: Tracking Information www.ups.com/tracking/tracking.html

3 Uninterruptible power supply — Wikipedia,... en.wikipedia.org/wiki/Uninterruptible power...

4 The UPS Store: Retail packing, shipping,... www.theupsstore.com

5 University of Puget Sound :: Home www.ups.edu

Under either interpretation this query may be underspecified with respect to the information

needs of a given user. For example, one user might be interested only in dogs for enforcing drug

laws; another might be interested only in leash bylaws pertaining to their community. Ideally an

IR system would return results reflecting the ambiguity inherent in the query and exhaustively

covering all aspects. To address this requirement, effectiveness measures should appropriately

reward diversity in retrieval results.

For a given query an IR system should respond with a ranked list that respects both the

breadth of available information and any ambiguity inherent in the query. The query “jaguar”

represents a standard example of an ambiguous query. In responding to this query an IR system

might best return a mixture of documents discussing the cars, the cats, and the classic Fender

guitar. Taken together, these documents should provide a complete picture of all interpretations.

Ideally, the document ordering for this query would properly account for the interests of the

overall user population. If cars were more popular than cats, it might be appropriate to devote

the first few documents to them before switching topics. The earlier documents might cover key

aspects of each topic. Later documents would supplement this basic information rather than

redundantly repeating the same thing over and over again.

Before describing one proposed evaluation measure that accounts for both novelty and diver-

sity, we present two examples as motivation that are derived from Clarke et al. (2008). The

first is a Web search example. The second is based on an experimental question answering task

conducted at TREC 2005 (Voorhees and Dang, 2005).

Web search example

Table 12.11 shows five of the top ten results for the Web query “UPS”, as returned by a

commercial search engine at the time of writing. We have retained the ordering specified by the

search engine but have removed a few results to keep the example concise. The ambiguity is

obvious. A user entering this query might be tracking a package sent via United Parcel Service,

planning the purchase of an uninterruptible power supply, or searching for the home page of the

University of Puget Sound. The correct expansion of the acronym depends on the user’s intent.

It is difficult to argue that any one of these five pages is more relevant than any other. For

all of them there is a group of users for which it is the best result. Under the classic evaluation

12.5 Nontraditional Effectiveness Measures 457

Table 12.12 TREC 2005 question answering topic 85. The topic
consists of multiple questions, with each question aiming at a
different aspect of the overall topic.

85: Norwegian Cruise Lines (NCL)

85.1: Name the ships of the NCL.

85.2: What cruise line attempted to take over NCL in 1999?

85.3: What is the name of the NCL’s own private island?

85.4: How does NCL rank in size with other cruise lines?

85.5: Why did the Grand Cayman turn away a NCL ship?

85.6: Name so-called theme cruises promoted by NCL.

methodology, relevance judgments would depend on the details of the topic narrative, details

that are hidden from the IR system. Depending on these hidden details, any of these documents

might be judged relevant or nonrelevant. Naturally, because of the glaring ambiguity, a topic

based on this query would not be accepted for inclusion at TREC, thus allowing the problem

to be avoided. Unfortunately, the problem cannot be avoided in practice.

One possible guide for ranking these pages is the relative sizes of the groups for which they

would be relevant. At a guess, the group of users intending the United Parcel Service is sub-

stantially larger than the group intending the University of Puget Sound, even within the state

of Washington. The number of users interested in uninterruptible power supplies may fall some-

where in between. The ordering in Table 12.11 is consistent with this guess. But note that a page

related to uninterruptible power supplies (#3) lies between two pages related to United Parcel

Service. This arrangement may be justified by assuming that users interested in uninterruptible

power supplies form a plurality of the users still scanning the result list at that point. By the

fifth result users interested in the university may form a plurality. Thus, diversity in the results

proceeds directly from the needs of the user population.

Assuming that Table 12.11 gives the best possible ranking (which it may not), it can be

justified informally and intuitively. It should be possible for our evaluation measure to reflect

this intuition by assigning the highest score to precisely this ranking.

Question answering example

Our second example is based on a topic taken from the TREC 2005 question answering

task (Voorhees and Dang, 2005). In contrast to a traditional retrieval task, the goal of a ques-

tion answering (QA) task is to return exact answers to specific questions, often by integrating

information from multiple sources. In the TREC 2005 task, questions were grouped into series

with a single target associated with each series. Participating systems were given the target and

the questions, and were expected to return an answer to each. Table 12.12 gives the target and

questions for topic 85: “Norwegian Cruise Lines (NCL)”.

Chapter 12 Measuring Effectiveness458

Table 12.13 Top ten documents returned by BM25 for the query “Norwegian Cruise Lines (NCL)” over
the TREC 2005 QA task corpus. The questions answered by each document are indicated.

Document Title 85.1 85.2 85.3 85.4 85.5 85.6 Total

a. Carnival Re-Enters Norway Bidding X X 2

b. NORWEGIAN CRUISE LINE SAYS... X 1

c. Carnival, Star Increase NCL Stake X 1

d. Carnival, Star Solidify Control 0

e. HOUSTON CRUISE INDUSTRY GETS... X X 2

f. TRAVELERS WIN IN CRUISE... X 1

g. ARMCHAIR QUARTERBACKS NEED... X 1

h. EUROPE, CHRISTMAS ON SALE X 1

i. TRAVEL DEALS AND DISCOUNTS 0

j. HAVE IT YOUR WAY ON THIS SHIP 0

We might view this topic in a different light, treating the target as a query and the questions as

representatives, or examples, of specific pieces of information a user may be seeking. Table 12.13

presents the results of executing the target as a query using the Wumpus implementation of

the BM25 scoring formula. The corpus is the same collection of newspaper articles used for the

TREC 2005 QA task. The titles of the top ten documents are shown. For each article the table

indicates the questions answered by that article according to the official TREC judgments. For

the purpose of this example we consider a document to answer question 85.1 if it lists the name

of any NCL ship. The last column gives the total number of questions answered.

Although these questions certainly do not cover all aspects of the topic, we might view them

as reasonable representatives. From this viewpoint we might base overall document relevance

on these questions, treating the total number answered as a graded relevance value. Therefore,

if we consider only the number of questions answered, one “ideal” ordering for the documents

would be a-e-b-c-f-g-h-d-i-j-d, with those documents answering two questions placed before those

answering one.

If we consider novelty, our ideal ordering would place document g third, ahead of other

documents answering one question, because only document g answers question 85.3. Moreover,

the ordering a-e-g covers all the questions with the exception of question 85.5, which is not

answered by any document. The other documents might then be considered nonrelevant since

they add nothing new. However, because these other documents likely contain aspects not

covered by the questions, we should not stop at the third document. In addition the judgments

may contain errors or the document may not fully answer an indicated question. Given the

information available, we might complete our ranking by considering the number of times each

question is answered. Document b (answering 85.2) might be ranked after document g, followed

by document f (answering 85.1), and then by documents c and h (answering these questions for

a third time). The final ordering would be a-e-g-b-f-c-h-i-j-d.

12.5 Nontraditional Effectiveness Measures 459

Measuring novelty and diversity

The development and validation of effectiveness measures for novelty and diversity remains an

open research problem. Below, we present a measure proposed by Clarke et al. (2008). Other

proposed measures are referenced as further reading.

To generalize from the examples above, we may consider an information need as being rep-

resented by a set of nuggets. Conceptually, a nugget might represent a specific fact related to

the information need, or the answer to a specific question. It might even represent a structural

or navigational requirement, indicating that a document belongs to a specific collection, was

written in a specific time frame, or appears on a specific Web site. We then assign a graded

relevance value to the document on the basis of the number of nuggets it contains: the more

nuggets, the better. Furthermore, given a ranked list of documents, if a nugget appears in one

document, its value in later documents may be reduced, thus favoring novelty over diversity.

With graded relevance values available, a measure such as nDCG may be applied to measure

effectiveness. The extension of nDCG to use these gain values is known as α-nDCG.

More formally, we model the user’s information need as a set of nuggets {n1, . . . , nm}. Given

a ranked list of documents 〈d1, d2, ...〉, let N(di, nj) = 1 if document di is judged to contain

nugget nj ; otherwise, N(di, nj) = 0. The number of nuggets contained in document di is thus

m∑
j=1

N(di, nj). (12.89)

If redundancy were not an issue, this number could be used directly as a graded relevance

value. However, as we go deeper in the result list, we may wish to adjust this number as nuggets

are repeated, reflecting the decreased value of redundant information. To make this adjustment,

we first define

rj,k−1 =

k−1∑
i=1

N(di, nj), (12.90)

the number of documents ranked up to position k − 1 that have been judged to contain nugget

nj. For convenience we define rj,0 = 0. We then define the kth element of the gain vector G as

G[k] =

m∑
j=1

N(dk, nj)α
rj,k−1 , (12.91)

where α is a constant, with 0 < α ≤ 1. This constant represents the reduction in gain value from

a repeated nugget. For example, if we set α = 1/2, the document ordering listed in Table 12.13

would give the gain vector

G = 〈2, 1
2 , 1

4 , 0, 2, 1
2 , 1, 1

4 , ...〉. (12.92)

In this example the value of a nugget halves with each document containing it. When α = 1,

the gain value stays the same, no matter how many times the nugget appears. When α = 0, the

gain value drops to 0 after the nugget appears once.

Chapter 12 Measuring Effectiveness460

Computation of nDCG can now proceed as described in Section 12.5.1. For normalization the

ideal ordering is the ordering that maximizes cumulative gain at all levels. For our example the

ideal ordering is a-e-g-b-f-c-h-i-j-d and the associated ideal gain vector is

G′ = 〈2, 2, 1, 1
2 , 1

2 , 1
4 , 1

4 , ...〉. (12.93)

12.6 Further Reading

The first information retrieval test collections were created by Cyril Cleverdon and his co-workers

in the 1960s, as part of a series of experiments known as the the Cranfield tests (Cleverdon,

1967). The basic approach of evaluating IR systems through the use of a fixed set of docu-

ments, queries, and manual judgments is still commonly known as the Cranfield paradigm. This

approach was adopted by TREC in the early 1990s, and extended to larger collections (over

a gigabyte in size). A history of TREC and its use of the Cranfield paradigm is provided by

Voorhees and Harman (2005).

The appropriate use of statistical methods in IR evaluation is the subject of continued debate.

Some of the statistical methods discussed in this chapter, which are standard in fields such

as medicine, have not yet seen universal application within the field of information retrieval.

Sanderson and Zobel (2005) examine the use of statistical tests in information retrieval and

conclude that shallow judging of a larger number of topics is preferable to deep judging of a

smaller number of topics. Webber et al. (2008b) measure experimentally the power of statistical

tests for comparing pairs of IR systems, as a function of effect size, number of topics, and

pooling depth. They extrapolate that using 617 topics and shallow pooling with a depth of

k=5 would yield power of 80% for discriminating between pairs of systems at the TREC 2004

Robust Track, in agreement with Figure 12.5 (page 446). Smucker et al. (2007) evaluate the

t-test, sign test, Wilcoxon test, and bootstrap methods, using the randomization test as a gold

standard. They conclude that the randomization test, the t-test, and the bootstrap compute

similar p-values, whereas the other tests differ substantially. Outside the field of information

retrieval, Thomas (1997) discusses the controversial nature of retrospective power analysis and

compares methods for computing retrospective power. The British Medical Journal maintains

a summary page of articles related to meta-analysis.7

Many proposals have been made to reduce judging effort through selective judging. Cormack

et al. (1998) explored the creation of test collections through a process of interactive searching,

judging, and manual query reformulation. Their goal was to identify as many relevant documents

as possible in a given period of time. Sanderson and Joho (2004) explored further in this

direction, describing three methods for creating test collections without pooling. Both Zobel

7 www.bmj.com/collections/ma.htm

12.6 Further Reading 461

(1998) and Cormack et al. (1998) propose the dynamic reordering of documents in the pool

to increase the chance that a relevant document will be judged next. Carterette et al. (2006)

describe an algorithm for selecting the next document for judging, which optimizes the impact

of the judgment on the ability to differentiate between systems. Moffat et al. (2007) investigate

adaptive judging in the context of a rank-biased precision measure that assigns exponentially

decreasing weights to documents based on their rank in the result list. Sampling methods

including infAP (Section 12.4.2), are described by Aslam et al. (2006) and by Yilmaz and Aslam

(2008). This work was improved and extended to nDCG by Yilmaz et al. (2008). Soboroff et al.

(2001) propose an interesting method for avoiding relevance assessments altogether.

Over the years dozens of IR evaluation measures have been invented. Other have been bor-

rowed from other fields and pressed into the service of IR. The nDCG measure was first proposed

and described by Järvelin and Kekäläinen (2002). It has since been applied in a number of

areas, including Web search (Burges et al., 2005; Najork et al., 2007) and XML information

retrieval (Al-Maskari et al., 2007). Buckley and Voorhees (2004) propose the bpref measure,

which is similar to the RankEff in structure and intent. Shah and Croft (2004) apply the recip-

rocal rank measure (Equation 12.5 on page 409) to evaluate high-accuracy retrieval, where high

precision in the top ranks is the governing concern. Aslam et al. (2005) propose a method for

quantifying the quality of effectiveness measures. Moffat and Zobel (2008) describe and evaluate

a rank-biased precision measure based on a simple model of user behavior. Chapelle et al. (2009)

describe a reciprocal rank measure for graded relevance that incorporates a simple user model

and is validated against user behavior, as extracted from the logs of a commercial search engine.

Both Amitay et al. (2004) and Büttcher et al. (2007) propose the creation of scalable test

collections by characterizing relevant documents, so that the judging of new documents can

be performed automatically. Carterette (2007) formally defines the notion of a reusable test

collection. Custis and Al-Kofahi (2007) consider the evaluation of query expansion techniques.

Webber et al. (2008a) address the problem of comparing scores across test collections. Sakai

and Kando (2008) examine the impact of missing relevance judgments.

Novelty and diversity in IR evaluation has been explored by a number of researchers dating

back to the 1960s (Goffman, 1964; Boyce, 1982). Carbonell and Goldstein (1998) describe the

maximal marginal relevance method, which attempts to maximize relevance while minimizing

similarity to higher-ranked documents. Zhai et al. (2003) develop and validate subtopic retrieval

methods based on a risk-minimization framework and introduce corresponding measures for

subtopic recall and precision. Chen and Karger (2006) describe a retrieval method incorporating

negative feedback in which documents are assumed to be not relevant once they are included

in the result list, with the goal of maximizing diversity. Agrawal et al. (2009) apply taxonomies

to diversify search results and generalize several traditional effectiveness measures to account

for diversity, including nDCG, MAP, and MRR. Spärck Jones et al. (2007) call for the creation

of evaluation methodologies and test collections that incorporate diversity. Vee et al. (2008)

consider diversity in the context of a shopping search application; van Zwol et al. (2008) consider

diversity in the context of image search. Clarke et al. (2009) combine the rank-biased precision

measure proposed by Moffat and Zobel (2008) with the novelty and diversity measures of Clarke

Chapter 12 Measuring Effectiveness462

et al. (2008) and Agrawal et al. (2009), extending them to account for underspecified queries

through a simple model of user needs and behavior. Carterette (2009a) considers the problem

of computing an ideal result for novelty and diversity measures.

12.7 Exercises

Exercise 12.1 In Equation 12.71 (page 450), assume |Jud ∩ Res[1..i− 1]| = 0. What is the

value of E[P@i] in this case?

Exercise 12.2 Consider a ranked list of documents represented by the vector

Res = 〈0,−, +, 0,−, X, 0, X, X, +, ...〉 , (12.94)

where “+” represents a judged relevant document, “−” represents a judged nonrelevant docu-

ment, 0 represents an unjudged document from the pool, and X represents a document not in

the pool. Compute E[P@1] and E[P@10]. Assume that ε = 0.00001.

Exercise 12.3 Compute the nDCG vector given the gain vector

G = 〈1, 3, 0, 2, 1, 3, 0, 0, ...〉 (12.95)

and given the ideal gain vector

G′ = 〈3, 3, 2, 2, 2, 1, 1, 0, ...〉. (12.96)

Exercise 12.4 Consider a ranked list of documents represented by the vector

Res = 〈0,−, +, 0,−, 0, 0, 0, 0, +〉. (12.97)

The vector encodes judgments for the documents in a ranked list of length k = 10, where “+”

represents a judged relevant document, “−” represents a judged nonrelevant document, and 0

represents an unjudged document. Assume there are three judged relevant documents (|Rel| = 3)

and four judged nonrelevant documents (|Non| = 4). Compute RankEff (Equation 12.84 on

page 454) for this vector.

Exercise 12.5 Run the following ambiguous and under-specified queries on a commercial Web

search engine: (a) “jaguar”, (b) “windows”, (c) “hello”, and (d) “charles clarke”. How many

different interpretations appear in the top ten results?

Exercise 12.6 Suppose that you measure MAP for a particular system using a particular

set s of n topics that results in an estimate of m with 95% confidence interval c = [l, u]. A

second estimate m′ is taken using n different topics with similar characteristics. No precision

estimate for m′ is available. What is the probability that c contains m′? Suppose we compute

m = m+m′

2 . Without further information, determine the size of the smallest 95% confidence

interval containing m. How do your answers change if the size of the second topic set is n′ 	= n?

12.8 Bibliography 463

12.8 Bibliography

Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S. (2009). Diversifying search results.

In Proceedings of the 2nd ACM International Conference on Web Search and Data Mining,

pages 5–14. Barcelona, Spain.

Ahlgren, P., and Grönqvist, L. (2008). Evaluation of retrieval effectiveness with incomplete

relevance data: Theoretical and experimental comparison of three measures. Information

Processing & Management, 44(1):212–225.

Al-Maskari, A., Sanderson, M., and Clough, P. (2007). The relationship between IR effective-

ness measures and user satisfaction. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 773–774.

Amsterdam, The Netherlands.

Amitay, E., Carmel, D., Lempel, R., and Soffer, A. (2004). Scaling IR-system evaluation using

term relevance sets. In Proceedings of the 27th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 10–17. Sheffield, England.

Aslam, J.A., Pavlu, V., and Yilmaz, E. (2006). A statistical method for system evaluation

using incomplete judgments. In Proceedings of the 29th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 541–548. Seattle,

Washington.

Aslam, J. A., Yilmaz, E., and Pavlu, V. (2005). The maximum entropy method for analyzing

retrieval measures. In Proceedings of the 28th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 27–34. Salvador, Brazil.

Bernstein, Y., and Zobel, J. (2005). Redundant documents and search effectiveness. In Proceed-

ings of the 14th ACM International Conference on Information and Knowledge Management,

pages 736–743. Bremen, Germany.

Boyce, B. (1982). Beyond topicality: A two stage view of relevance and the retrieval process.

Information Processing & Management, 18(3):105–109.

Buckley, C., and Voorhees, E. (2005). Retrieval system evaluation. In Voorhees, E.M., and Har-

man, D. K., editors, TREC — Experiment and Evaluation in Information Retrieval, chapter 3,

pages 53–75. Cambridge, Massachusetts: MIT Press.

Buckley, C., and Voorhees, E.M. (2004). Retrieval evaluation with incomplete information.

In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 25–32. Sheffield, England.

Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender,

G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd International

Conference on Machine Learning, pages 89–96. Bonn, Germany.

Chapter 12 Measuring Effectiveness464

Büttcher, S., Clarke, C. L. A., Yeung, P.C. K., and Soboroff, I. (2007). Reliable information

retrieval evaluation with incomplete and biased judgements. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 63–70. Amsterdam, The Netherlands.

Carbonell, J., and Goldstein, J. (1998). The use of MMR, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages

335–336. Melbourne, Australia.

Carterette, B. (2007). Robust test collections for retrieval evaluation. In Proceedings of the 30th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 55–62. Amsterdam, The Netherlands.

Carterette, B. (2009a). An analysis of NP-completeness in novelty and diversity ranking. In

Proceedings of the 2nd International Conference on the Theory of Information Retrieval, pages

200–211. Cambridge, England.

Carterette, B. (2009b). On rank correlation and the distance between rankings. In Proceedings

of the 29th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 436–443. Boston, Massachusetts.

Carterette, B., Allan, J., and Sitaraman, R. (2006). Minimal test collections for retrieval

evaluation. In Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 268–275. Seattle, Washington.

Chapelle, O., Metzler, D., Zhang, Y., and Grinspan, P. (2009). Expected reciprocal rank for

graded relevance. In Proceedings of the 18th ACM Conference on Information and Knowledge

Management, pages 621–630. Hong Kong, China.

Chen, H., and Karger, D. R. (2006). Less is more: Probabilistic models for retrieving fewer

relevant documents. In Proceedings of the 29th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 429–436. Seattle, Washington.

Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkann, A., Büttcher, S., and

MacKinnon, I. (2008). Novelty and diversity in information retrieval evaluation. In Proceed-

ings of the 31st Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 659–666. Singapore.

Clarke, C. L. A., Kolla, M., and Vechtomova, O. (2009). An effectiveness measure for ambiguous

and underspecified queries. In Proceedings of the 2nd International Conference on the Theory

of Information Retrieval, pages 188–199. Cambridge, England.

Cleverdon, C. W. (1967). The Cranfield tests on index language devices. AsLib proceedings,

19(6):173–193. Reprinted as Cleverdon (1997).

Cleverdon, C. W. (1997). The Cranfield tests on index language devices. In Readings in

Information Retrieval, pages 47–59. San Francisco, California: Morgan Kaufmann.

Cormack, G. V., and Lynam, T. R. (2006). Statistical precision of information retrieval evalua-
tion. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 533–540. Seattle, Washington.

12.8 Bibliography 465

Cormack, G. V., and Lynam, T. R. (2007). Power and bias of subset pooling strategies.
In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 837–838. Amsterdam, The Netherlands.

Cormack, G. V., Palmer, C. R., and Clarke, C. L. A. (1998). Efficient construction of large

test collections. In Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 282–289. Melbourne, Australia.

Custis, T., and Al-Kofahi, K. (2007). A new approach for evaluating query expansion:
Query-document term mismatch. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 575–582.
Amsterdam, The Netherlands.

De Angelis, C., Drazen, J., Frizelle, F., Haug, C., Hoey, J., Horton, R., Kotzin, S., Laine,
C., Marusic, A., Overbeke, A., et al. (2004). Clinical trial registration: A statement from

the International Committee of Medical Journal Editors. Journal of the American Medical
Association, 292(11):1363–1364.

Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton, Florida:
Chapman & Hall/CRC.

Fisher, R. A. (1925). Theory of statistical estimation. Proceedings of the Cambridge

Philosophical Society, 22:700–725.

Gardner, M. J., and Altman, D. G. (1986). Confidence intervals rather than p values: Estimation

rather than hypothesis testing. British Medical Journal, 292(6522):746–750.

Goffman, W. (1964). A searching procedure for information retrieval. Information Storage and

Retrieval, 2:73–78.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics, 6:65–70.

Järvelin, K., and Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems, 20(4):422–446.

Kelly, D., Fu, X., and Shah, C. (2007). Effects of Rank and Precision of Search Results on
Users’ Evaluations of System Performance. Technical Report 2007-02. University of North

Carolina, Chapel Hill.

Lenhard, J. (2006). Models and statistical inference: The controversy between Fisher and

Neyman-Pearson. British Journal for the Philosophy of Science, 57(1).

Moffat, A., Webber, W., and Zobel, J. (2007). Strategic system comparisons via targeted
relevance judgments. In Proceedings of the 30th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 375–382. Amsterdam, The

Netherlands.

Moffat, A., and Zobel, J. (2008). Rank-biased precision for measurement of retrieval
effectiveness. ACM Transactions on Information Systems, 27(1):1–27.

Najork, M. A., Zaragoza, H., and Taylor, M. J. (2007). HITS on the Web: How does it compare?
In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 471–478. Amsterdam, The Netherlands.

Chapter 12 Measuring Effectiveness466

Robertson, S. (2006). On GMAP – and other transformations. In Proceedings of the 15th

ACM International Conference on Information and Knowledge Management, pages 78–83.
Arlington, Virginia.

Sakai, T., and Kando, N. (2008). On information retrieval metrics designed for evaluation with

incomplete relevance assessments. Information Retrieval, 11(5):447–470.

Sanderson, M., and Joho, H. (2004). Forming test collections with no system pooling. In Proceed-

ings of the 27th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 33–40. Sheffield, England.

Sanderson, M., and Zobel, J. (2005). Information retrieval system evaluation: effort, sensitivity,

and reliability. In Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 162–169. Salvador, Brazil.

Savoy, J. (1997). Statistical inference in retrieval effectiveness evaluation. Information

Processing & Management, 33(4):495–512.

Shah, C., and Croft, W. B. (2004). Evaluating high accuracy retrieval techniques. In Proceedings

of the 27th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 2–9. Sheffield, England.

Smucker, M., Allan, J., and Carterette, B. (2007). A comparison of statistical significance tests

for information retrieval evaluation. In Proceedings of the 16th ACM conference on Conference

on Information and Knowledge Management, pages 623–632. Lisbon, Portugal.

Soboroff, I., Nicholas, C., and Cahan, P. (2001). Ranking retrieval systems without relevance

judgments. In Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 66–73. New Orleans, Louisiana.

Spärck Jones, K., Robertson, S. E., and Sanderson, M. (2007). Ambiguous requests: Implications

for retrieval tests. ACM SIGIR Forum, 41(2):8–17.

Thomas, L. (1997). Retrospective power analysis. Conservation Biology, 11(1):276–280.

Turpin, A., and Scholer, F. (2006). User performance versus precision measures for simple

search tasks. In Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 11–18. Seattle, Washington.

van Zwol, R., Murdock, V., Garcia Pueyo, L., and Ramirez, G. (2008). Diversifying image

search with user generated content. In Proceedings of the 1st ACM International Conference

on Multimedia Information Retrieval, pages 67–74. Vancouver, Canada.

Vee, E., Srivastava, U., Shanmugasundaram, J., Bhat, P., and Amer-Yahia, A. (2008). Effi-

cient computation of diverse query results. In Proceedings of the 24th IEEE International

Conference on Data Engineering, pages 228–236. Cancun, Mexico.

Voorhees, E., and Harman, D. (1999). Overview of the eighth text retrieval conference. In

Proceedings of the 8th Text REtrieval Conference, pages 1–24. Gaithersburg, Maryland.

Voorhees, E.M. (2000). Variations in relevance judgments and the measurement of retrieval

effectiveness. Information Processing & Management, 36(5):697–716.

12.8 Bibliography 467

Voorhees, E.M. (2004). Overview of the TREC 2004 Robust Track. In Proceedings of the 13th

Text REtrieval Conference. Gaithersburg, Maryland.

Voorhees, E.M., and Dang, H. T. (2005). Overview of the TREC 2005 Question Answering

track. In Proceedings of the 14th Text REtrieval Conference. Gaithersburg, Maryland.

Voorhees, E.M., and Harman, D. K. (2005). The Text REtrieval Conference. In Voorhees,

E.M., and Harman, D. K., editors, TREC — Experiment and Evaluation in Information

Retrieval, chapter 1, pages 3–20. Cambridge, Massachusetts: MIT Press.

Webber, W., Moffat, A., and Zobel, J. (2008a). Score standardization for inter-collection

comparison of retrieval systems. In Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 51–58. Singapore.

Webber, W., Moffat, A., and Zobel, J. (2008b). Statistical power in retrieval experimentation.

In Proceedings of the 17th ACM Conference on Information and Knowledge Management,

pages 571–580. Napa, California.

Yilmaz, E., and Aslam, J.A. (2008). Estimating average precision when judgments are

incomplete. International Journal of Knowledge and Information Systems, 16(2):173–211.

Yilmaz, E., Kanoulas, E., and Aslam, J. A. (2008). A simple and efficient sampling method
for estimating AP and NDCG. In Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 603–610. Singapore.

Zhai, C., Cohen, W. W., and Lafferty, J. (2003). Beyond independent relevance: Methods
and evaluation metrics for subtopic retrieval. In Proceedings of the 26th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 10–17.

Toronto, Canada.

Zobel, J. (1998). How reliable are the results of large-scale information retrieval experiments?

In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 307–314. Melbourne, Australia.

13 Measuring Efficiency

Chapter 12 discusses methods for measuring the effectiveness of search engines, that is, the

quality of the search results they produce. However, the quality of the results is only one

criterion for the overall usefulness of a retrieval system. A second and equally important aspect

is its efficiency. While effectiveness describes how well a system is doing the job it was designed

for, efficiency refers to the system’s resource consumption while doing that job.

In the context of search engines, efficiency can refer to one of three different aspects: time

efficiency (How fast is it?), space efficiency (How much memory/disk does it need?), or cost

efficiency (How much does it cost to set it up and keep it running?). All three aspects interact

with each other closely. For instance, by spending more money one can increase the system’s

memory resources, which in turn may make it run faster because more data can be held in

RAM; by applying more complicated index compression techniques, we may be able to decrease

the memory requirements, which may reduce the overall cost but will probably also make query

processing slower, due to the more complex decompression routines.

The discussion in this chapter is largely limited to time efficiency considerations, because time

efficiency is the only efficiency aspect that is visible to the search engine’s users and that may

even be considered an aspect of its effectiveness: Faster is better (most of the time). Throughout

the chapter we treat the terms performance and time efficiency as synonyms and use them to

refer to query speed (e.g., seconds per query, queries per second).

The remainder of this chapter consists of three parts. The first part (Section 13.1) is con-

cerned with performance measures: What does it mean for a search engine to be fast? We

introduce throughput and latency as the two principal performance measures. In the second

part (Section 13.2), we explore the relationship between those two measures, applying methods

from queueing theory to analyze system behavior under high load. The last part (Sections 13.3

and 13.4) focuses on two particular types of performance optimizations: query scheduling and

caching. Although neither of them is directly related to the measuring process, both can have a

great impact on the outcome of the measurement, and it is important to understand their roles

when designing a performance experiment.

13.1 Efficiency Criteria

Measuring the performance of a computer system is difficult. When personal computers became

a commodity in the mid-1980s, most manufacturers used the MHz rating of the CPU as the

main efficiency criterion when advertising their products. Over the years, the frequency of

13.1 Efficiency Criteria 469

the processor became an increasingly unreliable indicator of the system’s performance, as new

generations of microprocessors were introduced that were faster than their predecessors, despite

their similar — or even lower — clock frequency. With the recent shift of CPU manufacturer’s

focus away from CPU frequencies and instructions-per-clock-cycle execution rates, and toward

a greater number of CPU cores per computer, it is now more difficult than ever to estimate the

performance of a computer system based on its specifications.

People have tried to circumvent this problem by using actual performance measurements to

tell how fast or slow a computer is. One of the first such initiatives was headed by the Stan-

dard Performance Evaluation Corporation (SPEC), a nonprofit organization founded in 1988.

SPEC has been involved in the development of a multitude of benchmarks that measure various

performance aspects of computer systems. Their SPECfp benchmark, for instance, focuses on

the computer’s floating-point unit. The SPECfp score is an indicator of the computer’s per-

formance on tasks that require extensive numerical computations, such as physical simulations

or 3D graphics. The SPECweb2005 benchmark, on the other hand, is designed to measure the

computer’s performance in tasks that a Web server might typically do: serving HTML pages,

generating dynamic content using PHP, and so on. The full list of benchmarks can be found on

SPEC’s Web site1.

For search engines, no standardized array of performance benchmarks exists. Even if one did,

it is not clear how useful it would be, given that a deployment decision for a particular ranking

algorithm always represents an efficiency-versus-effectiveness trade-off. As an example, consider

the pseudo-relevance feedback mechanism from Section 8.6. The evaluation results in Table 8.2

(page 279) show that precision can be increased substantially by applying pseudo-relevance

feedback. However, doing so requires a second pass over the data and thus makes the search

engine slower. Without conducting a user study it is difficult, if not impossible, to tell whether

pseudo-relevance feedback actually improves the overall quality of the search engine. In practice,

because of the substantial time and cost overhead associated with a user study, such trade-offs

are often subject to policy decisions that are not backed up by experimental data. Because there

is no general solution to this problem, we will ignore it and assume that the search engine’s

ranking function is fixed, which allows us to focus exclusively on the system’s efficiency.

13.1.1 Throughput and Latency

When fine-tuning the performance of a search engine, we often find ourselves in a situation in

which there are two competing implementations (both producing the same search results), and

we would like to know which one is better. The two most common performance measures that

can help answer this question are throughput and latency.

1 www.spec.org

Chapter 13 Measuring Efficiency470

• Throughput refers to the number of queries a search engine processes within a given

period of time. It is usually given in queries per second (qps). If a search engine processes

700 queries in 5 seconds, it achieves 140 qps.

When we refer to throughput, we usually mean theoretical throughput, also known as

service rate, which is the fastest possible rate at which the system can process queries.

A closely related measure is service time — the amount of time per query that the

processor(s) is/are actively working on the query. Service time is connected to service

rate via the formula

serviceRate =
m

serviceT ime
, (13.1)

where m is the number of processors in the system.

• Latency, also known as response time, is the amount of time that elapses from the

search engine’s receipt of the query until the results are sent to the user. It is measured

in seconds per query.

Latency can be measured on the server side or on the client side. The latter is referred

to as end-to-end latency; it is the time between the user issuing the query and her

receiving the search results. It includes network latency and is more indicative of user

satisfaction than the search engine’s query processing latency alone. However, when

conducting comparative performance evaluations, it is usually sufficient to focus on the

actual search latency, because the extra latency caused by the network is a constant that

is independent of the implementation.

Both latency and throughput are not very meaningful when reported for a single query. Instead,

they are usually aggregated for a large number of queries, thousands or millions, and then

reported as a mean: mean throughput or mean latency, similar to the way in which we report

effectiveness measures such as mean average precision (see Section 12.1).

Getting back to the question of which of our two implementations is better, we can answer the

question by using the same tools that we would apply for an effectiveness evaluation: by running

the same set of queries Q = {q1, . . . , qn} against both implementations, recording latency (or

service time) for each query qi, and computing a confidence interval for the difference between

the two implementations (see Section 12.3.2 for a reminder of how to compute and interpret

confidence intervals). If the confidence interval includes 0, we can treat this as evidence that

there is no substantial difference between the two implementations. Otherwise, we may assume

that one implementation is faster, and discard the other.

Compared with an effectiveness evaluation, a comparative performance evaluation has the

advantage that it does not require any human judgments. We can easily measure the search

engine’s service time for tens of thousands of queries, which allows us to reliably detect relative

performance differences well below 1%. Attaining a similar sensitivity level in an effectiveness

evaluation would be prohibitively expensive.

13.1 Efficiency Criteria 471

Latency �= Service time

One might be tempted to think of latency and service time (or, equivalently, latency and

throughput) as the same metric. However, the two are quite different. A system’s latency is

strictly greater than its service time, often considerably so. In addition to the time that is

actually spent working on the query, latency includes periods of waiting, such as:

• Waiting for the hard disk to deliver postings data if the index is not stored in main

memory. These periods of waiting do not count toward the system’s service time, as it

is possible to process other queries while waiting for postings to be read from disk.

• Waiting in the query queue until the CPU becomes available. Queueing effects can be a

major source of latency if the system is under heavy load (see Section 13.2).

• In a distributed search engine with n independent index servers, waiting for the remaining

n− i servers to return their search results when the first i servers are already done.

In addition to this lower-bound relationship, throughput and latency are often also in an

adversarial relationship in which improving the system’s performance according to one mea-

sure decreases its performance according to the other. This becomes apparent if we widen our

focus to include parallelism. Suppose we have a search engine that contains two index servers I1

and I2. Then there are at least two ways in which the query processing load can be split:

• Index replication. I2 is an exact replica of I1. Each maintains a copy of the full index.

When a query arrives, it is sent either to I1 or to I2, each with a 50% chance.

• Index partitioning. I1 and I2 each have an index for 50% of the collection. When a

query arrives, it is forwarded to both index servers. I1 and I2 each compute the top k

search results for their part of the index. When they are both done, the two result sets

are merged and the final results are sent to the user.

Let us compare both configurations with a single-server setup and analyze them with respect

to throughput and latency. Index replication increases throughput by 100%, because each index

server works on only 50% of the queries. It has no effect on latency, since each query is still

processed by only one server. Index partitioning improves both throughput and latency to a

similar degree, but the speedup is less than 100%, for multiple reasons:

• Some operations involved in processing a query have a cost that is independent of the

size of the index. For instance, if the index is stored on disk, the system always needs to

perform at least one disk seek per query term. This cost cannot be reduced by splitting

the collection in half.

• The computational complexity of the search/ranking process is not quite linear in the size

of the index. The MaxScore heuristic from Section 5.1.1 may be used to avoid scoring

documents that we know cannot be among the top search results. With MaxScore

enabled, the fraction of documents that need to be scored becomes smaller as the index

gets larger.

Chapter 13 Measuring Efficiency472

Hence, if our focus is primarily on throughput and there is no need to improve latency, then

index replication is the right choice.2 Otherwise, index partitioning may be more appropriate. A

large-scale search engine, facing latency and throughput issues at the same time, might employ

a combination of the two.

13.1.2 Aggregate Statistics and User Satisfaction

As with effectiveness measures, aggregate statistics for efficiency measures (e.g., average

throughput or average latency) are not always particularly meaningful. Consider two hypo-

thetical search systems A and B. System A always needs exactly 500 ms to process a query.

System B employs sophisticated caching strategies that allow it to process 90% of queries in 10

ms; for the remaining 10%, it requires 4.9 seconds per query. Both systems exhibit the same

average latency, but A provides a far better user experience because 10% of B’s users will be

greatly irritated by the unexpectedly high response time.

Admittedly, the above example is contrived and such extreme differences are rarely encoun-

tered in practice. Nonetheless, it exemplifies the kind of trouble we may run into if we rely

exclusively on average performance metrics. To overcome this problem, people often use per-

centiles instead of average values. For instance, a search engine company could have as one of

its goals that 99% of all queries be processed in less than 1 second. From a user’s perspective

this metric is far more meaningful than the average latency metric. It also has the welcome side

effect that it answers the latency-versus-throughput question alluded to in the previous section.

Latency now is no longer a free variable. We may fine-tune the system for optimal throughput,

subject to the condition that 99% of queries are processed in under 1 second.

13.2 Queueing Theory

Quite often the operators of a search engine are faced with determining the query capacity of

their search engine, that is, estimating the maximum throughput that can be achieved while still

meeting certain latency requirements, such as the 99% criterion from before. One way to do this

is to conduct a performance experiment by sending queries to the search engine (for instance, by

replaying a previously recorded query log) and gradually increasing the frequency with which

queries arrive at the system, until the predefined latency limit is reached. Unfortunately, it is

not always opportune or even feasible to run such an experiment. First, it consumes precious

computing resources that would otherwise be available for processing real queries. Second, if the

search engine is not yet in production, it might be difficult to obtain a query log that accurately

reflects the temporal distribution of query arrivals.

2 Aside from pure performance aspects, replication has an advantage over partitioning in that it provides
fault tolerance: If I1 or I2 fails, the system can still process queries, albeit at a reduced rate. With index
partitioning, if one of the index servers fails, the system will most likely be useless, as it will miss 50%
of the search results. Fault tolerance in distributed search engines is discussed in Chapter 14.

13.2 Queueing Theory 473

An alternative to conducting an actual performance experiment is to use mathematical models

to predict the outcome of the experiment, based on estimates of the search engine’s query

processing performance. Suppose we have an approximation of the mean service time per query.

Then we can use methods from queueing theory to compute the system’s average latency, given

the average query arrival rate. By inverting the computation it is possible to calculate the

maximum possible throughput, subject to predefined latency requirements.

The model that we employ to estimate latency, given average service time and query arrival

rate, is based on three fundamental assumptions:

1. The time difference between two consecutive query arrivals (the inter-arrival time) is

a random variable A that follows an exponential distribution, that is, with density

function

fA(x) = λ · e−λx (for x ≥ 0), (13.2)

where λ is the query arrival rate. E[A] =
∫∞
0 x · f(x, λ) dx = 1/λ is the average

time between two queries. This model is sometimes called a Poisson process because the

number of queries arriving in a time interval of fixed length follows a Poisson distribution

(Equation 8.34 on page 268).

2. The per-query service time is a random variable S that also follows an exponential

distribution, with density function

fS(x) = μ · e−μx (for x ≥ 0), (13.3)

where μ is the system’s service rate (i.e., its theoretical throughput). E[S] = 1/μ is the

average service time per query. We assume μ > λ, for otherwise the search engine will

not be able to process all incoming queries.

3. Queries are processed in a first-come-first-served (FCFS) fashion. The system always

works on one query at a time.

Assumption 1 is based on the insight that queries are largely independent of each other and

are distributed uniformly in time. The assumption is usually valid, at least if we limit ourselves

to short periods of time, such as a few minutes, perhaps half an hour. For longer time periods

(days or weeks) it does not hold, because users tend to be more active during the day than at

night, more active during the week than on weekends, and so forth.

Assumption 2 is not backed up by theoretical considerations but by service time distributions

observed in practice. Figure 13.1, for instance, shows the service time distribution (CPU time

only, not counting the time spent waiting for the hard drive) for proximity ranking (Figure 2.10

on page 61) and Okapi BM25 (Equation 8.48 on page 272), running the 10,000 queries from

the TREC Terabyte 2006 efficiency task against a schema-independent index for the GOV2

collection. Although the two ranking algorithms are quite different, per-query service time for

both algorithms can be modeled reasonably well by an exponential distribution with density

function fS(x) = μ ·e−μx, where μ = 4.37 qps for proximity ranking and μ = 0.75 qps for BM25.

Chapter 13 Measuring Efficiency474

 0

 2

 4

 6

 8

 0 0.2 0.4 0.6 0.8

Service time (seconds)

(a) Proximity ranking

Exponential distribution
Actual distribution

 0

 0.3

 0.6

 0.9

 1.2

 0 1 2 3 4

Service time (seconds)

(b) Okapi BM25

Exponential distribution
Actual distribution

Figure 13.1 Modeling per-query service time (i.e., CPU time) as a random variable with exponential distribu-
tion. (a) Proximity ranking (Figure 2.10) with mean service time E[S] = 0.23 seconds (μ = 4.37 qps). (b) Okapi
BM25 (Equation 8.48) with mean service time E[S] = 1.34 seconds (μ = 0.75 qps).

Assumption 3 is made for simplicity. Large-scale search engine installations usually employ

more complicated scheduling algorithms. When the system is under high load, choosing the

right scheduling algorithm may make a great difference in terms of latency. However, more

complicated scheduling algorithms can be quite difficult to analyze, so we ignore them for now.

We will revisit this topic in Section 13.3.

13.2.1 Kendall’s Notation

The queueing model described above corresponds to the M/M/c/∞/∞/F model in Kendall’s

notation, named after the British statistician David G. Kendall (not Maurice G. Kendall,

another British statistician, who invented Kendall’s τ):

• The first “M” denotes the query arrival process, which we assume to be Markovian (i.e.,

exponential).

• The second “M” denotes the service time distribution, which we also assume to be

Markovian.

• The “c” denotes the number of service channels (i.e., servers) in the system. For the

sake of simplicity, we limit ourselves to the case c = 1. However, note that this case also

covers distributed systems with n parallel servers in which each server is responsible for

1/n of the index.

• The first “∞” denotes the number of slots in the queue, which we assume to be infinite.

• The second “∞” denotes the size of the query population, which we also assume to be

infinite.

• The “F” denotes the queue discipline, that is, the order in which queries are processed

by the system. As mentioned before, we assume FCFS.

13.2 Queueing Theory 475

Because the last three parameters in the full Kendall notation are often the same (∞/∞/F),

it is not uncommon to use the shorthand notation M/M/c instead of the more cumbersome

M/M/c/∞/∞/F .

13.2.2 The M/M/1 Queueing Model

We now describe how to calculate the latency distribution of a search engine according to the

M/M/1 queueing model. Before we jump into the details of the calculation, however, let us

restate a handy theorem that is often used in queueing analysis.

Little’s Law (Little, 1961)

Let n be the average number of queries in the system (either being processed or waiting

in the queue) at a random point in time. Further, let λ be the query arrival rate. Then

the average query response time of the system, denoted as r, is

r =
n

λ
(13.4)

The proof sketch for Equation 13.4 is straightforward (a formal proof can be found in Little’s

paper). Consider a sufficiently long time interval of length t with q query arrivals (q = λ · t).
The total time spent in the system by these q queries, taken together, is rtotal = r · q. Since a

query can count toward rtotal only while it is in the system (either being processed or waiting in

the queue), we have rtotal = n · t and thus r = n/λ. Note that we do not make any assumptions

about the distribution of service time or inter-arrival time. Thus, Little’s law applies to any

queueing model, not just to the M/M/1 model.

To compute the average latency of our search engine, we first calculate the expected number

of queries in the system, at a random point in time. We view the search engine as a proba-

bilistic state machine in which state Zi represents “i queries in the system” (i.e., 1 query being

processed and i− 1 queries waiting in the queue). Each state has an associated probability pi:

the probability that, at a random point in time, the system is in state Zi. This type of state

machine is called a continuous Markov chain. It is shown in Figure 13.2.

We are interested in the transitions between two adjacent states Zi and Zi+1 and their relative

frequencies. Let T + denote a transition from Zi to Zi+1 and T− a transition in the opposite

direction. On average there are λ ·pi occurrences of T + per time unit and μ ·pi+1 occurrences of

T−. Because both the arrival process and the service process are assumed to be Markovian (i.e.,

memoryless), their relative number does not depend on the number of queries in the system.

Thus, the fraction
λ · pi

μ · pi+1
(13.5)

is the same for every i ≥ 0. The essential observation now is that, on average, both types of

transitions happen with exactly the same frequency. Obviously, T− cannot be more frequent

than T +, as a query can be processed only after it has arrived. T +, on the other hand, cannot

Chapter 13 Measuring Efficiency476

��

λ λ λ

��

μ

��

μ

�� ����

μ

Figure 13.2 A continuous Markov chain, describing the system’s query queue as a state machine
with infinitely many states. State Zi represents “i queries in the system”. The relative frequency of
Zi → Zi+1 and Zi+1 → Zi state transitions is given by the query arrival rate λ and the service rate μ,
respectively.

be more frequent than T−; if it were, then the average number of queries in the queue would

be infinite (and we would have λ ≥ μ). Hence, the two terms must have the same value:

λ · pi = μ · pi+1, (13.6)

or equivalently,

pi+1 =
λ

μ
· pi. (13.7)

For convenience, let us define ρ = λ/μ (ρ is called the traffic intensity, or utilization). Then we

have

pi = p0 · ρi ∀ i ≥ 0. (13.8)

Since the pi’s form a probability distribution, their sum is 1. This allows us to compute p0:

p0 ·
∞∑

i=0

ρi = 1 ⇔ p0 ·
1

1− ρ
= 1 ⇔ p0 = 1− ρ = 1− λ/μ. (13.9)

For N , the number of queries in the system, it then follows:

E[N] =
∞∑

i=0

i · pi =
∞∑

i=0

i · (1− ρ) · ρi =
ρ

1− ρ
. (13.10)

Finally, by applying Little’s law (Equation 13.4), we obtain:

E[R] =
E[N]

λ
=

1

μ(1 − ρ)
=

1

μ− λ
, (13.11)

where R is a random variable representing the per-query response time (i.e., latency). If the

service time S and the inter-arrival time A both follow an exponential distribution, then so does

13.2 Queueing Theory 477

Table 13.1 Key equations for the M/M/1 queueing model (λ: arrival rate;
μ: service rate).

Quantity Equation

Average utilization ρ = λ/μ

Average number of queries in the system E[N] = ρ/(1− ρ)

Average response time E[R] = 1/(μ− λ)

Response time distribution fR(x) = (μ− λ) · e−(μ−λ)x

the response time R (Harrison, 1993):

fR(x) = (μ− λ) · e−(μ−λ)x. (13.12)

For convenience, Table 13.1 restates the essential equations derived from the M/M/1 model.

13.2.3 Latency Quantiles and Average Utilization

Let us return to the hypothetical goal stated in Section 13.1.2: that the search engine’s latency

be less than 1 second for 99% of all queries. Suppose the engine, on average, requires 100 ms

per query (i.e., μ = 10). Then the density function for the engine’s response time is

fR(x) = (10− λ) · e−(10−λ)x (13.13)

and the fraction of queries with a latency less than 1 second is∫ 1

0

fR(x) dx = 1− eλ−10. (13.14)

For the 99% quantile, we have eλ−10 = 1 − 0.99, implying λ ≈ 5.4. That is, we can keep the

search engine’s average utilization at 54% and still achieve our stated goal of subsecond latency

for 99% of all queries. If our goal were a bit more ambitious, and we wanted 99.9% of queries to

have a latency below 1 second, then this would result in λ ≈ 3.1, corresponding to an average

utilization of 31%.

The above example illustrates the difference between the search engine’s theoretical through-

put (which is the same as its service rate) and the throughput it may realistically attain without

causing unreasonably high latency. In practice, an average utilization of more than 50% may

be considered exceptionally high and is rarely possible. Also, note that all our calculations are

based on the assumption that the arrival rate λ is a constant. This assumption is usually valid

only for short periods of time, perhaps a few minutes, but not for longer time intervals such

as a whole day, because of periodic fluctuations in user activity (most people prefer to sleep

at night). Due to changes in the arrival rate, long-term utilization levels of 20% or less are

quite common. Thus, it may be necessary to spend 5 times more on hardware resources than

predicted by a näıve throughput analysis that does not take latency into account.

Chapter 13 Measuring Efficiency478

13.3 Query Scheduling

Our derivation of the search engine’s latency R in the previous section assumed that queries are

always served in a first-come-first-served fashion. The rationale behind this queue discipline is

the idea of fairness: We don’t want Alice to receive her search results after Bob if she submits

her query before Bob does. FCFS guarantees that the order in which search results are returned

to the users is the same as the order in which the queries are received. However, if our primary

goal is not fairness but minimizing latency, then FCFS may not be the optimal strategy.

Consider the situation in which there are two queries qi and qi+1 waiting in the queue. Suppose

we know their respective service times si and si+1, with si = si+1 + δ (δ > 0). Then we can

swap the two queries, increasing qi’s latency by si+1 and decreasing qi+1’s latency by si, thus

reducing their average latency by δ/2.

A mechanism that changes the order in which queries are processed by the search engine is

called a scheduling algorithm. For the sake of brevity, we limit our discussion to the following

three algorithms:

• FCFS (first-come, first-served). This is the scheduling algorithm assumed in our

discussion so far.

• SJF (shortest job first). Whenever the search engine is done processing a query and has

to pick the next one from the queue, it selects the one with the smallest predicted service

time.

• DDS (deadline-driven scheduling). For each query in the system we define its deadline to

be 1 second after its arrival. Whenever the search engine is done with a query, it reorders

the queries in the queue to minimize the number of queries that miss their deadline. In

case of a tie (i.e., two orderings lead to the same number of missed deadlines), the engine

selects the ordering that minimizes average latency.

Note that predicting the service time for a query q can be difficult. However, it is often sufficient

to use a rough estimate, which can be obtained from the lengths of the query terms’ postings

lists and the number of terms in the query.

Figure 13.3 shows the outcome of an experiment in which we simulated a search engine with

service rate μ = 10 qps. We had it process queries for varying arrival rates between λ = 1 qps

and λ = 8 qps (i.e., with average utilization between 10% and 80%). Each simulation lasted

for several hours (simulated time) and involved a few hundred thousand queries. The figure

depicts the engine’s average latency and the fraction of queries with latency above 1 second for

each of the three scheduling algorithms. You can see that, under high load, choosing the right

scheduling algorithm can make a great difference. At ρ = 0.7, for instance, FCFS causes 5% of

all queries to miss their deadline. With DDS, whose explicit goal is to minimize this number,

only 1% miss their deadline.

13.4 Caching 479

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8

Average utilization ρ (= λ/μ)

(a) Average latency (sec)

FCFS
SJF
DDS

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8

Average utilization ρ (= λ/μ)

(b) Percent of queries with latency > 1 sec

FCFS
SJF
DDS

Figure 13.3 Simulated latency for different query scheduling algorithms, at various arrival rates λ. The service
rate is fixed at μ = 10 qps.

Latency cost functions

Despite their ability to reduce overall query latency, SJF and DDS share a significant shortcom-

ing: starvation. If a query has a high predicted service time, it may have to wait a long time

until it gets selected for processing. SJF, for instance, although reducing the fraction of queries

with latency above 1 second from 5% to 2.5% (for ρ = 0.7), increases the fraction with latency

above 2 seconds from 0.02% to 0.06%. With DDS this effect is slightly less pronounced, but it

still causes latency to be above 2 seconds for 0.05% of the query stream.

In general, a single number, such as the fraction of queries below a certain latency threshold,

can never fully describe the search engine’s performance and its effects on user satisfaction.

By decreasing latency for one class of queries we inevitably increase latency for another class.

Thus, before choosing a concrete scheduling algorithm, we have to specify our overall goal,

perhaps by defining a cost function that tells us how undesirable a given latency level is and

then minimizing the average cost per query.

A linear cost function c(x) = x represents the goal of minimizing average latency. A polyno-

mial cost function c(x) = xq (for q > 1) takes into account that users tend to be irritated if the

search engine’s latency exhibits a high level of variance, with some queries taking considerably

longer than others. An appropriate cost function can be found only through user studies. After

one has been chosen, we can proceed to find a scheduling algorithm that is optimized for it.

13.4 Caching

In the previous section we explored ways to reduce the search engine’s latency without changing

the average service time. The query scheduling algorithms that we discussed do not require any

modifications to the query processing logic; they achieve their goal simply by changing the order

Chapter 13 Measuring Efficiency480

in which queries are processed by the search engine. In this section we focus on a complementary

optimization: reducing the average service time by caching frequently used pieces of data.

Caching is a classic time-versus-space trade-off. If we give the system additional memory

resources, it may use them to store the search results for previous queries. Whenever the search

engine receives a query, it first checks its internal cache to see whether it already has the results

for that query. Only if it does not find them in the cache does it need to actually process the

query to obtain the search results.

At first it might seem that caching is unrelated to the problem of conducting reliable and

meaningful performance measurements. However, it is important to understand the effect of

caching on the characteristics of the query stream. For instance, the average query length in the

AOL query log3 is about 2.8 terms. If we assume a result cache with infinite capacity, so that

each unique query is processed exactly once, then this figure increases to 3.5 terms per query,

because longer queries are more likely to be unique. Thus, it can make a great difference whether

we are measuring the pre-cache or the post-cache service rate of our search engine. Moreover,

some caches attain their target hit rate only after some period of time (the warmup period),

implying that, after a restart, the search engine’s effective service rate can be be considerably

lower than expected.

13.4.1 Three-Level Caching

When designing a caching system for a search engine, we first have to ask ourselves what kinds

of data are worth caching. The most obvious answer is “search results”. If user A types in

a search query and a few minutes later user B types in the same query, there is no need to

reprocess the whole query. Instead, the search engine should cache the final search results it

produced for user A and send the cached version to user B.

Caching search results works well for popular queries, such as “elections” and “global warm-

ing”, that are issued often. However, it has its limitations. Just like term frequencies in a text

collection, query frequencies roughly follow a Zipfian distribution, where the frequency f(i) of

the i-th most common item is

f(i) = c · i−α, (13.15)

for some constant c and α > 1 (see Section 1.3.3 for more details on Zipfian distributions). For

query distributions, the parameter α is usually very close to 1, implying that the distribution

has a “long tail” with a large number of singletons. Baeza-Yates et al. (2007) report in their

analysis of a one-year query log from www.yahoo.co.uk that 44% of the total query volume was

caused by singletons. On average, each query in the log was asked only about twice during the

whole period. Thus, even with a cache of infinite capacity, the cache hit rate would not have

3 The AOL query log contains approximately 20 million queries received by AOL’s search engine between
March and May 2006. It was released to the public in early August 2006 and, after a heated debate
over privacy issues, was taken off-line a few days later. Copies of the data can still be found on the
Internet, by typing “aol query log” into one’s favorite search engine.

13.4 Caching 481

been higher than 50%. Needless to say, keeping a query in the cache for more than a few days

is not acceptable in the context of an ever-changing text collection such as the Web. Cache hit

rates lower than 50% are therefore not unusual.

Long and Suel (2005) address this limitation by proposing a cache hierarchy that interacts

with the search engine on three different levels:

1. Search results. From a per-query point of view, this is the most effective caching

strategy. When a query is found in the cache, the search engine can return the results

almost instantaneously, reducing the service time from several hundred milliseconds to

a few milliseconds. In a distributed search engine the cache is located either in the query

broker or in a dedicated cache server. There is no need to even contact the index servers

when the query is found in the cache.

Unfortunately, as mentioned before, it is usually impossible to cache the search results

for more than 50% of the query stream. Limiting the impact even further, the fraction of

the query stream that can be cached tends to be dominated by short queries comprising

2 or 3 terms, because many of the longer queries are singletons. Thus, the total savings

achieved by result caching are lower than what might be expected from the cache’s hit

rate. In the experiments conducted by Long and Suel, a hit rate of 50% could decrease

the average cost per query by only 33%, because cached queries were shorter, and

therefore cheaper to process, than uncached queries.

2. List intersections. Many search engines employ a conjunctive retrieval model

(Boolean AND). In order to find the set of documents that contain all terms in the

given query, they have to intersect the postings lists of all query terms. This may be

done in a term-at-a-time fashion. In a first step, the postings lists for the first two query

terms are intersected; in a second step, the third term’s list is combined with the result

of the first step; and so forth.

By caching the intersection of common pairs of query terms, we can reduce the amount

of work that needs to be done per query. For instance, when processing the query

〈“global”, “warming”, “facts”〉, we may cache the intersection of “global” and “warm-

ing”. At a later time, when we see the query 〈“global”, “warming”, “controversy”〉, we

can reduce its execution cost by reusing the cached intersection from the previous query.

Long and Suel estimate that intersection caching can reduce the average service time

by about 50% in a disk-based index configuration. If the index is kept in memory, the

speedup is likely to be smaller.

3. Postings lists. In addition to the caching performed at the previous two levels, we may

reduce the search engine’s query processing cost by keeping frequently accessed postings

lists in memory. The fruitfulness of this approach depends on whether intersection

caching has been implemented or not. According to Long and Suel, if the engine caches

search results but not intersections, then adding the list cache may reduce the average

query cost by around 45%. However, if intersections are cached as well, the list cache

saves only around 20%.

Chapter 13 Measuring Efficiency482

Turpin et al. (2007) add to this list a fourth item: documents. Caching documents, although it

has no impact on the search process, can speed up the generation of the snippets displayed to

the users — an aspect that is often ignored in (academic) information retrieval research.

13.4.2 Cache Policies

After we have decided what types of data we want to cache, we still have to address one final

question: Which items should be kept in the cache? Since the cache is unlikely to be large enough

to hold all possible search results, list intersections, and postings lists, we have to decide which

items are worth keeping in the cache and which are not.

A cache policy (or cache algorithm) is an algorithm that, given a set of items and the cache’s

capacity, decides which items should be stored in the cache. Cache policies can be static or

dynamic. When a static policy is used, the set of cached items is determined ahead of time and

is kept fixed after the engine is started. It may be updated periodically, perhaps at the same

time that an index refresh takes place. With a dynamic policy the set of cached items may

change whenever the system encounters a new object (e.g., postings list) that it deems worth

adding to the cache. Dynamic cache policies are also called replacement algorithms, because

adding one item to the cache usually implies evicting another item.

General-purpose cache policies

Caching is a concept that is used in virtually all areas of computer science. We may therefore

want to reuse existing cache policies that have proved to be successful in other areas. Two such

policies are:

• Least Recently Used (LRU). Whenever a new item is added to a cache that has

already reached its capacity, the item in the cache that has not been accessed for the

longest time is evicted.

• Least Frequently Used (LFU). When a new item is added to a cache that has already

reached its capacity, the item in the cache that has been accessed the least frequently

(since it was loaded into the cache) is evicted.

LRU and LFU tend to work reasonably well when operating on a set of (approximately) fixed-

size objects, such as the top-k search results for a set of queries, but they quickly reach their

limits when confronted with objects of vastly different size. For example, if we näıvely applied

LRU to the three-level cache hierarchy from the previous section, over 90% of the cache would

be occupied by postings lists, simply because they are so much larger than intersections or

search results. This might not be the most economical use of the cache.

Cost-aware cache policies

One way to address the problem described above is to split the cache into three buckets, one

for each caching level. The size of each bucket might then be chosen based on past experience

13.4 Caching 483

with the respective type of caching. If the bucket sizes are chosen well, this approach may yield

acceptable performance. However, we can do better than that. The fundamental insight is that

each cacheable item x may be represented by the following three attributes:

• cx is the cost incurred by loading x into the cache. It is proportional to x’s size in bytes.

• gx is the gain we expect when using the cached version of x instead of its uncached

version. Depending on x’s type (i.e., its level in the cache hierarchy), this may be the

service time of a query, the time required to compute a list intersection, or the time

required to load a postings list into memory.

• px is the number of times we expect x to be used during a fixed period of time. You may

think of px as a probability.

The expected net benefit we realize by loading x into the cache is

ENB(x) =
px · gx

cx
. (13.16)

Of course, this formula is not limited to search engines. Cost-aware caching is useful in many

applications, including WWW proxies (Cao and Irani, 1997).

Equation 13.16 implicitly defines a caching policy: Sort all items x according to their ENB;

store the top n items in the cache, where n is chosen such that the combined size of the top n

items does not exceed the capacity of the cache. This cache policy has two convenient properties.

First, it naturally covers all three item types discussed in Section 13.4.1. Second, the parameters

cx, gx, and px can be estimated from past query logs. The second property is important because

it allows us to turn ENB into a static policy in which we preload the top n items into the cache

during initialization. Assuming that the distribution of queries and query terms changes only

slowly over time, this static policy can achieve close-to-optimal performance.

It is sometimes argued that the policy described above is suboptimal because it may leave

a small portion of the cache unused (internal fragmentation). However, this argument is only

of theoretical interest. In practice, each cache item is small compared to the total size of the

cache, and the space wasted due to fragmentation is negligible.

13.4.3 Prefetching Search Results

If we have access to an existing query log, we can use it to prefetch results for queries that we

expect to be asked in the near future, even if they are not currently in the cache. As an example,

suppose we are operating a search engine for news, blogs, or other time-sensitive information

for which we cannot afford to reuse cached search results for more than an hour or two. At the

end of each day, cache hit rates may be as high as 30–40%, but as our users go to sleep, traffic

ebbs away, and in the morning the cache hit rate will be close to 0.

Under the assumption that tomorrow’s queries will be similar to today’s, we can proactively

issue a set of popular queries so that their results are in the cache when the users wake up in

Chapter 13 Measuring Efficiency484

the morning. Result prefetching does not reduce the overall load on the search engine, but it

decreases its average latency by improving the cache hit rate for user-issued queries. In addition,

it can help decrease the load difference between busy and quiet times of the day, which may be

important if the search engine is operating near its theoretical throughput.

We may even take this idea a step further and continuously prefetch results for queries that

we anticipate will be issued at a particular time of day. Beitzel et al. (2004) analyze a weeklong

query log from a commercial Web search engine and find that “[p]ersonal finance, for example,

becomes more popular from 7–10AM, while music queries become less popular.” Of course, this

strategy may only be expected to be beneficial if cache items expire or are evicted from the

cache before the same query is reissued the next day.

13.5 Further Reading

An easy-to-read introduction to various aspects of measuring computer performance is provided

by Lilja (2000). For an in-depth discussion of queueing analysis, including models that go beyond

the simplistic M/M/1 model from Section 13.2, see Gross et al. (2008) or Kleinrock (1975).

The three-level cache hierarchy discussed in Section 13.4.1 was first proposed by Long and

Suel (2005). It is based on a two-level cache hierarchy examined by Saraiva et al. (2001).

Baeza-Yates et al. (2007) investigate several algorithms for caching results and postings lists,

including the QtfDf algorithm, an approximation of the ENB policy from Section 13.4.2.

Garcia (2007) examines a large variety of cache policies, including cost-aware algorithms. Fagni

et al. (2006) discuss ways to divide the search engine’s cache into a static portion and a dynamic

portion, using different algorithms for each part. They show that hybrid static/dynamic caching

can outperform pure static and pure dynamic strategies, due to its ability to simultaneously

make use of past query statistics and to adapt to changing query distributions. Zhang et al.

(2008) study the interaction between list caching and index compression.

On several occasions, TREC organizers added efficiency-oriented tasks to the usual

effectiveness-based evaluation conducted at TREC. Two such efforts were the VLC (very large

corpus) and TB (terabyte) tracks. They are documented by Hawking and Thistlewaite (1997),

Hawking et al. (1998), Clarke et al. (2005), and Büttcher et al. (2006).

13.6 Exercises

Exercise 13.1 Suppose a search engine can process queries at a rate of μ = 20 qps. Queries

arrive at a rate of λ = 15 qps. Assuming that service time and inter-arrival time follow an

exponential distribution, what is the search engine’s average latency? What fraction of the

query stream has a latency above 1 second? What is the maximum throughput achievable by

the search engine such that 99.9% of all queries have a latency below 1 second?

13.7 Bibliography 485

Exercise 13.2 For each of the two scheduling algorithms SJF and DDS (discussed in

Section 13.3), give a latency cost function of the form

c : [0,∞)→ [0,∞),

mapping from latency to cost, such that the average cost per query is minimized by the respective

algorithm.

Exercise 13.3 Consider an infinite query stream in which the query distribution follows a

power law with

p(i) =
c

i1.05
,

where p(i) is the probability of the i-th most frequent query and c is a constant such that∑∞
i=1 p(i) = 1. Using a static cache policy that selects the 1,000,000 most frequent queries,

what fraction of the the query stream can be answered from the cache? You may find the

following approximation helpful:

∞∑
i=1

i−α ≈ 0.5772 +

∫ ∞

1

x−αdx .

Exercise 13.4 Consider the static cache policy QtfDf. The policy caches the postings lists

of the n top-scoring terms, where the score of a term t is defined as follows:

score(t) =
fQ(t)

Nt
,

where fQ(t) is the number of times t appears in a query (according to an existing query log)

and Nt is the number of documents that contain t. Under what conditions is QtfDf equivalent

to the ENB policy from Section 13.4.2?

13.7 Bibliography

Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., and Silvestri, F.

(2007). The impact of caching on search engines. In Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages

183–190. Amsterdam, The Netherlands.

Beitzel, S. M., Jensen, E.C., Chowdhury, A., Grossman, D., and Frieder, O. (2004). Hourly
analysis of a very large topically categorized Web query log. In Proceedings of the 27th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 321–328. Sheffield, England.

Chapter 13 Measuring Efficiency486

Büttcher, S., Clarke, C. L. A., and Soboroff, I. (2006). The TREC 2006 terabyte track. In
Proceedings of the 15th Text REtrieval Conference (TREC 2006). Gaithersburg, Maryland.

Cao, P., and Irani, S. (1997). Cost-aware WWW proxy caching algorithms. In Proceedings of the
1997 USENIX Symposium on Internet Technologies and Systems, pages 193–206. Monterey,
California.

Clarke, C. L. A., Scholer, F., and Soboroff, I. (2005). The TREC 2005 terabyte track. In
Proceedings of the 14th Text REtrieval Conference. Gaithersburg, Maryland.

Fagni, T., Perego, R., Silvestri, F., and Orlando, S. (2006). Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historical usage data.
ACM Transactions on Information Systems, 24(1):51–78.

Garcia, S. (2007). Search Engine Optimisation Using Past Queries. Ph.D. thesis, RMIT

University, Melbourne, Australia.

Gross, D., Shortle, J., Thompson, J., and Harris, C. (2008). Fundamentals of Queueing Theory
(4th ed.). New York: Wiley-Interscience.

Harrison, P. G. (1993). Response time distributions in queueing network models. In Performance
Evaluation of Computer and Communication Systems, Joint Tutorial Papers of Performance
’93 and Sigmetrics ’93, pages 147–164. Santa Clara, California.

Hawking, D., Craswell, N., and Thistlewaite, P. (1998). Overview of TREC-7 very large
collection track. In Proceedings of the 7th Text REtrieval Conference. Gaithersburg, Maryland.

Hawking, D., and Thistlewaite, P. (1997). Overview of TREC-6 very large collection track. In
Proceedings of the 6th Text REtrieval Conference, pages 93–106. Gaithersburg, Maryland.

Kleinrock, L. (1975). Queueing Systems. Volume 1: Theory. New York: Wiley-Interscience.

Lilja, D. J. (2000). Measuring Computer Performance: A Practitioner’s Guide. New York:
Cambridge University Press.

Little, J.D. C. (1961). A proof for the queueing formula L=λW. Operations Research, 9(3):383–
387.

Long, X., and Suel, T. (2005). Three-level caching for efficient query processing in large web

search engines. In Proceedings of the 14th International Conference on World Wide Web,
pages 257–266. Chiba, Japan.

Saraiva, P.C., de Moura, E. S., Ziviani, N., Meira, W., Fonseca, R., and Riberio-Neto, B.

(2001). Rank-preserving two-level caching for scalable search engines. In Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 51–58. New Orleans, Louisiana.

Turpin, A., Tsegay, Y., Hawking, D., and Williams, H. E. (2007). Fast generation of result
snippets in web search. In Proceedings of the 30th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 127–134. Amsterdam,
The Netherlands.

Zhang, J., Long, X., and Suel, T. (2008). Performance of compressed inverted list caching
in search engines. In Proceeding of the 17th International Conference on World Wide Web,
pages 387–396. Beijing, China.

V Applications and Extensions

14 Parallel Information Retrieval

Information retrieval systems often have to deal with very large amounts of data. They must be

able to process many gigabytes or even terabytes of text, and to build and maintain an index

for millions of documents. To some extent the techniques discussed in Chapters 5–8 can help us

satisfy these requirements, but it is clear that, at some point, sophisticated data structures and

clever optimizations alone are not sufficient anymore. A single computer simply does not have

the computational power or the storage capabilities required for indexing even a small fraction

of the World Wide Web.1

In this chapter we examine various ways of making information retrieval systems scale to very

large text collections such as the Web. The first part (Section 14.1) is concerned with parallel

query processing, where the search engine’s service rate is increased by having multiple index

servers process incoming queries in parallel. It also discusses redundancy and fault tolerance

issues in distributed search engines. In the second second part (Section 14.2), we shift our

attention to the parallel execution of off-line tasks, such as index construction and statistical

analysis of a corpus of text. We explain the basics of MapReduce, a framework designed for

massively parallel computations carried out on large amounts of data.

14.1 Parallel Query Processing

There are many ways in which parallelism can help a search engine process queries faster. The

two most popular approaches are index partitioning and replication. Suppose we have a total

of n index servers. Following the standard terminology, we refer to these servers as nodes. By

creating n replicas of the index and assigning each replica to a separate node, we can realize an

n-fold increase of the search engine’s service rate (its theoretical throughput) without affecting

the time required to process a single query. This type of parallelism is referred to as inter-query

parallelism, because multiple queries can be processed in parallel but each individual query

is processed sequentially. Alternatively, we could split the index into n parts and have each

node work only on its own small part of the index. This approach is referred to as intra-query

1 While nobody knows the exact size of the indexable part of the Web, it is estimated to be at least 100
billion pages. In August 2005, when Yahoo! last disclosed the size of its index, it had reached a total
size of 19.2 billion documents (http://www.ysearchblog.com/archives/000172.html).

14.1 Parallel Query Processing 489

�������	
������������� �������
�����������

���	
���

�
�
�

�

� � � � �

� �

� � �

� �

� � �

� � �

� � �

� �

�� �� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

�� ��� �� ��� �� ���

���	
���

�
�
�

�

� � � � �

� �

� � �

� �

� � �

� � �

� � �

� �

�� �� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

�� �

����

�� �

����

�� �

����

Figure 14.1 The two prevalent index partitioning schemes: document partitioning and term parti-
tioning (shown for a hypothetical index containing 8 terms and 9 documents).

parallelism, because each query is processed by multiple servers in parallel. It improves the

engine’s service rate as well as the average time per query.

In this section we focus primarily on methods for intra-query parallelism. We study index par-

titioning schemes that divide the index into independent parts so that each node is responsible

for a small piece of the overall index.

The two predominant index partitioning schemes are document partitioning and term parti-

tioning (visualized in Figure 14.1). In a document-partitioned index, each node holds an index

for a subset of the documents in the collection. For instance, the index maintained by node 2

in Figure 14.1(a) contains the following docid lists:

L1 = 〈4, 6〉, L2 = 〈5〉, L4 = 〈4〉, L5 = 〈6〉, L7 = 〈4, 6〉.

In a term-partitioned index, each node is responsible for a subset of the terms in the collection.

The index stored in node 1 in Figure 14.1(b) contains the following lists:

L1 = 〈1, 3, 4, 6, 9〉, L2 = 〈2, 5〉, L3 = 〈2, 3, 8〉.

The two partitioning strategies differ greatly in the way queries are processed by the system. In

a document-partitioned search engine, each of the n nodes is involved in processing all queries

received by the engine. In a term-partitioned configuration, a query is seen by a given node only

if the node’s index contains at least one of the query terms.

Chapter 14 Parallel Information Retrieval490

14.1.1 Document Partitioning

In a document-partitioned index, each index server is responsible for a subset of the documents

in the collection. Each incoming user query is received by a frontend server, the receptionist,

which forwards it to all n index nodes, waits for them to process the query, merges the search

results received from the index nodes, and sends the final list of results to the user. A schematic

of a document-partitioned search engine is shown in Figure 14.2.

The main advantage of the document-partitioned approach is its simplicity. Because all index

servers operate independently of each other, no additional complexity needs to be introduced

into the low-level query processing routines. All that needs to be provided is the receptionist

server that forwards the query to the backends and, after receiving the top k search results from

each of the n nodes, selects the top m, which are then returned to the user (where the value

of m is typically chosen by the user and k is chosen by the operator of the search engine). In

addition to forwarding queries and search results, the receptionist may also maintain a cache

that contains the results for recently/frequently issued queries.

If the search engine maintains a dynamic index that allows updates (e.g., document inser-

tions/deletions), then it may even be possible to carry out the updates in a distributed fashion,

in which each node takes care of the updates that pertain to its part of the overall index. This

approach eliminates the need for a complicated centralized index construction/maintenance pro-

cess that involves the whole index. However, it is applicable only if documents may be assumed

to be independent of each other, not if inter-document information, such as hyperlinks and

anchor text, is part of the index.

When deciding how to divide the collection across the n index nodes, one might be tempted to

bias the document-node assignment in some way — for instance, by storing similar documents

in the same node. In Section 6.3.7 we have seen that the index can be compressed better if

the documents in the collection are reordered according to their URL, so that documents with

similar URLs receive nearby docids. Obviously, this method is most effective if all pages from

the same domain are assigned to the same node. The problem with this approach is that it

may create an imbalance in the load distribution of the index servers. If a given node primarily

contains documents associated with a certain topic, and this topic suddenly becomes very

popular among users, then the query processing load for that node may become much higher

than the load of the other nodes. In the end this will lead to a suboptimal utilization of the

available resources. To avoid this problem, it is usually best to not try anything fancy but to

simply split the collection into n completely random subsets.

Once the index has been partitioned and each subindex has been loaded into one of the nodes,

we have to make a decision regarding the per-node result set size k. How should k be chosen

with respect to m, the number of search results requested by the user? Suppose the user has

asked for m = 100 results. If we want to be on the safe side, we can have each index node

return k = 100 results, thus making sure that all of the top 100 results overall are received by

the receptionist. However, this would be a poor decision, for two reasons:

14.1 Parallel Query Processing 491

Figure 14.2 Document-partitioned query processing with one receptionist and several index servers. Each
incoming query is forwarded to all index servers.

1. It is quite unlikely that all of the top 100 results come from the same node. By having

each index server return 100 results to the receptionist, we put more load on the network

than necessary.

2. The choice of k has a non-negligible effect on query processing performance, because of

performance heuristics such as MaxScore (see Section 5.1.1). Table 5.1 on page 144

shows that decreasing the result set size from k = 100 to k = 10 can reduce the average

CPU time per query by around 15%, when running queries against a frequency index

for GOV2.

Clarke and Terra (2004) describe a method to compute the probability that the receptionist

sees at least the top m results overall, given the number n of index servers and the per-node

result set size k. Their approach is based on the assumption that each document was assigned

to a random index node when the collection was split into n subsets, and thus that each node

is equally likely to return the best, second-best, third-best, . . . result overall.

Consider the set Rm = {r1, r2, . . . , rm} composed of the top m search results. For each

document ri the probability that it is found by a particular node is 1/n. Hence, the probability

that exactly l of the top m results are found by that node is given by the binomial distribution

b(n, m, l) =

(
m

l

)
·
(

1

n

)l

·
(

1− 1

n

)m−l

. (14.1)

Chapter 14 Parallel Information Retrieval492

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

P
er

-n
od

e
re

tr
ie

va
l d

ep
th

 (
k)

Target result set size (m)

n=4
n=8
n=16
n=32
n=64

Figure 14.3 Choosing the minimum retrieval depth k that returns the top m results with probability
p(n,m, k) > 99.9%, where n is the number of nodes in the document-partitioned index.

The probability that all members of Rm are discovered by requesting the top k results from

each of the n index nodes can be calculated according to the following recursive formula:

p(n, m, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if m ≤ k;

0 if m > k and n = 1;
k∑

l=0

b(n, m, l) · p(n− 1, m− l, k) if m > k and n > 1.

(14.2)

The two base cases are obvious. In the recursive case, we consider the first node in the system

and compute the probability that l = 0, 1, 2, . . . , k of the top m results overall are retrieved

by that node (i.e., b(n, m, l)). For each possible value for l, this probability is multiplied by

the probability p(n− 1, m− l, k) that the remaining m− l documents in Rm are found by the

remaining n− 1 index nodes. Equation 14.2 does not appear to have a closed-form solution but

can be solved through the application of dynamic programming in time Θ(n ·m · k).

Figure 14.3 shows the per-node retrieval depth k required to find the top m results with

probability at least 99.9%. For m = 100 and n = 4, a per-node retrieval depth of k = 41

achieves the desired probability level. If we decide to relax our correctness requirements from

99.9% to 95%, k can even be decreased a little further, from 41 to 35.

It can sometimes be beneficial to optimize the retrieval depth k for a different value m than

the user has asked for. For example, if the receptionist maintains a cache for recently issued

queries, it may be worthwhile to obtain the top 20 results for a given query even if the user has

asked for only the top 10, so that a click on the “next page” link can be processed from the

cache. Allowing the receptionist to inspect a result set Rm′ for m′ > m is also useful because

14.1 Parallel Query Processing 493

it facilitates the application of diversity-seeking reranking techniques, such as Carbonell and

Goldstein’s (1998) maximal marginal relevance or Google’s host crowding heuristic.2

14.1.2 Term Partitioning

Although document partitioning is often the right choice and scales almost linearly with the

number of nodes, it can unfold its true potential only if the index data found in the individual

nodes are stored in main memory or any other low-latency random-access storage medium, such

as flash memory, but not if it is stored on disk.

Consider a document-partitioned search engine in which all postings lists are stored on disk.

Suppose each query contains 3 words on average, and we want the search engine to handle a

peak query load of 100 queries per second. Recall from Section 13.2.3 that, due to queueing

effects, we usually cannot sustain a utilization level above 50%, unless we are willing to accept

occasional latency jumps. Thus, a query load of 100 qps translates into a required service rate

of at least 200 qps or — equivalently — 600 random access operations per second (one for each

query term). Assuming an average disk seek latency of 10 ms, a single hard disk drive cannot

perform more than 100 random access operations per second, a factor of 6 less than what is

required to achieve the desired throughput. We could try to circumvent this limitation by adding

more disks to each index node, but equipping each server with six hard disks may not always

be practical. Moreover, it is obvious that we will never be able to handle loads of more than a

few hundred queries per second, regardless of how many nodes we add to the system.

Term partitioning addresses the disk seek problem by splitting the collection into sets of terms

instead of sets of documents. Each index node vi is responsible for a certain term set Ti and

is involved in processing a given query only if one or more query terms are members of Ti.

Our discussion of term-partitioned query processing is based upon the pipelined architecture

proposed by Moffat et al. (2007). In this architecture, queries are processed in a term-at-a-time

fashion (see Section 5.1.2 for details on term-at-a-time query processing strategies).

Suppose a query contains q terms t1, t2, . . . , tq. Then the receptionist will forward the query to

the node v(t1) responsible for the term t1. After creating a set of document score accumulators

from t1’s postings list, v(t1) forwards the query, along with the accumulator set, to the node

v(t2) responsible for t2, which updates the accumulator set, sends it to v(t3), and so forth.

When the last node in this pipeline, v(tq), is finished, it sends the final accumulator set to the

receptionist. The receptionist then selects the top m search results and returns them to the

user. A schematic of this approach is shown in Figure 14.4.

Many of the optimizations used for sequential term-at-a-time query processing also apply to

term-partitioned query processing: infrequent query terms should be processed first; accumula-

tor pruning strategies should be applied to keep the size of the accumulator set, and thus the

2 www.mattcutts.com/blog/subdomains-and-subdirectories/

Chapter 14 Parallel Information Retrieval494

Figure 14.4 Term-partitioned query processing with one receptionist and four index servers. Each incoming
query is passed from index server to index server, depending on the terms found in the query (shown for a query
containing three terms).

overall network traffic, under control; impact ordering can be used to efficiently identify the

most important postings for a given term.

Note that the pipelined query processing architecture outlined above does not use intra-query

parallelism, as each query — at a given point in time — is processed by only a single node.

Therefore, although it can help increase the system’s theoretical throughput, term partitioning,

in the simple form described here, does not necessarily decrease the search engine’s response

time. To some extent this limitation can be addressed by having the receptionist send prefetch

instructions to the nodes v(t2), . . . , v(tq) at the same time it forwards the query to v(t1). This

way, when a node v(ti) receives the accumulator set, some of ti’s postings may already have

been loaded into memory and the query can be processed faster.

Despite its potential performance advantage over the document-partitioned approach, at least

for on-disk indices, term partitioning has several shortcomings that make it difficult to use the

method in practice:

• Scalability. As the collection becomes bigger, so do the individual postings lists. For

a corpus composed of a billion documents, the postings list for a frequent term, such as

“computer” or “internet”, can easily occupy several hundred megabytes. Processing a

query that contains one or more of these frequent terms will require at least a few seconds,

far more than what most users are accustomed to. In order to solve this problem, large

postings lists need to be cut into smaller chunks and divided among several nodes, with

each node taking care of a small part of the postings list and all of them working in

parallel. Unfortunately, this complicates the query processing logic quite a bit.

14.1 Parallel Query Processing 495

• Load Imbalance. Term partitioning suffers from an uneven load across the index

nodes. The load corresponding to a single term is a function of the term’s frequency in

the collection as well as its frequency in users’ queries. If a term has a long postings

list and is also very popular in search queries, then the corresponding index node may

experience a load that is much higher than the average load in the system. To address

this problem, postings lists that are responsible for a high fraction of the overall load

should be replicated and distributed across multiple nodes. This way, the computational

load associated with a given term can be shared among several machines, albeit at the

cost of increased storage requirements.

• Term-at-a-Time. Perhaps the most severe limitation of the term-partitioned approach

is its inability to support efficient document-at-a-time query processing. In order to

realize document-at-a-time scoring on top of a term-partitioned index, entire postings

lists, as opposed to pruned accumulator sets, would need to be sent across the network.

This is impractical, due to the size of the postings lists. Therefore, ranking methods that

necessitate a document-at-a-time approach, such as the proximity ranking function from

Section 2.2.2, are incompatible with a term-partitioned index.

Even with all these shortcomings, term partitioning can sometimes be the right choice. Recall,

for instance, the three-level cache hierarchy from Section 13.4.1. The second level in this

hierarchy caches list intersections (in search engines with Boolean-AND query semantics; see

Section 2.2). Instead of following a document partitioning approach and equipping each index

node with its own intersection cache, we may choose a term-partitioned index and treat the

cached intersections just like ordinary postings lists. In the example shown in Figure 14.4, if we

have already seen the query 〈t1, t2〉 before, we may have cached the intersected list (t1 ∧ t2) in

index node v(t2) and may skip v(t1) when processing the new query 〈t1, t2, t3〉.
More generally, term partitioning suggests itself if postings lists are relatively short — either

due to the nature of the information they represent (as in the case of list intersections) or

because they are artificially shortened (for instance, by applying index pruning techniques; see

Section 5.1.5 for details).

14.1.3 Hybrid Schemes

Consider a distributed index with n nodes, for a collection of size |C|. Document partitioning

becomes inefficient if |C|/n is too small and disk seeks dominate the overall query processing

cost. Term partitioning, on the other hand, becomes impractical if |C| is too large, as the time

required to process a single query is likely to exceed the users’ patience.

Xi et al. (2002) propose a hybrid architecture in which the collection is divided into p subcol-

lections according to a standard document partitioning scheme. The index for each subcollection

is then term-partitioned across n/p nodes, so that each node in the system is responsible for

Chapter 14 Parallel Information Retrieval496

all occurrences of a set of terms within one of the p subcollections. With the right load balanc-

ing policies in place, this can lead roughly to a factor-n increase in throughput and a factor-p

latency reduction.

As an alternative to the hybrid term/document partitioning, we may also consider a hybrid

of document partitioning and replication. Remember that the primary objective of term par-

titioning is to increase throughput, not to decrease latency. Thus, instead of term-partitioning

each of the p subindices, we may achieve the same performance level by simply replicating each

subindex n/p times and load-balancing the queries among n/p identical replicas. At a high

level, this is the index layout that was used by Google around 2003 (Barroso et al., 2003). The

overall impact on maximum throughput and average latency is approximately the same as in

the case of the hybrid document/term partitioning. The storage requirements are likely to be a

bit higher, due to the (n/p)-way replication. If the index is stored on disk, this is usually not a

problem.

14.1.4 Redundancy and Fault Tolerance

When operating a large-scale search engine with thousands of users, reliability and fault toler-

ance tend to be of similar importance as response time and result quality. As we increase the

number of machines in the search engine, so as to scale to higher query loads, it becomes more

and more likely that one of them will fail at some point in time. If the system has been designed

with fault tolerance in mind, then the failure of a single machine may cause a small reduction in

throughput or search quality. If it has not been designed with fault tolerance in mind, a single

failure may bring down the entire search engine.

Let us compare the simple, replication-free document partitioning and term partitioning

schemes for a distributed search engine with 32 nodes. If one of the nodes in the term-partitioned

index fails, the engine will no longer be able to process queries containing any of the terms

managed by that node. Queries that do not contain any of those terms are unaffected. For a

random query q containing three words (the average number of query terms for Web queries),

the probability that q can be processed by the remaining 31 nodes is(
31

32

)3

≈ 90.9%. (14.3)

If one of the nodes in the document-partitioned index fails, on the other hand, the search engine

will still be able to process all incoming queries. However, it will miss some search results. If

the partitioning was performed bias-free, then the probability that j out of the top k results for

a random query are missing is (
k

j

)
·
(

1

32

)j

·
(

31

32

)k−j

. (14.4)

14.1 Parallel Query Processing 497

Thus, the probability that the top 10 results are unaffected by the failure is(
31

32

)10

≈ 72.8%. (14.5)

It therefore might seem that the impact of the machine failure is lower for the term-partitioned

than for the document-partitioned index. However, the comparison is somewhat unfair, because

the inability to process a query is a more serious problem than losing one of the top 10 search

results. If we look at the probability that at least 2 of the top 10 results are lost due to the

missing index node, we obtain

1−
(

31

32

)10

−
(

10

1

)
·
(

1

32

)
·
(

31

32

)9

≈ 3.7%. (14.6)

Thus, the probability that a query is impacted severely by a single node failure is in fact quite

small, and most users are unlikely to notice the difference. Following this line of argument, we

may say that a document-partitioned index degrades more gracefully than a term-partitioned

one in the case of a single node failure.

For informational queries, where there are often multiple relevant results, this behavior

might be good enough. For navigational queries, however, this is clearly not the case (see

Section 15.2 for the difference between informational and navigational queries). As an exam-

ple, consider the navigational query 〈“white”, “house”, “website”〉. This query has a single vital

result (http://www.whitehouse.gov/) that must be present in the top search results. If 1 of the

32 nodes in the document-partitioned index fails, then for each navigational query there is a

3.2% chance that the query’s vital result is lost (if there is a vital result for the query). There

are many ways to address this problem. Three popular ones are the following:

• Replication. We can maintain multiple copies of the same index node, as described in

the previous section on hybrid partitioning schemes, and have them process queries in

parallel. If one of the r replicas for a given index node fails, the remaining r− 1 will take

over the load of the missing replica. The advantage of this approach is its simplicity (and

its ability to improve throughput and fault tolerance at the same time). Its disadvantage

is that, if the system is operating near its theoretical throughput and r is small, the

remaining r − 1 replicas may become overloaded.

• Partial Replication. Instead of replicating the entire index r times, we may choose

to replicate index information only for important documents. The rationale behind this

strategy is that most search results aren’t vital and can easily be replaced by an equally

relevant document. The downside of this approach is that it can be difficult to predict

which documents may be targeted by navigational queries. Query-independent signals

such as PageRank (Section 15.3.1) can provide some guidance.

Chapter 14 Parallel Information Retrieval498

• Dormant Replication. Suppose the search engine comprises a total of n nodes. We can

divide the index found on each node vi into n− 1 fragments and distribute them evenly

among the n−1 remaining nodes, but leave them dormant (on disk) and not use them for

query processing. Only when vi fails will the corresponding n− 1 fragments be activated

inside the remaining nodes and loaded into memory for query processing. It is important

that the fragments are loaded into memory, for otherwise we will double the overall

number of disk seeks per query. Dormant replication roughly causes a factor-2 storage

overhead, because each of the n nodes has to store n− 1 additional index fragments.

It is possible to combine the above strategies — for example, by employing dormant replication

of partial indices. Instead of replicating the whole index found in a given node, we replicate

only the part that corresponds to important documents. This reduces the storage overhead and

limits the impact on the search engine’s throughput in case of a node failure.

14.2 MapReduce

Apart from processing search queries, there are many other data-intensive tasks that need to be

carried out by a large-scale search engine. Such tasks include building and updating the index;

identifying duplicate documents in the corpus; and analyzing the link structure of the document

collection (e.g., PageRank; see Section 15.3.1).

MapReduce is a framework developed at Google that is designed for massively parallel compu-

tations (thousands of machines) on very large amounts of data (many terabytes), and that can

accomplish all of the tasks listed above. MapReduce was first presented by Dean and Ghemawat

(2004). In addition to a high-level overview of the framework, their paper includes information

about many interesting implementation details and performance optimizations.

14.2.1 The Basic Framework

MapReduce was inspired by the map and reduce functions found in functional programming

languages, such as Lisp. The map function takes as its arguments a function f and a list of

elements l = 〈l1, l2, . . . , ln〉. It returns a new list

map(f, l) = 〈 f(l1), f(l2), . . . , f(ln) 〉. (14.7)

The reduce function (also known as fold or accumulate) takes a function g and a list of elements

l = 〈l1, l2, . . . , ln〉. It returns a new element l′, such that

l′ = reduce(g, l) = g(l1, g(l2, g(l3, . . .))). (14.8)

When people refer to the map function in the context of MapReduce, they usually mean the

function f that gets passed to map (where map itself is provided by the framework). Similarly,

14.2 MapReduce 499

map (k, v) ≡
1 split v into tokens
2 for each token t do
3 output(t, 1)
4 return

reduce (k, 〈v1, v2, . . . , vn〉) ≡
5 count← 0
6 for i ← 1 to n do
7 count← count + vi

8 output(count)
9 return

Figure 14.5 A MapReduce that counts the number of occurrences of each term in a given corpus of
text. The input values processed by the map function are documents or other pieces of text. The input
keys are ignored. The outcome of the MapReduce is a sequence of (t, ft) tuples, where t is a term, and
ft is the number of times t appeared in the input.

when they refer to the reduce function, they mean the function g that gets passed to reduce.

We will follow this convention.

From a high-level point of view, a MapReduce program (often simply called “a MapReduce”)

reads a sequence of key/value pairs, performs some computations on them, and outputs another

sequence of key/value pairs. Keys and values are often strings, but may in fact be any data

type. A MapReduce consists of three distinct phases:

• In the map phase, key/value pairs are read from the input and the map function is

applied to each of them individually. The function is of the general form

map : (k, v) %→ 〈 (k1, v1), (k2, v2), . . . 〉. (14.9)

That is, for each key/value pair, map outputs a sequence of key/value pairs. This

sequence may or may not be empty, and the output keys may or may not be identical to

the input key (they usually aren’t).

• In the shuffle phase, the pairs produced during the map phase are sorted by their key,

and all values for the same key are grouped together.

• In the reduce phase, the reduce function is applied to each key and its values. The function

is of the form

reduce : (k, 〈v1, v2, . . .〉) %→ (k, 〈v′1, v′2, . . .〉). (14.10)

That is, for each key the reduce function processes the list of associated values and

outputs another list of values. The output values may or may not be the same as the

input values. The output key usually has to be the same as the input key, although this

depends on the implementation.

Figure 14.5 shows the map and reduce functions of a MapReduce that counts the number of

occurrences of all terms in a given corpus of text. In the reduce function, the output key is

omitted, as it is implicit from the input key.

Chapter 14 Parallel Information Retrieval500

MapReduces are highly parallelizable, because both map and reduce can be executed in

parallel on many different machines. Suppose we have a total of n = m + r machines, where

m is the number of map workers and r is the number of reduce workers. The input of the

MapReduce is broken into small pieces called map shards. Each shard typically holds between

16 and 64 MB of data. The shards are treated independently, and each shard is assigned to one

of the m map workers. In a large MapReduce, it is common to have dozens or hundreds of map

shards assigned to each map worker. A worker usually works on only 1 shard at a time, so all

its shards have to be processed sequentially. However, if a worker has more than 1 CPU, it may

improve performance to have it work on multiple shards in parallel.

In a similar fashion, the output is broken into separate reduce shards, where the number

of reduce shards is often the same as r, the number of reduce workers. Each key/value pair

generated by the map function is sent to one of the r reduce shards. Typically, the shard that

a given key/value pair is sent to depends only on the key. For instance, if we have r reduce

shards, the target shard for each pair could be chosen according to

shard(key, value) = hash(key) mod r, (14.11)

where hash is an arbitrary hash function. Assigning the map output to different reduce shards in

this manner guarantees that all values for the same key end up in the same reduce shard. Within

each reduce shard, incoming key/value pairs are sorted by their key (this is the shuffle phase),

and are eventually fed into the reduce function to produce the final output of the MapReduce.

Figure 14.6 shows the data flow for the MapReduce from Figure 14.5, for three small text

fragments from the Shakespeare corpus. Each fragment represents a separate map shard.

The key/value pairs emitted by the map workers are partitioned onto the three reduce

shards based on the hash of the respective key. For the purpose of the example, we assume

hash(“heart”) mod 3 = 0, hash(“soul”) mod 3 = 1, and so forth.

The map phase may overlap with the shuffle phase, and the shuffle phase may overlap with the

reduce phase. However, the map phase may never overlap with the reduce phase. The reason for

this is that the reduce function can only be called after all values for a given key are available.

Since, in general, it is impossible to predict what keys the map workers will emit, the reduce

phase cannot commence before the map phase is finished.

14.2.2 Combiners

In many MapReduce jobs, a single map shard may produce a large number of key/value pairs for

the same key. For instance, if we apply the counting MapReduce from Figure 14.5 to a typical

corpus of English text, 6–7% of the map outputs will be for the key “the”. Forwarding all these

tuples to the reduce worker responsible for the term “the” wastes network and storage resources.

More important, however, it creates an unhealthy imbalance in the overall load distribution.

Regardless of how many reduce workers we assign to the job, one of them will end up doing at

least 7% of the overall reduce work.

14.2 MapReduce 501

��������	��������	
��������	��������	

��������	

��������	

������

������
���

����	���
��	�� ��
�	�� �
�	������	��

����	�� ����	�� ����	�� ������
��	��

�����
�

������

���

����	�� ������	�� ����	��

��
�	�� ��
���	�� �������	��

�
�	�� ����	�� ������	��

�����
�

�����	

���
��������	��

�����
�

����	�� ����	��

��
���	�� �
��	�� ����	��

�������
������	
�������

�
�	�� �
��	�� ��
�	���
�	������	�� ����	������	��

������
��	��

����	��

����	��

��
�	��

�
�	��

������	��

������	��

��
���	��

����	��

��������	��

����	�� ����	��

��
���	���
��	�� ����	��

�
�	���	�	��

����	���	��

�������	����

������	����

��
���	����

�
��	����

������	�� ��
���	��

�������	�� �
��	�� �
�	��

�������

������

�������

�
��	��������	���	�	��

����	���	�	�	����
���	����

����	����

����	�� �
��	�� ��
���	��

����	� ����	��

������

��
�	���	��

����	����

������
��	����

������	������������	����

��
�	�!

����	��������
��	��

������	����������	��

�������

������

������������
��
���������
��������

�������	��

��������������
���
����

����
���
�
������������������
�

����	��

����	��

����	�!

Figure 14.6 Data flow for the MapReduce definition shown in Figure 14.5, using 3 map shards and
3 reduce shards.

Chapter 14 Parallel Information Retrieval502

To overcome this problem, we could modify the map workers so that they accumulate per-

shard term counts in a local hash table and output one pair of the form (t, ft) instead of ft

pairs of the form (t, 1) when they are finished with the current shard. This approach has the

disadvantage that it requires extra implementation effort by the programmer.

As an alternative to the hash table method, it is possible to perform a local shuffle/reduce

phase for each map shard before forwarding any data to the reduce workers. This approach has

about the same performance effect as accumulating local counts in a hash table, but is often

preferred by developers because it does not require any changes to their implementation. A

reduce function that is applied to a map shard instead of a reduce shard is called a combiner.

Every reduce function can serve as a combiner as long as its input values are of the same type

as its output values, so that it can be applied to its own output. In the case of the counting

MapReduce, this requirement is met, as all input and output values in the reduce phase are

integers.

14.2.3 Secondary Keys

The basic MapReduce framework, as described so far, does not make any guarantees regarding

the relative order in which values for the same key are fed into the reduce function. Often this

is not a problem, because the reduce function can inspect and reorder the values in any way it

wishes. However, for certain tasks the number of values for a given key may be so large that

they cannot all be loaded into memory at the same time, thus making reordering inside the

reduce function difficult. In that situation it helps to have the MapReduce framework sort each

key’s values in a certain way before they are passed to the reduce function.

An example of a task in which it is imperative that values arrive at the reduce function

in a certain, predefined order is index construction. To create a docid index for a given text

collection, we might define a map function that, for each term t encountered in a document

d, outputs the key/value pair (t, docid(d)). The reduce function then builds t’s postings list

by concatenating all its postings (and potentially compressing them). Obviously, for this to be

possible, the reduce input has to arrive in increasing order of docid(d).

MapReduce supports the concept of secondary keys that can be used to define the order in

which values for the same key arrive at the reduce function. In the shuffle phase, key/value pairs

are sorted by their key, as usual. However, if there is more than one value for a given key, the

key’s values are sorted according to their secondary key. In the index construction MapReduce,

the secondary key of a key/value pair would be the same as the pair’s value (i.e., the docid of

the document that contains the given term).

14.2.4 Machine Failures

When running a MapReduce that spans across hundreds or thousands of computers, some of

the machines occasionally experience problems and have to be shut down. The MapReduce

framework assumes that the map function behaves strictly deterministically, and that the map

14.3 Further Reading 503

output for a given map shard depends only on that one shard (i.e., no information may be

exchanged between two shards processed by the same map worker). If this assumption holds,

then a map worker failure can be dealt with by assigning its shards to a different machine and

reprocessing them.

Dealing with a reduce worker failure is slightly more complicated. Because the data in each

reduce shard may depend on data in every map shard, assigning the reduce shard to a different

worker may necessitate the re-execution of all map shards. In order to avoid this, the output of

the map phase is usually not sent directly to the reduce workers but is temporarily stored in a

reliable storage layer, such as a dedicated storage server or the Google file system (Ghemawat

et al., 2003), from where it can be read by the new reduce worker in case of a worker failure.

However, even if the map output is stored in a reliable fashion, a reduce worker failure will still

require the re-execution of the shuffle phase for the failed shard. If we want to avoid this, too,

then the reduce worker needs to send the output of the shuffle phase back to the storage server

before it enters the reduce phase. Because, for a given shard, the shuffle phase and the reduce

phase take place on the same machine, the additional network traffic is usually not worth the

time savings unless machine failures occur frequently.

14.3 Further Reading

Compared with other topics covered by this book, the literature on parallel information retrieval

is quite sparse. Existing publications are mostly limited to small or mid-size compute clusters

comprising not more than a few dozen machines (the exception being occasional publications

by some of the major search engine companies). In some cases it may therefore be difficult to

assess the scalability of a proposed architecture. For instance, although the basic version of term

partitioning discussed in Section 14.1.2 might work well on an 8-node cluster, it is quite obvious

that it does not scale to a cluster containing hundreds or thousands of nodes. Despite this

caveat, however, some of the results obtained in small-scale experiments may still be applicable

to large-scale parallel search engines.

Load balancing issues for term-partitioned query evaluation are investigated by Moffat et al.

(2006). Their study shows that, with the right load balancing policies in place, term partitioning

can lead to almost the same query performance as document partitioning. Maŕın and Gil-Costa

(2007) conduct a similar study and come to the conclusion that a term-partitioned index can

sometimes outperform a document-partitioned one. Abusukhon et al. (2008) examine a variant

of term partitioning in which terms with long postings lists are distributed across multiple index

nodes.

Puppin et al. (2006) discuss a document partitioning scheme in which documents are not

assigned to nodes at random but based on the queries for which they are ranked highly (according

to an existing query log). Documents that rank highly for the same set of queries tend to be

assigned to the same node. Each incoming query is forwarded only to those index nodes that

Chapter 14 Parallel Information Retrieval504

are likely to return good results for the query. Xi et al. (2002) and Maŕın and Gil-Costa (2007)

report on experiments conducted with hybrid partitioning schemes, combining term partitioning

and document partitioning. A slightly different view of parallel query processing is presented

by Maŕın and Navarro (2003), who discuss distributed query processing based on suffix arrays

instead of inverted files.

Barroso et al. (2003) provide an overview of distributed query processing at Google. Other

instruments for large-scale data processing at Google are described by Ghemawat et al. (2003),

Dean and Ghemawat (2004, 2008), and Chang et al. (2008).

Hadoop3 is an open-source framework for parallel computations that was inspired by Google’s

MapReduce and GFS technologies. Among other components, Hadoop includes HDFS (a dis-

tributed file system) and a MapReduce implementation. The Hadoop project was started by

Doug Cutting, who also created the Lucene search engine. Yahoo is one of the main contributors

to the project and is believed to be running the world’s largest Hadoop installation, comprising

several thousand machines.

Recently the use of graphics processing units (GPUs) for general-purpose, non-graphics-

related computations has received some attention. Due to their highly parallel nature, GPUs can

easily beat ordinary CPUs in applications in which long sequences of data have to be processed

sequentially or cosequentially, such as sorting (Govindaraju et al., 2006; Sintorn and Assarsson,

2008) and disjunctive (i.e., Boolean-OR) query processing (Ding et al., 2009).

14.4 Exercises

Exercise 14.1 When replicating a distributed search engine, the replication may take place

either at the node level (i.e., a single cluster with 2n index nodes, where two nodes share the

query load for a given index shard), or at the cluster level (i.e., two identical clusters, but no

replication within each cluster). Discuss the advantages and disadvantages of each approach.

Exercise 14.2 Describe possible scalability issues that may arise in the context of document-

partitioned indices even if the index is held in main memory. (Hint: Consider query processing

operations whose complexity is sublinear in the size of the index.)

Exercise 14.3 Given a document-partitioned index with n = 200 nodes and a target result

set size of m = 50, what is the minimum per-node result set size k required to obtain the correct

top m results with probability 99%?

Exercise 14.4 Generalize the dormant replication strategy from Section 14.1.4 so that it can

deal with k simultaneous machine failures. How does this affect the overall storage requirements?

3 hadoop.apache.org

14.5 Bibliography 505

Exercise 14.5 Describe how dormant replication for a term-partitioned index differs from

dormant replication for a document-partitioned index.

Exercise 14.6 (a) Design a MapReduce (i.e., a map function and a reduce function) that

computes the average document length (number of tokens per document) in a given corpus of

text. (b) Revise your reduce function so that it can be used as a combiner.

Exercise 14.7 Design a MapReduce that computes the conditional probability Pr[t1|t2] of

seeing the term t1 in a document that contains the term t2. You may find it useful to have your

map function emit secondary keys to enforce a certain ordering among all values for a given key.

Exercise 14.8 (project exercise) Simulate a document-partitioned search engine using the

BM25 ranking function you implemented for Exercise 5.9. Build an index for 100%, 50%, 25%,

and 12.5% of the GOV2 collection. For each index size, measure the average time per query

(for some standard query set). What do you observe? How does this affect the scalability of

document partitioning?

14.5 Bibliography

Abusukhon, A., Talib, M., and Oakes, M. P. (2008). An investigation into improving the

load balance for term-based partitioning. In Proceedings of the 2nd International United

Information Systems Conference, pages 380–392. Klagenfurt, Austria.

Barroso, L.A., Dean, J., and Hölzle, U. (2003). Web search for a planet: The Google cluster

architecture. IEEE Micro, 23(2):22–28.

Carbonell, J.G., and Goldstein, J. (1998). The use of MMR, diversity-based reranking for

reordering documents and producing summaries. In Proceedings of the 21st Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages

335–336. Melbourne, Australia.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T.,

Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed storage system for structured

data. ACM Transactions on Computer Systems, 26(2):1–26.

Clarke, C. L. A., and Terra, E. L. (2004). Approximating the top-m passages in a parallel

question answering system. In Proceedings of the 13th ACM International Conference on

Information and Knowledge Management, pages 454–462. Washington, D.C.

Dean, J., and Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.

In Proceedings of the 6th Symposium on Operating System Design and Implementation, pages

137–150. San Francisco, California.

Dean, J., and Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113.

Chapter 14 Parallel Information Retrieval506

Ding, S., He, J., Yan, H., and Suel, T. (2009). Using graphics processors for high performance

IR query processing. In Proceedings of the 18th International Conference on World Wide
Web, pages 421–430. Madrid, Spain.

Ghemawat, S., Gobioff, H., and Leung, S. T. (2003). The Google file system. In Proceedings

of the 19th ACM Symposium on Operating Systems Principles, pages 29–43. Bolton Landing,
New York.

Govindaraju, N., Gray, J., Kumar, R., and Manocha, D. (2006). GPUTeraSort: High per-

formance graphics co-processor sorting for large database management. In Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data, pages 325–336.

Chicago, Illinois.

Maŕın, M., and Gil-Costa, V. (2007). High-performance distributed inverted files. In Proceedings
of the 16th ACM Conference on Information and Knowledge Management, pages 935–938.

Lisbon, Portugal.

Maŕın, M., and Navarro, G. (2003). Distributed query processing using suffix arrays. In Pro-
ceedings of the 10th International Symposium on String Processing and Information Retrieval,

pages 311–325. Manaus, Brazil.

Moffat, A., Webber, W., and Zobel, J. (2006). Load balancing for term-distributed paral-
lel retrieval. In Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 348–355. Seattle, Washington.

Moffat, A., Webber, W., Zobel, J., and Baeza-Yates, R. (2007). A pipelined architecture for
distributed text query evaluation. Information Retrieval, 10(3):205–231.

Puppin, D., Silvestri, F., and Laforenza, D. (2006). Query-driven document partitioning and

collection selection. In Proceedings of the 1st International Conference on Scalable Information
Systems. Hong Kong, China.

Sintorn, E., and Assarsson, U. (2008). Fast parallel GPU-sorting using a hybrid algorithm.

Journal of Parallel and Distributed Computing, 68(10):1381–1388.

Xi, W., Sornil, O., Luo, M., and Fox, E. A. (2002). Hybrid partition inverted files: Experi-

mental validation. In Proceedings of the 6th European Conference on Research and Advanced

Technology for Digital Libraries, pages 422–431. Rome, Italy.

15 Web Search

Apart from an occasional example or exercise, the preceding chapters deal with information
retrieval in a generic context. We assume the IR system contains a collection of documents,
with each document represented by a sequence of tokens. Markup may indicate titles, authors,
and other structural elements. We assume nothing further about the IR system’s operating
environment or the documents it contains.

In this chapter we consider IR in the specific context of Web search, the context in which
it may be most familiar to you. Assuming this specific context provides us with the benefit of
document features that cannot be assumed in the generic context. One of the most important
of these features is the structure supplied by hyperlinks. These links from one page to another,
often labeled by an image or anchor text, provide us with valuable information concerning both
the individual pages and the relationship between them.

Along with these benefits come various problems, primarily associated with the relative “qual-
ity”, “authority” or “popularity” of Web pages and sites, which can range from the carefully
edited pages of a major international news agency to the personal pages of a high school stu-
dent. In addition, many Web pages are actually spam — malicious pages deliberately posing
as something that they are not in order to attract unwarranted attention of a commercial or
other nature. Although the owners of most Web sites wish to enjoy a high ranking from the
major commercial search engines, and may take whatever steps are available to maximize their
ranking, the creators of spam pages are in an adversarial relationship with the search engine’s
operators. The creators of these pages may actively attempt to subvert the features used for
ranking, by presenting a false impression of content and quality.

Other problems derive from the scale of the Web — billions of pages scattered among millions
of hosts. In order to index these pages, they must be gathered from across the Web by a crawler
and stored locally by the search engine for processing. Because many pages may change daily
or hourly, this snapshot of the Web must be refreshed on a regular basis. While gathering
data the crawler may detect duplicates and near-duplicates of pages, which must be dealt with
appropriately. For example, the standard documentation for the Java programming language
may be found on many Web sites, but in response to a query such as 〈“java”, “vector”, “class”〉
it might be best for a search engine to return only the official version on the java.sun.com site.

Another consideration is the volume and variety of queries commercial Web search engines
receive, which directly reflect the volume and variety of information on the Web itself. Queries
are often short — one or two terms — and the search engine may know little or nothing about
the user entering a query or the context of the user’s search. A user entering the query 〈“UPS”〉
may be interested in tracking a package sent by the courier service, purchasing a universal
power supply, or attending night classes at the University of Puget Sound. Although such query
ambiguity is a consideration in all IR applications, it reaches an extreme level in Web IR.

Chapter 15 Web Search508

15.1 The Structure of the Web

Figure 15.1 provides an example of the most important features related to the structure of the

Web. It shows Web pages on three sites: W, M, and H.1 Site W provides a general encyclopedia

including pages on Shakespeare (w0.html) and two of his plays, Hamlet (w1.html) and Macbeth

(w2.html). Site H provides historical information including information on Shakespeare’s wife

(h0.html) and son (h1.html). Site M provides movie and TV information including a page on

the 1971 movie version of Macbeth directed by Roman Polanski (m0.html).

The figure illustrates the link structure existing between these pages and sites. For example,

the HTML anchor on page w0.html

Anne Hathaway

establishes a link between that page and h0.html on site H. The anchor text associated with

this link (“Anne Hathaway”) provides an indication of the content on the target page.

15.1.1 The Web Graph

The relationship between sites and pages indicated by these hyperlinks gives rise to what is

called a Web graph. When it is viewed as a purely mathematical object, each page forms a node

in this graph and each hyperlink forms a directed edge from one node to another. Figure 15.2

shows the Web graph corresponding to Figure 15.1. For convenience we have simplified the

labels on the pages, with http://W/w0.html becoming w0, for example.

From a practical standpoint it is important to remember that when we refer to a Web graph

we are referring to more than just this mathematical abstraction — that pages are grouped into

sites, and that anchor text and images may be associated with each link. Links may reference

a labeled position within a page as well as the page as a whole. The highly dynamic and

fluid nature of the Web must also be remembered. Pages and links are continuously added

and removed at sites around the world; it is never possible to capture more than a rough

approximation of the entire Web graph.

At times our interest may be restricted to a subset of the Web, perhaps to all the pages from

a single site or organization. Under these circumstances, capturing an accurate snapshot of the

Web graph for that site or organization is easier than for the entire Web. Nonetheless, most

Web sites of any size grow and change on a continuous basis, and must be regularly recrawled

for the snapshot to remain accurate.

1 For simplicity we use single-letter site names and simplified page names rather than actual site and
page names — for instance, http://W/w0.html instead of a full URL such as http://en.wikipedia.
org/wiki/William Shakespeare.

15.1 The Structure of the Web 509

�������

	
�����

������������������������������������

�������������������������

������������������������ �������!�������
����"�	����#�$#%�������

������&'(�����(�)�����������

������&'(�����(�*�+�����������

������&'(�������)��
����(�
����##��)����	�,�������

	
����

�������)���������������

������&'(
����(��������������������

	�����

�������*�+���������������

������&'(
����(�������������������

������&'(�������*�
����(�-.���������

	�����

�����*�

�������*�+�������/0�"�������������

�����

����

�����)�

����������&'(���������	
�����

�����������1������	�&�����

�
����

����������&'(�
����(�

-������������

������

Figure 15.1 Structure on the Web. Pages can link to each other () and can associate
each link with anchor text (e.g., “mother”).

We now introduce a formal notation for Web graphs that we use in later sections. Let Φ be

the set of all pages in a Web graph, let N = |Φ| be the number of pages, and E the number of

links (or edges) in the graph. Given a page α ∈ Φ, we define out(α) as the number of out-links

from α to other pages (the out-degree). Similarly, we define in(α) as the number of in-links from

other pages to α (the in-degree). In the Web graph of Figure 15.2, out(w0) = 3 and in(h0) = 2.

If in(α) = 0, then α is called a source; if out(α) = 0, it is called a sink. We define Γ as the set

of sinks. In the Web graph of Figure 15.2, page m0 is a sink and page h1 is a source.

The individual Web pages themselves may be highly complex and structured objects. They

often include menus, images, and advertising. Scripts may be used to generate content when

the page is first loaded and to update the content as the user interacts with it. A page may

Chapter 15 Web Search510

�� ����

�� �� ��

Figure 15.2 A Web graph for the Web pages shown in Figure 15.1. Each link corresponds to a
directed edge in the graph.

serve as a frame to hold other pages or may simply redirect the browser to another page. These

redirections may be implemented through scripts or through special HTTP responses, and may

be repeated multiple times, thus adding further complexity. Along with HTML pages the Web

includes pages in PDF, Microsoft Word, and many other formats.

15.1.2 Static and Dynamic Pages

It is not uncommon to hear Web pages described as “static” or “dynamic”. The HTML for

a static Web page is assumed to be generated in advance of any request, placed on disk, and

transferred to the browser or Web crawler on demand. The home page of an organization is a

typical example of a static page. A dynamic Web page is assumed to be generated at the time

the request is made, with the contents of the page partially determined by the details of the

request. A search engine result page (SERP) is a typical example of a dynamic Web page for

which the user’s query itself helps to determine the content.

There is often the implication in this dichotomy that static Web pages are more important

for crawling and indexing than dynamic Web pages, and it is certainly the case that many types

of dynamic Web pages are not suitable for crawling and indexing. For example, on-line calendar

systems, which maintain appointments and schedules for people and events, will often serve up

dynamically generated pages for dates far into the past and the future. You can reach the page

for any date if you follow the links far enough. Although the flexibility to book appointments

25 years from now is appropriate for an online calendar; indexing an endless series of empty

months is not appropriate for a general Web search engine.

Nonetheless, although many dynamic Web pages should not be crawled and indexed, many

should. For example, catalog pages on retail sites are often generated dynamically by accessing

current products and prices in a relational database. The result is then formatted into HTML

and wrapped with menus and other fixed information for display in a browser. To meet the

needs of a consumer searching for a product, a search engine must crawl and index these pages.

A dynamic page can sometimes be identified by features of its URL. For example, servers

accessed through the Common Gateway Interface (CGI) may contain the path element cgi-bin

in their URLs. Pages dynamically generated by Microsoft’s Active Server Pages technology

include the extension .asp or .aspx in their URLs. Unfortunately, these URL features are not

15.1 The Structure of the Web 511

always present. In principle any Web page can be static or dynamic, and there is no sure way

to tell. For crawling and indexing, it is the content that is important, not the static or dynamic

nature of the page.

15.1.3 The Hidden Web

Many pages are part of the so-called “hidden” or “invisible” or “deep” Web. This hidden Web

includes pages that have no links referencing them, those that are protected by passwords, and

those that are available only by querying a digital library or database. Although these pages

can contain valuable content, they are difficult or impossible for a Web crawler to locate.

Pages in intranets represent a special case of the hidden Web. Pages in a given intranet are

accessible only within a corporation or similar entity. An enterprise search engine that indexes

an intranet may incorporate many of the same retrieval techniques that are found in general

Web search engines, but may be tuned to exploit specific features of that intranet.

15.1.4 The Size of the Web

Even if we exclude the hidden Web, it is difficult to compute a meaningful estimate for the size

of the Web. Adding or removing a single host can change the number of accessible pages by

an arbitrary amount, depending on the contents of that host. Some hosts contain millions of

pages with valuable content; others contain millions of pages with little or no useful content

(see Exercise 15.14).

However, many Web pages would rarely, if ever, appear near the top of search results. Exclud-

ing those pages from a search engine would have little impact. Thus, we may informally define

what is called the indexable Web as being those pages that should be considered for inclusion

in a general-purpose Web search engine (Gulli and Signorini, 2005). This indexable Web would

comprise all those pages that could have a substantial impact on search results.

If we may assume that any page included in the index of a major search engine forms part

of the indexable Web, a lower bound for the size of the indexable Web may be determined

from the combined coverage of the major search engines. More specifically, if the sets A1, A2, . . .

represent the sets of pages indexed by each of these search engines, a lower bound on the size

of the indexable Web is the size of the union of these sets | ∪Ai|.
Unfortunately, it is difficult to explicitly compute this union. Major search engines do not

publish lists of the pages they index, or even provide a count of the number of pages, although

it is usually possible to check if a given URL is included in the index. Even if we know the

number of pages each engine contains, the size of the union will be smaller than the sum of the

sizes because there is considerable overlap between engines.

Bharat and Broder (1998) and Lawrence and Giles (1998) describe a technique for estimating

the combined coverage of major search engines. First, a test set of URLs is generated. This step

may be achieved by issuing a series of random queries to the engines and selecting a random

URL from the results returned by each. We assume that this test set represents a uniform

Chapter 15 Web Search512

�

�

�����

Figure 15.3 The collection overlap between search engines A and B can be used to estimate the size
of the indexable Web.

sample of the pages indexed by the engines. Second, each URL from the test set is checked

against each engine and the engines that contain it are recorded.

Given two engines, A and B, the relationship between their collections is illustrated by

Figure 15.3. Sampling with our test set of URLs allows us to estimate Pr[A ∩ B |A], the

probability that a URL is contained in the intersection if it is contained in A:

Pr[A ∩B |A] =
of test URLs contained in both A and B

of test URLs contained in A
. (15.1)

We may estimate Pr[A ∩ B |B] in a similar fashion. If we know the size of A, we may then

estimate the size of the intersection as

|A ∩B| = |A| · Pr[A ∩B |A] . (15.2)

and the size of B as

|B| =
|A ∩B|

Pr[A ∩B |B]
. (15.3)

Thus, the size of the union may be estimated as

|A ∪B| = |A|+ |B| − |A ∩B| . (15.4)

If sizes for both A and B are available, the size of the intersection may be estimated from both

sets, and the average of these estimates may be used to estimate the size of the union

|A ∪B| = |A|+ |B| − 1

2
(|A| · Pr[A ∩B |A] + |B| · Pr[A ∩B |B]) . (15.5)

This technique may be extended to multiple engines. Using a variant of this method, Bharat

and Broder (1998) estimated the size of the indexable Web in mid-1997 at 160 million pages. In

a study conducted at roughly the same time, Lawrence and Giles (1998) estimated the size at

320 million pages. Approximately a year later the size had grown to 800 million pages (Lawrence

and Giles, 1999). By mid-2005 it was 11.5 billion (Gulli and Signorini, 2005).

15.2 Queries and Users 513

15.2 Queries and Users

Web queries are short. Several studies of query logs from major search engines are summarized

by Spink and Jansen (2004). Although the exact numbers differ from study to study, these

studies consistently reveal that many queries are just one or two terms long, with a mean query

length between two and three terms. The topics of these queries range across the full breadth

of human interests, with sex, health, commerce, and entertainment representing some of the

major themes.

Perhaps it is not surprising that Web queries are short. Until quite recently, the query pro-

cessing strategies of Web search engines actually discouraged longer queries. As we described

in Section 2.3, these processing strategies filter the collection against a Boolean conjunction of

the query terms prior to ranking. For a page to be included in the result set, all query terms

must be associated with it in some way, either by appearing on the page itself or by appearing

in the anchor text of links referencing it. As a result, increasing the length of the query by

adding related terms could cause relevant pages to be excluded if they are missing one or more

of the added terms. This strict filtering has been relaxed in recent years. For example, synonyms

may be accepted in place of exact matches — the term “howto” might be accepted in place of

the query term “FAQ”. Nonetheless, for efficiency reasons filtering still plays a role in query

processing, and Web search engines may still perform poorly on longer queries.

The distribution of Web queries follows Zipf’s law (see Figure 15.4). In a representative log

of 10 million queries, the single most frequent query may represent more than 1% of the total,

but nearly half of the queries will occur only once. The tuning and evaluation of a search engine

must consider this “long tail” of Zipf’s law. In the aggregate, infrequent queries are at least as

important as the frequent ones.

15.2.1 User Intent

Several researchers have examined collections of queries issued to Web search engines in an

attempt to characterize the user intent underlying these queries. Broder (2002) surveyed users

of the Altavista search engine and examined its query logs to develop a taxonomy of Web search.

He classified Web queries into three categories reflecting users’ apparent intent, as follows:

• The intent behind a navigational query is to locate a specific page or site on the Web. For

example, a user intending to locate the home page of the CNN news network might enter

the query 〈“CNN”〉. A navigational query usually has a single correct result. However,

this correct result may vary from user to user. A Spanish-speaking user from the United

States might want the CNN en Español home page (www.cnn.com/espanol); a user from

Tunisia may want the Arabic edition (arabic.cnn.com).

Chapter 15 Web Search514

 1

 10

102

103

104

105

106

 1 10 102 103 104 105 106 107

F
re

qu
en

cy
 (

lo
g.

 s
ca

le
)

Rank (log. scale)

Figure 15.4 Frequency of queries by rank order, based on 10 million queries taken from the logs of
a commercial search engine. The dashed line corresponds to Zipf’s law with α = 0.85.

• A user issuing an informational query is interested in learning something about a partic-

ular topic and has a lesser regard for the source of the information, provided it is reliable.

The topics forming the test collections introduced in Chapter 1 and used for evaluation

throughout the first four parts of the book reflect informational intent. A user entering

the query 〈“president”, “obama”〉 might find the information she is seeking on the CNN

Web site, on Wikipedia, or elsewhere. Perhaps she will browse and read a combination of

these before finding all the information she requires. The need behind an informational

query such as this one may vary from user to user, and may be broad or narrow in scope.

A user may be seeking a detailed description of government policy, a short biography, or

just a birth date.

• A user issuing a transactional query intends to interact with a Web site once she finds it.

This interaction may involve activities such as playing games, purchasing items, booking

travel, or downloading images, music, and videos. This category may also include queries

seeking services such as maps and weather, provided the user is not searching for a specific

site providing that service.

Rose and Levinson (2004) extended the work of Broder by expanding his three categories into a

hierarchy of user goals. They retained Broder’s categories at the top level of their hierarchy but

renamed the transactional category as the “resource” category. Under both the informational

and the transactional categories they identified a number of subcategories. For example, the goal

15.2 Queries and Users 515

of a user issuing a directed informational query is the answer to a particular question (“When

was President Obama born?”), whereas the goal of a user issuing an undirected informational

query is simply to learn about the topic (“Tell me about President Obama.”). In turn, directed

informational queries may be classified as being open or closed, depending on whether the

question is open-ended or has a specific answer.

The distinction between navigational and informational queries is relatively straightforward:

Is the user seeking a specific site or not? The distinction between transactional queries and the

other two categories is not always as clear. We can assume the query 〈“mapquest”〉 is naviga-

tional, seeking the site www.mapquest.com, but it is likely that the user will then interact with

the site to obtain directions and maps. A user entering the query 〈“travel”, “washington”〉 may

be seeking both tourist information about Washington, D.C., and planning to book a hotel, mak-

ing the intent both informational and transactional. In cases such as these, it may be reasonable

to view such queries as falling under a combination of categories, as navigational/transactional

and informational/transactional, respectively.

According to Broder (2002), navigational queries comprise 20–25% of all Web queries. Of

the remainder, transactional queries comprise at least 22%, and the rest are informational

queries. According to Rose and Levinson (2004), 12–15% of queries are navigational and 24–

27% are transactional. A more recent study by Jansen et al. (2007) slightly contradicts these

numbers. Their results indicate that more than 80% of queries are informational, with the

remaining queries split roughly equally between the navigational and transactional categories.

Nonetheless, these studies show that all three categories represent a substantial fraction of Web

queries and suggest that Web search engines must be explicitly aware of the differences in user

intent.

Referring to “navigational queries” and “informational queries” is common jargon. This usage

is understandable when the goal underlying a query is the same, or similar, regardless of the

user issuing it. But for some queries the category may differ from user to user. As a result we

stress that these query categories fundamentally describe the goals and intentions of the users

issuing the queries, and are not inherent properties of the queries themselves. For example, a

user issuing our example query 〈“UPS”〉 may have

• Informational intent, wanting to know how universal power supplies work

• Transactional intent, wanting to purchase an inexpensive UPS for a personal computer

• Transactional/navigational intent, wanting to track a package or

• Navigational/informational intent, wanting information on programs offered by the

University of Puget Sound.

Although this query is atypical, falling into so many possible categories, the assignment of any

given query to a category (by anyone other than the user) may be little more than an educated

guess.

Chapter 15 Web Search516

15.2.2 Clickthrough Curves

The distinction between navigational and informational queries is visible in user behavior. Lee

et al. (2005) examined clickthroughs as one feature that may be used to infer user intent. A

clickthrough is the act of clicking on a search result on a search engine result page. Clickthroughs

are often logged by commercial search engines as a method for measuring performance (see

Section 15.5.2).

Although almost all clicks occur on the top ten results (Joachims et al., 2005; Agichtein

et al., 2006b), the pattern of clicks varies from query to query. By examining clickthroughs

from a large number of users issuing the same query, Lee et al. (2005) identified clickthrough

distributions that are typical of informational and navigational queries. For navigational queries

the clickthroughs are skewed toward a single result; for informational queries the clickthrough

distribution is flatter.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 c

lic
ks

Result position

(a) 〈 "craigslist" 〉

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 c

lic
ks

Result position

(b) 〈 "periodic", "table", "of", "elements" 〉

Figure 15.5 Clickthrough curve for a typical navigational query (〈“craigslist”〉) and a typical informational
query (〈“periodic”, “table”, “of”, “elements”〉).

Clarke et al. (2007) analyzed logs from a commercial search engine and provided further anal-

ysis and examples. The plots in Figure 15.5 are derived from examples in that paper. Both plots

show the percentage of clickthroughs for results ranked 1 to 10. Each clickthrough represents

the first result clicked by a different user entering the query. Figure 15.5(a) shows a clickthrough

distribution for a stereotypical navigational query, exhibiting a spike at www.craigslist.org,

a classified advertising site and the presumed target of the query. Figure 15.5(b) shows a

clickthrough distribution for a typical informational query. For both queries the number of

clickthroughs decreases with rank; the informational query receives proportionally more clicks

at lower ranks.

15.3 Static Ranking 517

15.3 Static Ranking

Web retrieval works in two phases. The first phase takes place during the indexing process,

when each page is assigned a static rank (Richardson et al., 2006). Informally, this static rank

may be viewed as reflecting the quality, authority, or popularity of the page. Ideally, static rank

may correspond to a page’s prior probability of relevance — the higher the probability, the

higher the static rank.

Static rank is independent of any query. At query time the second phase of Web retrieval

takes place. During this phase the static rank is combined with query-dependent features, such

as term proximity and frequency, to produce a dynamic rank.

Assigning a static rank during indexing allows a Web search engine to consider features that

would be impractical to consider at query time. The most important of these features are

those derived from link analysis techniques. These techniques extract information encoded in

the structure of the Web graph. Other features may also contribute to static rank, including

features derived from the content of the pages and from user behavior (Section 15.3.5).

Our presentation of static ranking begins with the fundamentals of PageRank, easily the

most famous of the link analysis techniques, in Section 15.3.1. Although this section presents

the version of the algorithm generally known by the name PageRank, its practical value in

Web search may be relatively limited because it depends on näıve assumptions regarding the

structure of the Web. Sections 15.3.2 and 15.3.3 present and analyze an extended version of

the algorithm, which accommodates a more sophisticated view of Web structure. Section 15.3.4

provides an overview of other link analysis techniques and Section 15.3.5 briefly discusses other

features applicable to static ranking. Dynamic ranking is covered in Section 15.4.

15.3.1 Basic PageRank

PageRank was invented in the mid-1990s through the efforts of Larry Page and Sergey Brin,

two Stanford computer science graduate students. The algorithm became a key element of their

Backrub search engine, which quickly matured into Google.

The classic intuition behind the PageRank algorithm imagines a person surfing the Web at

random. At any point a Web page is visible in her browser. As a next step she can either

1. Follow a link from the current page by clicking on it or

2. Select a page uniformly at random and jump to it, typing its URL into the address bar.

At any step the probability she will follow a link is fixed as δ. Thus, the probability of a jump is

1− δ. Reasonable values for δ might range from 0.75 to 0.90, with 0.85 being the value quoted

most often in the research literature. For simplicity we use δ = 3/4 for our experiments and

examples, unless otherwise stated.

Chapter 15 Web Search518

Sinks in the Web graph force a jump: When our surfer reaches a sink, she always takes the

second option. Assuming that our surfer could surf quickly and tirelessly for a long period of

time, the value of PageRank r(α) for a page α would indicate the relative frequency at which

the surfer visits that page.

The probability δ is sometimes referred to as the restart probability or damping factor, because

it reduces the probability that the surfer will follow a link. The use of a damping factor to

allow random jumps is known to improve the stability of PageRank, in a statistical sense, in

comparison to an equivalent algorithm without jumps (Section 15.3.3). Informally, small changes

to the Web graph will not generate large changes in PageRank.

The value of r(α) may be expressed in terms of the PageRank values of the pages that link

to it and the PageRank values of the sinks in the graph, as follows:

r(α) = δ ·

⎛⎝∑
β→α

r(β)

out(β)
+
∑
γ∈Γ

r(γ)

N

⎞⎠+ (1− δ) ·
∑
α∈Φ

r(α)

N
(15.6)

For simplicity, and because the choice is arbitrary, we assume∑
α∈Φ

r(α) = N, (15.7)

reducing the equation slightly to

r(α) = δ ·

⎛⎝∑
β→α

r(β)

out(β)
+
∑
γ∈Γ

r(γ)

N

⎞⎠+ (1− δ). (15.8)

Because
∑

α∈Φ r(α)/N = 1, the probability that the random surfer will be at page α at any

given point is thus r(α)/N .

Let us consider the composition of Equation 15.8 in detail. First, the value (1 − δ) reflects

the contribution from random jumps to α. The other contributions to the PageRank value of

α — from links and sinks — are more complex. In the case of links, the page α may be reached

by following a link from a page β. Because β may have links to multiple pages, its PageRank

value is distributed according to its out-degree out(β). Finally, jumps from sinks contribute in

a small way to the PageRank value of α. Because a jump from sink γ may target any of the N

pages in the graph — even itself — its contribution is r(γ)/N .

The application of Equation 15.8 to the Web graph of 15.2 gives the following set of equations:

r(w0) = δ ·
(

r(w1) +
r(w2)

2
+ r(h0) +

r(m0)

6

)
+ (1− δ)

r(w1) = δ ·
(

r(w0)

3
+

r(m0)

6

)
+ (1− δ)

15.3 Static Ranking 519

r(w2) = δ ·
(

r(w0)

3
+

r(m0)

6

)
+ (1− δ)

r(h0) = δ ·
(

r(w0)

3
+ r(h1) +

r(m0)

6

)
+ (1− δ)

r(h1) = δ ·
(

r(m0)

6

)
+ (1− δ)

r(m0) = δ ·
(

r(w2)

2
+

r(m0)

6

)
+ (1− δ)

Setting δ = 3/4 and simplifying gives

r(w0) =
3r(w1)

4
+

3r(w2)

8
+

3r(h0)

4
+

r(m0)

8
+

1

4

r(w1) =
r(w0)

4
+

r(m0)

8
+

1

4

r(w2) =
r(w0)

4
+

r(m0)

8
+

1

4

r(h0) =
r(w0)

4
+

3r(h1)

4
+

r(m0)

8
+

1

4

r(h1) =
r(m0)

8
+

1

4

r(m0) =
3r(w2)

8
+

r(m0)

8
+

1

4

To compute PageRank, we solve for the six variables in the resulting system of linear equations

r(w0), r(w1), r(w2), r(h0), r(h1), and r(m0). Many algorithms exist for the numerical solution

of linear systems such as this one. The method particularly suited to PageRank is a form of

fixed-point iteration.

Fixed point iteration is a general technique for solving systems of equations, linear and other-

wise. To apply it, each variable must be expressed as a function of the other variables and itself.

The PageRank equations are already expressed in this form, with the PageRank value for each

page appearing alone on the left-hand side, and functions of these PageRank values appearing

on the right-hand side.

The algorithm begins by making an initial guess for the value of each variable. These values

are substituted into the right-hand equations, generating new approximations for the variables.

We repeat this process, substituting the current values to generate new approximations. If the

values converge, staying the same from iteration to iteration, we have solved the system of

equations.

Chapter 15 Web Search520

The method produces a series of approximations to r(α) for each page α: r(0)(α), r(1)(α),

r(2)(α), . . . If we choose as our initial guess r(0)(α) = 1 for all pages, we have∑
α∈Φ

r(0)(α) = N, (15.9)

as required by Equation 15.7. From Equation 15.8 we then compute new approximations from

existing approximations with the equation:

r(n+1)(α) = δ ·

⎛⎝∑
β→α

r(n)(β)

out(β)
+
∑
γ∈Γ

r(n)(γ)

N

⎞⎠+ (1− δ). (15.10)

To compute PageRank for the Web graph of Figure 15.2, we iterate the following equations:

r(n+1)(w0) =
3r(n)(w1)

4
+

3r(n)(w2)

8
+

3r(n)(h0)

4
+

r(n)(m0)

8
+

1

4

r(n+1)(w1) =
r(n)(w0)

4
+

r(n)(m0)

8
+

1

4

r(n+1)(w2) =
r(n)(w0)

4
+

r(n)(m0)

8
+

1

4

r(n+1)(h0) =
r(n)(w0)

4
+

3r(n)(h1)

4
+

r(n)(m0)

8
+

1

4

r(n+1)(h1) =
r(n)(m0)

8
+

1

4

r(n+1)(m0) =
3r(n)(w2)

8
+

r(n)(m0)

8
+

1

4

Table 15.1 shows the successive approximations to PageRank for this system of equations. After

18 iterations the values have converged to within three decimal places.

Figure 15.6 presents a detailed algorithm for computing PageRank. The algorithm assumes

that pages in the Web graph are numbered consecutively from 1 to N . The array link, of length

E, stores the links in the Web graph, with link[i].from indicating the source of the link and

link[i].to indicating the destination of the link. The array R stores the current approximation

to PageRank; the array R′ accumulates the new approximation.

The loop over lines 1–2 sets R to the initial approximation. At the end of each iteration

of the main loop (lines 3–14) the array R contains the next approximation. As written, these

lines form an infinite loop. In practice this loop would be terminated when the approximation

converges or after a fixed number of iterations. We omit the exact termination condition because

it depends on the accuracy desired and the precision of the computations. Over most Web

graphs, acceptable values can be achieved after a few hundred iterations. Each iteration of the

main loop takes O(N + E) time; the time complexity of the overall algorithm depends on the

number of iterations of the main loop.

15.3 Static Ranking 521

Table 15.1 Iterative computation of PageRank for the Web graph of Figure 15.1.

n r(n)(w0) r(n)(w1) r(n)(w2) r(n)(h0) r(n)(h1) r(n)(m0)

0 1.000 1.000 1.000 1.000 1.000 1.000

1 2.250 0.625 0.625 1.375 0.375 0.750

2 2.078 0.906 0.906 1.188 0.344 0.578

3 2.232 0.842 0.842 1.100 0.322 0.662

4 2.104 0.891 0.891 1.133 0.333 0.648

5 2.183 0.857 0.857 1.107 0.331 0.665

6 2.128 0.879 0.879 1.127 0.333 0.655

7 2.166 0.864 0.864 1.114 0.332 0.661

8 2.140 0.874 0.874 1.123 0.333 0.657

9 2.158 0.867 0.867 1.116 0.332 0.660

10 2.145 0.872 0.872 1.121 0.332 0.658

11 2.154 0.868 0.868 1.118 0.332 0.659

12 2.148 0.871 0.871 1.120 0.332 0.658

13 2.152 0.869 0.869 1.119 0.332 0.659

14 2.149 0.870 0.870 1.120 0.332 0.658

15 2.151 0.870 0.870 1.119 0.332 0.659

16 2.150 0.870 0.870 1.119 0.332 0.658

17 2.151 0.870 0.870 1.119 0.332 0.659

18 2.150 0.870 0.870 1.119 0.332 0.658

19 2.150 0.870 0.870 1.119 0.332 0.659

20 2.150 0.870 0.870 1.119 0.332 0.658

. .

Lines 4–5 initialize R′ by storing the contribution from jumps. Lines 6–9 consider each link

in turn, computing the contribution of the source page to the destination’s PageRank value.

Because
∑

α∈Φ r(α) = N , the set of sinks need not be explicitly considered. Instead, after

initializing R′ and applying links we sum the elements of R′. The difference between the resulting

sum and N represents
∑

γ∈Γ r(γ), the contribution from sinks in the graph.

As an alternative to lines 6–9 we might consider iterating over all nodes. For each node we

would then sum the PageRank contributions for the nodes linking to it, directly implement-

ing Equation 15.8. Although this alternative is reasonable for small Web graphs, the current

approach of iterating over links requires simpler data structures and saves memory, an important

consideration for larger Web graphs.

Iterating over links also allows us to store the links in a file on disk, further reducing memory

requirements. Instead of iterating over an array, the loop of lines 6–9 would sequentially read

this file of links from end to end during each iteration of the main loop. If links are stored in a

file, the algorithm requires only the O(N) memory to store the arrays R and R′.

Chapter 15 Web Search522

1 for i← 1 to N do
2 R[i]← 1
3 loop
4 for i← 1 to N do
5 R′[i]← 1− δ
6 for k← 1 to E do
7 i← link[k].from
8 j ← link[k].to

9 R′[j]← R′[j] + δ·R[i]

out(i)
10 s← N
11 for i← 1 to N do
12 s← s−R′[i]
13 for i← 1 to N do
14 R[i]← R′[i] + s/N

Figure 15.6 Basic PageRank algorithm. The array link contains the links in the Web graph. Lines
3-14 form an infinite loop. At the end of each interation of this loop, the array R contains a new estimate
of PageRank for each page. In practice the loop would be terminated when the change in PageRank
from iteration to iteration drops below a threshold or after a fixed number of iterations.

To demonstrate PageRank over a larger Web graph, we applied the algorithm to the English

Wikipedia (see Exercise 1.9). The top 12 pages are listed in Table 15.2. Unsurprisingly, given

that the collection includes only the English Wikipedia, major English-speaking countries figure

prominently on the list. The remaining countries have large economies and close ties to the

United States and to other English-speaking countries. Dates are often linked in Wikipedia,

which explains the high ranks given to recent years. The high rank given to World War II, the

pivotal event of the twentieth century, is also unsurprising. Overall, these results reflect the

culture and times of Wikipedia’s authors, an appropriate outcome.

15.3.2 Extended PageRank

The limitations of basic PageRank become evident if we revisit and reconsider its original

motivation, the random surfer. No real user accesses the Web in the fashion of this random

surfer. Even if we view the random surfer as an artificial construct — as a homunculus exhibiting

the average behavior of Web users as a group — its selection of links and jumps uniformly at

random remains unrealistic.

More realistically, our random surfer should have preferences for both links and jumps. For

example, she might prefer navigational links over links to ads, prefer links at the top of the

page to those at the bottom, and prefer links in readable fonts to those in tiny or invisible fonts.

When the random surfer is jumping randomly, top-level pages may be preferred over deeply

nested pages, longstanding pages may be preferred over newly minted pages, and pages with

more text may be preferred over pages with less.

15.3 Static Ranking 523

Table 15.2 The top 12 pages from a basic PageRank of Wikipedia.

Page: α PageRank: r(α) Probability: r(α)/N

United States 10509.50 0.004438

United Kingdom 3983.74 0.001682

2006 3781.65 0.001597

England 3421.03 0.001445

France 3340.53 0.001411

2007 3301.65 0.001394

2005 3290.57 0.001389

Germany 3218.33 0.001359

Canada 3090.20 0.001305

2004 2742.86 0.001158

Australia 2441.65 0.001031

World War II 2417.38 0.001021

Fortunately, we can easily extend PageRank to accommodate these preferences. To accom-

modate jump preferences, we define a teleport vector or jump vector J , of length N , where the

element J [i] indicates the probability that the random surfer will target page i when jump-

ing. Because J is a vector of probabilities, we require
∑N

i=1 J [i] = 1. It is acceptable for some

elements of J to be 0, but this may result in some pages having a zero PageRank value. If

all elements of J are positive, J [i] > 0 for all 1 ≤ i ≤ N , then all pages will have non-zero

PageRank (Section 15.3.3).

To accommodate link preferences, we define an N ×N follow matrix F , where element F [i, j]

indicates the probability that our random surfer will follow a link to page j from page i. Unless

page i is a sink, the elements in its row of F must sum to 1,
∑N

i=1 F [i, j] = 1. If page i is a sink,

all elements of the row are 0.

F is sparse. At most E of the N2 elements are non-zero, with one element corresponding

to each link. We exploit this property of F in our implementation of the extended PageRank

algorithm. The algorithm is given in Figure 15.7. It is similar to the basic PageRank algorithm

of Figure 15.6, with lines 5, 9, and 14 generalized to use the jump vector and follow matrix.

This generalization has no impact on the algorithm’s time complexity, with each iteration of

the main loop requiring O(N + E) time.

Because F is sparse, the elements of F may be stored with their corresponding links. More

specifically, we may add a follow field to each element of the link array, defined so that

link[k].follow = F [link[k].from, link[k].to].

Chapter 15 Web Search524

1 for i← 1 to N do
2 R[i]← J [i] ·N
3 loop
4 for i← 1 to N do
5 R′[i]← (1− δ) · J [i] ·N
6 for k← 1 to E do
7 i← link[k].from
8 j ← link[k].to
9 R′[j]← R′[j] + δ ·R[i] · F [i, j]
10 s← N
11 for i← 1 to N do
12 s← s−R′[i]
13 for i← 1 to N do
14 R[i]← R′[i] + s · J [i]

Figure 15.7 Extended PageRank algorithm. Each element J [i] of the jump vector J indicates the
probabilty of reaching page i when jumping randomly. Each element F [i, j] of the follow matrix F
indicates the probabilty of reaching page i from page j when following a link.

This extended link array could then be stored in a file on disk, with the loop of lines 6–9 changed

to iterate over this file. With the links stored on disk, the algorithm requires only O(N) RAM

to store the arrays R and R′ and the jump vector J .

To compute basic PageRank using this extended algorithm, we construct a jump vector with

all elements equal to 1/N . For the follow matrix we set its elements equal to 1/out(α) for all

pages to which a page α links, and to 0 otherwise. If we number the nodes in the graph of

Figure 15.2 from 1 to 6 in the order w0, w1, w2, h0, h1, and m0, we obtain the corresponding

follow matrix and jump vector for basic PageRank:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
3

1
3

1
3 0 0

1 0 0 0 0 0
1
2 0 0 0 0 1

2

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6
1
6
1
6
1
6
1
6
1
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15.11)

Now, suppose we know from external information that site W contains only high-quality and

carefully edited information, and the relative quality of the information on the other sites

remains unknown. We might adjust the follow matrix and jump vector to reflect this knowledge

by assuming the random surfer is twice as likely to link or jump to site W than to any other

15.3 Static Ranking 525

site, as follows:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
5

2
5

1
5 0 0

1 0 0 0 0 0
2
3 0 0 0 0 1

3

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
9
2
9
2
9
1
9
1
9
1
9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15.12)

For general Web retrieval there are numerous adjustments we might make to the follow matrix

and jump vector to reflect external knowledge. In general, however, we should not make adjust-

ments to reflect properties of the Web graph itself. For example, if many pages link to a given

page, we might view that page as having high “popularity” and be tempted to increase its prob-

ability in the jump vector. Avoid this temptation. Adjustments of this type are not required or

recommended. Focus on external sources when adjusting the follow matrix and jump vector. It

is the job of PageRank to account for the properties of the Web graph itself.

Many external sources can be enlisted when setting the follow matrix and jump vector.

Although space does not allow us to describe and analyze all possibilities, we list a number

of the possible sources below. This list is not exhaustive (see Exercise 15.6) nor is it the case

that all (or any) of these suggestions are useful in practice.

• Page content and structure. During crawling and indexing, a search engine might

analyze the structure and organization of a page as it would appear in a browser. This

analysis might then be used to assign probabilities to links based on their layout and

appearance. For example, users may be more likely to follow links near the top of the

page or in menus. Various aspects of page content might also be interpreted as indicators

of quality, thus influencing the jump vector by making the page a likelier target for a

jump. Large blocks of readable text might be interpreted positively, while a low ratio of

text to HTML tags might be interpreted negatively. Text in tiny and unreadable fonts

may indicate an attempt to trick the search engine by misrepresenting what a user would

actually see when the page is displayed.

• Site content and structure. Users may be more likely to jump to a site’s top-level page

than to a deeply nested page. Moreover, the longer the URL, the less likely a user will be

to remember it or be willing to type it directly into a browser’s address bar. The number of

pages in a site may also be a factor when setting the jump vector: A site should not receive

a high jump probability just because it contains a large number of pages. Depending on

the site, users may be more likely to follow a link within a site, as they navigate about,

than to follow a link off-site. On the other hand, a link between an educational site and

a commercial site may represent a strong recommendation because these links are not

usually motivated by commercial considerations. Older, more established, sites may be

preferred over newer sites.

Chapter 15 Web Search526

• Explicit judgments. Human editors might be recruited to manually identify (and

classify) high-quality sites, which then receive higher jump probabilities. These editors

could be professionals working for the search service itself or volunteers working for a Web

directory such as the Open Directory Project (ODP—see Open Directory Project2). A

major search engine might employ in-house editors to maintain their own Web directories

as part of their overall service.

• Implicit feedback. A clickthrough on a Web search result might be interpreted as

an implicit judgment regarding the quality of that page (see Section 15.5.2). Many of

the major search services offer toolbars. These browser extensions provide additional

features complementing the basic search service. With a user’s explicit permission, a

toolbar transmits information regarding the user’s browsing behavior back to the search

service. Pages and sites that the user visits might be recorded and then used to adjust

probabilities in the follow matrix and jump vector. Many search services also provide free

e-mail accounts. Links sent through these e-mail services might be accessible to these

search services and may represent recommendations regarding site and page quality. Of

course, any such use of implicit feedback must respect the privacy of users.

Adjustments in the jump vector may also be used to compute special variants of PageRank. To

compute a personalized PageRank we assign high jump probabilities to pages of personal interest

to an individual user (Page et al., 1999). These pages may be extracted from the user’s browser

bookmarks or her home page, or determined by monitoring her browsing behavior over a period

of time. A topic-oriented PageRank, or focused PageRank, assigns high jump probabilities to

pages known to be related to a specified topic, such as sports or business (Haveliwala, 2002).

These topic-oriented pages may be taken from a Web directory such as the ODP.

For example, we can select a page from our Wikipedia corpus and generate a topic-specific

PageRank focused just on that page. To generate the jump vector we assign a jump probability

of 50% to the selected page and assign the remaining 50% uniformly to the other pages. We

assign non-zero values to all elements of the jump vector in order to ensure that every page

receives a non-zero PageRank value, but the outcome does not change substantially if we assign

100% probability to the selected page.

Table 15.3 shows the top 12 pages for a pair of topics: “William Shakespeare” and “Infor-

mation Retrieval”. The topic-specific PageRank for the topic “Information Retrieval” assigns

high ranks to many pages related to that topic: The names Karen Spärck Jones and Gerard

Salton should be familiar from Chapters 2 and 8; Rutgers University, City University London,

and the University of Glasgow are home to prominent information retrieval research groups; the

presence of Google and SIGIR is hardly unexpected. Surprisingly, however, the topic-specific

PageRank for the topic “William Shakespeare” appears to be little different from the general

2 www.dmoz.org

15.3 Static Ranking 527

Table 15.3 The top 12 pages from a focused PageRank over Wikipedia for two topics.

William Shakespeare Information Retrieval

Article PageRank Article PageRank

William Shakespeare 303078.44 Information retrieval 305677.03

United States 7200.15 United States 8831.25

England 5357.85 Association for Computing Machinery 6238.30

London 3637.60 Google 5510.16

United Kingdom 3320.49 GNU General Public License 4811.08

2007 3185.71 World Wide Web 4696.78

France 2965.52 SIGIR 4456.67

English language 2714.88 Rutgers University 4389.07

2006 2702.72 Karen Spärck Jones 4282.03

Germany 2490.50 City University, London 4274.76

2005 2377.21 University of Glasgow 4222.44

Canada 2058.84 Gerard Salton 4171.45

PageRank shown in Figure 15.2. Apart from a page on the “English language” and the Shake-

speare page itself, all the pages appear in the top twelve of the general PageRank. Despite our

topic-specific focus, the page for United States appears second in both lists.

A topic-specific PageRank and a general PageRank both represent probability distributions

over the same set of pages. Continuing our example, we may obtain clearer results by comparing

these distributions. In Section 9.4 (page 296) we defined the Kullback-Leibler divergence, or KL

divergence, between two discrete probability distributions f and g as∑
x

f(x) · log
f(x)

g(x)
. (15.13)

Here we define f to be the topic-specific PageRank and g to be the general PageRank, normalized

to represent probabilities. For each page α we rerank the page according to its contribution to

the KL divergence (pointwise KL divergence) between f and g:

f(α) · log
f(α)

g(α)
. (15.14)

Recall that KL divergence indicates the average number of extra bits per symbol needed to

compress a message if we assume its symbols are distributed according to g instead of the

correct distribution f . Equation 15.14 indicates the extra bits due to α. Table 15.4 shows the

impact of adjusting a focused PageRank using Equation 15.14.

All the top pages are now on-topic. Andrew Cecil Bradley, a Professor at Oxford University,

was famous for his books on Shakespeare’s plays and poetry. Ben Jonson and George Wilkins

Chapter 15 Web Search528

Table 15.4 Reranking a focused PageRank according to each page’s contribution to the KL divergence between
the focused PageRank and the general PageRank.

William Shakespeare Information Retrieval

Article KL divergence Article KL divergence

William Shakespeare 1.505587 Information retrieval 2.390223

First Folio 0.007246 SIGIR 0.027820

Andrew Cecil Bradley 0.007237 Karen Spärck Jones 0.026368

King’s Men (playing company) 0.005955 C. J. van Rijsbergen 0.024170

Twelfth Night, or What You Will 0.005939 Gerard Salton 0.024026

Lord Chamberlain’s Men 0.005224 Text Retrieval Conference 0.023260

Ben Jonson 0.005095 Cross-language information retrieval 0.022819

Stratford-upon-Avon 0.004927 Relevance (information retrieval) 0.022121

Richard Burbage 0.004794 Assoc. for Computing Machinery 0.022051

George Wilkins 0.004746 Sphinx (search engine) 0.021963

Henry Condell 0.004712 Question answering 0.021773

Shakespeare’s reputation 0.004710 Divergence from randomness model 0.021620

were playwrights and contemporaries of Shakespeare. Richard Burbage and Henry Condell were

actors and members of the King’s Men playing company, for which Shakespeare wrote and

acted. On the information retrieval side, Spärck Jones and Salton are joined by C. J. (Keith)

van Rijsbergen, another great pioneer of the field. Sphinx is an open-source search engine

targeted at relational database systems. The remaining topics should be familiar to readers of

this book.

15.3.3 Properties of PageRank

In our presentation of PageRank we have been ignoring several important considerations: Will

the fixed-point iteration procedure of Figure 15.7 always converge, or will the algorithm fail to

work for some Web graphs? If it does converge, how quickly will it converge? Will it always

convergence to the same PageRank vector, regardless of the initial estimate?

Fortunately the PageRank algorithm possesses properties that guarantee good behavior. To

simplify our discussion of these properties, we combine the follow matrix and the jump vector

into a single transition matrix. First we extend the follow matrix to handle sinks. Let F ′ be the

N ×N matrix

F ′[i, j] =

{
J [j] if i is a sink,

F [i, j] otherwise.
(15.15)

Next, let J ′ be the N × N matrix with each row equal to the jump vector. Finally, we define

the transition matrix as

M = δ · F ′ + (1− δ) · J ′ . (15.16)

15.3 Static Ranking 529

For pages i and j, M [i, j] represents the probability that a random surfer on page i will transition

to page j without considering if this transition is made through a jump or by following a link.

For example, the transition matrix corresponding to F and J in Equation 15.12 is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
18

16
45

16
45

37
180

1
18

1
18

29
36

1
18

1
18

1
18

1
18

1
18

5
9

1
18

1
18

1
18

1
18

11
36

7
9

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

7
9

1
36

1
36

7
36

7
36

7
36

1
9

1
9

1
9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15.17)

You may recognize M as a stochastic matrix representing the transition matrix of a Markov

chain, as introduced in Section 1.3.4. Each page corresponds to a state; the surfer’s initial

starting location corresponds to a starting state. Moreover, the PageRank vector R has the

property that

MT R = R. (15.18)

You may recognize R as being an eigenvector3 of MT , with a corresponding eigenvalue of 1.

Given an n × n matrix A, recall that �x is an eigenvector of A and λ is the corresponding

eigenvalue of A, if A�x = λ�x.

A considerable amount is known about Markov chains and their eigenvectors, and we can

turn to this knowledge to determine the properties of PageRank. For simplicity we temporarily

assume that all elements of the jump vector are positive, but these properties also hold when

elements are 0. We consider jump vectors with 0 elements later in the section.

Underlying PageRank is the idea that as our random surfer surfs for longer periods of time,

the relative time spent on each page converges to a value that is independent of the surfer’s

starting location. This informal notion corresponds to an important property of Markov chains

known as ergodicity. A Markov chain is ergodic if two properties hold, both of which trivially

hold for M when J contains only positive values. The first property, irreducibility, captures the

idea that the random surfer can get from any state to any other state after some finite number

of steps. More specifically for any states i and j, if the surfer is currently in state i, there is a

positive probability that she can reach state j after taking no more than k steps, where k ≤ N .

If the jump vector contains only positive elements, then M [i, j] > 0 for all states i and j, and

there is a positive probability that the surfer will reach j from i after k = 1 step.

The second property, that the transition matrix be aperiodic, eliminates those Markov chains

in which the probability of being in a given state cycles between multiple values. A state i is

periodic with period k if it is possible to return to it only after a number of steps that is a

multiple of k. For example, if the surfer can return to a state only after an even number of

3 If linear algebra is a distant memory, you may safely skip to the start of Section 15.3.4.

Chapter 15 Web Search530

steps, then the state is periodic with period 2. If all states in a matrix have period 1, then it

is aperiodic. Because M [i, j] > 0 for all i, the surfer can reach any state from any other state.

Thus, the period of all states is 1 and the property holds.

Let the eigenvectors of MT be �x1, �x2,..., �xN , with associated eigenvalues λ1,..., λN . Following

convention we order these eigenvectors so that |λ1| ≥ |λ2| ≥ ... ≥ |λN |. Because all elements

of MT are positive and each row of M sums to 1, a theorem known as the Perron-Frobenius

theorem tells us that λ1 = 1, that all other eigenvectors satisfy |λi| < 1, and that all elements

of �x1 are positive. Thus, the principal eigenvector of MT is the PageRank vector. Following

convention, eigenvectors are scaled to unit length, with ‖�xi‖ = 1 for all i, so that �x1 = R/N .

We now re-express our algorithm for computing PageRank in matrix notation. Let �x(0) be

our initial estimate of PageRank (normalized to have a length of 1). Each iteration of the main

loop in Figure 15.7 multiplies MT by our current estimate to produce a new estimate. The

first iteration produces the estimate �x(1) = MT�x(0), the second iteration produces the estimate

�x(2) = MT �x(1), and so on. After n iterations we have the estimate

�x(n) =
(
MT

)n
�x(0). (15.19)

Thus, the algorithm computes PageRank if

lim
n→∞

�x(n) = �x1. (15.20)

The ergodicity of M guarantees this convergence. In the terminology of Markov chains, �x1 is

called the stationary distribution of M . This algorithm for computing the principal eigenvector

of a matrix is called the power method (Golub and Van Loan, 1996).

To determine the rate of convergence, suppose the initial estimate �x(0) is expressed as a linear

combination of the (unknown) eigenvectors.

�x(0) = �x1 + a2 �x2 + a3 �x3 + · · ·+ aN �xN (15.21)

After the first iteration we have

�x(1) = MT �x(0)

= MT (�x1 + a2 �x2 + · · ·+ aN �xN)

= MT �x1 + a2 MT �x2 + · · ·+ aN MT �xN

= �x1 + a2 λ2 �x2 + · · ·+ aN λN �xN .

15.3 Static Ranking 531

After n iterations, and recalling that λ2 is the second-largest eigenvalue after λ1, we have

�x(n) = �x1 + a2 λn
2 �x2 + · · ·+ aN λn

N �xN

≤ �x1 + λn
2 (a2 �x2 + · · ·+ aN �xN)

= �x1 + O(λn
2).

Thus, the rate of convergence depends on the value of the second eigenvalue of MT . The smaller

the value, the faster the convergence.

For PageRank, Haveliwala and Kamvar (2003) proved the remarkable result that the value

of the second eigenvector is δ, the damping factor.4 Provided that δ is not too close to 1,

convergence should be acceptably fast. More important, the rate of convergence does not depend

on characteristics of the Web graph. If convergence is acceptably fast for one Web graph, it

should remain acceptably fast as the Web graph evolves over time.

Haveliwala and Kamvar note that the stability of PageRank is also associated with δ. With

smaller values of δ, PageRank becomes less sensitive to small changes in the Web graph. Of

course, if the value of δ is close to 0, PageRank may fail to capture any useful information

regarding the Web graph because a random jump will happen at nearly every step. The tra-

ditional value of δ = 0.85 appears to be a reasonable compromise, giving good stability and

convergence properties while allowing PageRank to do its job.

Thus, it is the random jumps of the imaginary surfer that determines the convergence and

stability of PageRank. The jump vector guarantees the ergodicity of M , and therefore the

convergence of the PageRank algorithm. The damping factor determines stability and the rate

of convergence. The structure of the Web graph itself does not play a major role.

The above discussion assumes that all elements of the jump vector are positive. If this assump-

tion does not hold, and the jump vector contains a zero, M may not be irreducible. An element

with value zero in the jump vector indicates a page to which the surfer will never jump at

random. Suppose there is a page α that cannot be reached by following links from any of the

pages with a non-zero jump probability. Once the surfer makes a random jump after leaving α,

she can never return to it.

As the length of the surf goes to infinity, the probability that the surfer eventually makes a

jump goes to one. After making a jump the probability of visiting α is zero. Thus, we can set

the PageRank value for α to zero, without explicitly computing it.

Let Φ′ be the set of pages reachable after a jump (Figure 15.8). The pages outside Φ′ have a

PageRank value of zero, and do not need to be involved in the PageRank computation for the

pages in Φ′. Let M ′ be the transition matrix corresponding to Φ′ and let J ′ be its jump vector.

J ′ may still contain elements with value zero, but the pages associated with these elements will

be reachable from pages with non-zero values. Because a jump is possible at any step, and any

4 More accurately, |λ2| ≤ δ, but λ2 = δ for any realistic Web graph.

Chapter 15 Web Search532

����������	

�������	
��	�����	����	��������

���	
�����������	��

����������������	

Figure 15.8 Pages reachable after a jump.

page in Φ′ may be reached after a jump, M ′ is irreducible. The possibility of a jump at any

step also helps to guarantee that M ′ is aperiodic (Exercise 15.5). Because M ′ is irreducible

and aperiodic, it is ergodic and PageRank will converge. The other stability and convergence

properties can also be shown to hold for M ′.

15.3.4 Other Link Analysis Methods: HITS and SALSA

In addition to PageRank a number of other link analysis techniques have been proposed in the

context of the Web. Two of these methods are Kleinberg’s HITS algorithm (Kleinberg, 1998,

1999) and the related SALSA algorithm due to Lempel and Moran (2000). HITS was developed

independently of PageRank during roughly the same time frame. SALSA was developed shortly

after, in an attempt to combine features from both algorithms.

The intuition underlying HITS derives from a consideration of the roles a page may play on

the Web with respect to a given topic. One role is that of an authority, a page that contains

substantial and reliable information on the topic. A second role is that of a hub, a page that

aggregates links to pages related to the topic. A good hub points to many authorities; a good

authority is referenced by many hubs. We emphasize that these are idealized roles; a page may

be both a hub and an authority to some extent.

In contrast to PageRank, which was envisioned as operating over the entire Web, Kleinberg

envisioned HITS as operating over smaller Web graphs. These graphs may be generated by

executing a query on a search engine to retrieve the contents of the top few hundred pages, along

with pages in their immediate neighborhood. Based on the retrieved pages, HITS computes hubs

and authorities with respect to the query. At the time HITS was invented, Web search engines

were not known to incorporate link analysis techniques (Marchiori, 1997), and HITS provided

a way of obtaining the benefit of these techniques without explicit support from the engine.

15.3 Static Ranking 533

For a given page α, HITS computes two values: an authority value a(α) and a hub value h(α).

The authority value of a page is derived from the hub values of the pages that link to it:

a(α) = wa ·
∑
β→α

h(β). (15.22)

The hub value of a page is derived from the authority values of the pages it references.

h(α) = wh ·
∑
α→β

a(β). (15.23)

The significance of the weights wa and wh is discussed shortly. Links from a page to itself (self-

loops) and links within sites are ignored because these are assumed to represent navigational

relationships rather than hub-authority relationships.

We may express Equations 15.22 and 15.23 in matrix/vector notation by defining �a to be the

authority values and �h to be the hub values for the N pages in the Web graph.5. Let W be the

adjacency matrix of the Web graph, where W [i, j] = 1 if there is a link from the ith page to the

jth page, and W [i, j] = 0 otherwise. For example, the adjacency matrix for the Web graph in

Figure 15.2 (retaining links within sites) is

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15.24)

In matrix/vector notation, Equations 15.22 and 15.23 become

�a = wa ·WT�h and �h = wh ·W�a . (15.25)

Substituting gives

�a = wa · wh ·WT W�a and �h = wa · wh ·WW T�h . (15.26)

If we define A = WT W , H = WW T , and λ = 1/(wa · wh), we have

λ�a = A�a and λ�h = H�h . (15.27)

Thus, the authority vector �a is an eigenvector of A and the hub vector �h is an eigenvector of H .

5 If you wish to avoid the details, you may safely skip to Section 15.3.5.

Chapter 15 Web Search534

The matrices A and H have interesting interpretations taken from the field of bibliometrics

(Lempel and Moran, 2000; Langville and Meyer, 2005): A is the co-citation matrix for the Web

graph, where A[i, j] is the number of pages that link to both i and j; H is the co-reference or

coupling matrix for the Web graph, where H [i, j] is the number of pages referenced by both i

and j. Both A and H are symmetric, a property of importance for the computation of �a and �h.

As we did for PageRank, we may apply fixed-point iteration — in the form of the power

method — to compute �a and �h. Let �a(0) and �h(0) be initial estimates for �a and �h. The nth

estimate, �a(n) and �h(n), may be computed from the previous estimate by the equations

�a(n) = WT�h(n−1)/‖WT�h(n−1)‖ and �h(n) = W�a(n−1)/‖W�a(n−1)‖ . (15.28)

Normalization allows us to avoid explicit computation of the eigenvalue by ensuring that each

estimate has unit length. Successive application of these equations will compute �a and �h if

lim
n→∞

�a(n) = �a and lim
n→∞

�h(n) = �h . (15.29)

For PageRank the ergodicity of M guarantees convergence. For HITS the symmetric property

of A and H provides this guarantee, as long as the initial estimates have a component in the

direction of the principal eigenvector (Kleinberg, 1999; Golub and Van Loan, 1996). Any unit

vector with all positive elements will suffice to satisfy this requirement, such as

�a(0) = �h(0) = 〈 1/
√

N, 1/
√

N, ... 〉 .

Unfortunately, convergence to a unique solution is not guaranteed (Langville and Meyer,

2005). Depending on the initial estimate, HITS may convergence to different solutions (see

Exercise 15.9).

SALSA, the stochastic approach for link-structure analysis, introduces PageRank’s random

surfer into HITS (Lempel and Moran, 2000). The creation of SALSA was motivated by the

observation that a small set of highly interconnected sites (or “tightly connected communities”)

can have a disproportionate influence on hub and authority values, by generating inappropriately

high values for members of these communities.

SALSA imagines a random surfer following both links and backlinks (i.e., reversed links),

alternating between them. On odd-numbered steps the surfer chooses an outgoing link from the

current page uniformly at random and follows it. On even-numbered steps the surfer chooses

an incoming link uniformly at random, from a page linking to the current page, and follows it

backwards to its source. As the number of steps increases, the relative time spent on a page just

before taking an odd-numbered step represents the page’s hub score; the relative time spent on

a page just before taking an even-numbered step represents the page’s authority score.

Although we do not provide the details, SALSA may be formulated as an eigenvector problem.

Lempel and Moran (2000) discuss properties that simplify the computation of SALSA. Rafiei

and Mendelzon (2000) propose the introduction of random jumps into a SALSA-like algorithm,

with the possibility for a random jump occurring after each odd-even pair of steps.

15.4 Dynamic Ranking 535

15.3.5 Other Static Ranking Methods

Static ranking provides a query-independent score for each Web page. Although link analysis is

an essential component in the computation of static rank, other features may contribute.

As we mentioned with respect to link analysis in Section 15.3.2, some of the most important

features are provided through implicit user feedback. By “implicit” we mean that the user

provides this feedback while engaged in other activities, perhaps without being aware that she

is providing feedback. For example, a click on a Web search result may indicate a preference for

that site or page. If higher-ranked results were skipped, the click may also indicate a negative

assessment of these skipped pages (Joachims et al., 2005). The toolbars provided by commercial

search services track the sites visited by a user and return this information to the search service

(with the user’s permission). The popularity of a site may be measured through the number of

users visiting it, and through the frequency and length of their visits (Richardson et al., 2006).

The content of the pages themselves may also contribute to their static rank. Ivory and Hearst

(2002) describe how quantitative measures of page content and structure predict the quality

scores assigned by expert assessors. These measures consider the quantity and complexity of

text, the placement and formatting of graphical elements, and the choice of fonts and colors.

Finally, the content and structure of a URL may be considered. Short and simple URLs might

be favored over long and complex ones, particularly for navigational queries (Upstill et al., 2003).

Sites in the com domain might be more appropriate for commercial queries than sites in the edu

domain; the opposite is true for academic queries.

Richardson et al. (2006) apply machine learning techniques, similar to those described in

Section 11.7, to the computation of static rank. By combining popularity, page content, and

URL features with basic PageRank, they demonstrate substantial improvements over basic

PageRank alone. In Section 15.3.2 we discussed how these same features might be applied to

adjust the follow and jump vectors in extended PageRank. The best methods for exploiting

these features in the computation of static rank remains an area open for exploration.

15.4 Dynamic Ranking

At query time the search engine combines each page’s static rank with query-dependent fea-

tures — such as term frequency and proximity — to generate a dynamic ranking for that query.

Although the dynamic ranking algorithms used in commercial search engines are grounded in

the theory of Part III, the details of these algorithms vary greatly from one Web search engine

to another. Moreover, these algorithms evolve continuously, reflecting the experience gained

from the tremendous numbers of queries and users these search engines serve.

Although the scope of this book does not allow us to provide the details of the dynamic ranking

algorithms used in specific Web search engines, two aspects of dynamic ranking deserve some

attention. The first of these aspects — the availability of anchor text — represents a ranking

feature of particular importance in Web search. Anchor text often provides a description of

Chapter 15 Web Search536

Table 15.5 Anchor text for in-links to the Wikipedia page
en.wikipedia.org/wiki/William Shakespeare, ordered by number
of appearances.

Anchor Text # Anchor Text

3123 Shakespeare 2 Will

3008 William Shakespeare 2 Shakesperean

343 Shakespeare’s 2 Shakespere

210 Shakespearean 2 Shakespearean studies

58 William Shakespeare’s 2 Shakepeare

52 Shakespearian 2 Bill Shakespeare...

10 W. Shakespeare 1 the Bard’s

7 Shakespeare, William 1 lost play of Shakespeare

3 William Shakepeare 1 Shakespearesque

3 Shakesphere 1 Shakespearean theatre

3 Shakespeare’s Theatre 1 Shakespearean plays

3 Bard . . .

2 the Bard . . .

the page referenced by its link, which may be exploited to improve retrieval effectiveness. The

importance of the second aspect — novelty — derives from the scale and structure of the Web.

Although many pages on a given site may be relevant to a query, it may be better to return one

or two results from several sites rather than many pages from a single site, thereby providing

more diverse information.

15.4.1 Anchor Text

Anchor text often provides a label or description for the target of its link. Table 15.5 lists the

anchor text linking to the page en.wikipedia.org/wiki/William Shakespeare from other

pages within Wikipedia, ordered by the number of times each string appears. Pages outside

of Wikipedia may also link to this page, but that anchor text can be discovered only through

a crawl of the general Web. The table shows a mixture of text, including misspellings and

nicknames (“the Bard”). In all, 71 different strings are used in 6889 anchors linking to the page.

However, more than 45% of these anchors use the text “Shakespeare”, and nearly as many use

the text “William Shakespeare”.

On the general Web the number of links to a page may vary from one to many millions.

When a page is linked many times, the anchor text often repeats, and when it repeats, it

usually represents an accurate description of the page (but see Exercise 15.12). Misspellings,

nicknames, and similar anchor text can also prove valuable because these terms may not appear

on the page, but may be entered by a user as part of a query.

15.4 Dynamic Ranking 537

For anchor text to be usable as a ranking feature, it must be associated with the target of

the link. Before building a Web index, anchor text must be extracted from each page to create

a set of tuples of the form

〈 target URL, anchor text 〉 .

These tuples are sorted by URL. The anchor text for each URL is then merged with the page

contents for that URL to form a composite document for indexing purposes.

For retrieval, anchor text may be treated as a document field, much as we did for titles and

other fields in Section 8.7. When computing term weights, anchor text may be weighted in

the same way as other text, or term frequencies may be adjusted to dampen the influence of

repeated terms (Hawking et al., 2004). The static rank of the page on which the anchor appears

may also play a role in term weights (Robertson et al., 2004). Anchor text appearing on pages

with high static rank may be given greater weight than text appearing on pages with low static

rank.

15.4.2 Novelty

Given the variety and volume of information on the Web, it is important for a search engine to

present a diverse set of results to the user. Given our example query 〈“UPS”〉, a search engine

might best return a mix of results related to the parcel service, to power supplies, and to the

university. Simple ways to reduce redundancy include the identification of duplicate pages in

the index and post-retrieval filtering to eliminate excessive results from a single Web site.

Although the Web contains many pages that are duplicates (or near-duplicates) of others,

the result of a search should usually contain only a single copy. These duplicated pages occur

on the Web for several reasons. Many sites return a default page when a URL path is invalid,

and all invalid URLs from these sites appear to be duplicates of this default page. Certain types

of content are frequently mirrored across multiple sites. For example, a newswire article might

appear on the Web sites of multiple newspapers. These duplicates may be detected and flagged

by the Web crawler during the crawl (Section 15.6.3), and static rank may be used to choose

the best copy at query time.

In general, duplicated pages within a given site should be eliminated from the index. However,

it may be reasonable to retain duplicates when they appear on different sites. Most commercial

Web search engines allow searches to be restricted to a specified site or domain. For exam-

ple, including the term site:wikipedia.org in a query would restrict a search to Wikipedia.

Retaining pages duplicated on other sites allows these searches to be handled correctly.

Another method for improving diversity in search results is to apply post-retrieval filtering.

After dynamic ranking, most commercial search engines filter the results to reduce redundancy.

Chapter 15 Web Search538

For example, the documentation for the (now-deprecated) Google SOAP API6 describes one

simple post-retrieval filtering algorithm. After retrieval, results may be filtered in two ways:

1. If several results have identical titles and snippets, then only one is retained.

2. Only the two best results from a given Web site are retained.

The API calls this second filter “host crowding”. Interestingly, the first filter may eliminate

relevant results that are not in fact redundant in order to reduce the appearance of redundancy

in the search results.

15.5 Evaluating Web Search

In principle it is possible to apply the traditional IR evaluation framework (e.g., P@10 and MAP)

to Web search. However, the volume of material available on the Web introduces some problems.

For example, an informational query could have hundreds or thousands of relevant documents.

It is not uncommon that all of the top ten results returned for such a query are relevant.

In that situation the binary relevance assessments (“relevant”/“not relevant”) underlying the

traditional methodology might not be a sufficient basis for a meaningful evaluation; graded

relevance assessments may be more appropriate.

When graded relevance values are available, evaluation measures such as nDCG

(Section 12.5.1) may be applied to take advantage of them (Richardson et al., 2006). For

example, Najork (2007) uses nDCG in a Web search evaluation based on more than 28,000

queries taken from the Windows Live search engine. Nearly half a million manual judgments

were obtained for these queries. These judgments were made on a six-point scale: definitive,

excellent, good, fair, bad, and detrimental.

The nature of the Web introduces several novel aspects of evaluation. As we discussed in

Section 15.2, many Web queries are navigational. For these queries only a single specific page

may be relevant. In Section 15.5.1 we present an evaluation methodology addressing this query

type. In addition, the volume of queries and users handled by commercial Web search services

provides an opportunity to infer relevance judgments from user behavior, which may be used to

augment or replace manual judgments. In Section 15.5.2 we provide an overview of techniques

for interpreting clickthroughs and similar user actions for evaluation purposes.

15.5.1 Named Page Finding

A named page finding task is a Web evaluation task that imagines a user searching for a specific

page, perhaps because she has seen it in the past or otherwise learned about it. The user enters

a query describing the content of the page and expects to receive it as the first (or only) search

6 code.google.com/apis/soapsearch/reference.html (accessed Dec 23, 2009)

15.5 Evaluating Web Search 539

Table 15.6 Named page finding results for selected retrieval methods from Part III.
The best run from TREC 2006 (Metzler et al., 2006) is included for comparison.

Method MRR % Top 10 % Not Found

BM25 (Ch. 8) 0.348 50.8 16.0

BM25F (Ch. 8) 0.421 58.6 16.6

LMD (Ch. 9) 0.298 48.1 15.5

DFR (Ch. 9) 0.306 45.9 19.9

Metzler et al. (2006) 0.512 69.6 13.8

result. For example, the query 〈“Apollo”, “11”, “mission”〉 might be used to describe NASA’s

history page on the first moon landing. Although other pages might be related to this topic, only

that page would be considered correct. Named page finding tasks were included in TREC as

part of the Web Track from 2002 to 2004 and in the Terabyte Track in 2005 and 2006 (Hawking

and Craswell, 2001; Craswell and Hawking, 2004; Clarke et al., 2005; Büttcher et al., 2006).

The premise behind named page finding represents an important subset of navigational queries

(see page 513). Nonetheless, many navigational queries (e.g., 〈“UPS”〉) are seeking specific sites

rather than specific content. To address this issue the scope of named page finding may be

expanded to include “home page finding” queries (Craswell and Hawking, 2004).

For the 2006 Terabyte Track, 181 topics were created by track participants. For each topic

the creator specified the answer page within the GOV2 collection. Each submitted run consisted

of up to 1000 results. During the evaluation of the runs, near-duplicates of answer pages were

detected using an implementation of Bernstein and Zobel’s (2005) DECO algorithm, a variant

of the near-duplicate detection algorithm from Section 15.6.3. All near-duplicates of a correct

answer page were also considered correct. Three measures were used in the evaluation:

• MRR: The mean reciprocal rank of the first correct answer.

• % Top 10: The proportion of queries for which a correct answer was found in the top

ten search results.

• % Not Found: The proportion of queries for which no correct answer was found in the

top 1000 search results.

For a given topic, reciprocal rank is the inverse of the rank at which the answer first appears. If

the answer is the top result, its reciprocal rank is 1; if the answer is the fifth result, its reciprocal

rank is 1/5. If the answer does not appear in the result list, it may be assigned a reciprocal rank

of 1/∞ = 0. Mean reciprocal rank is the average of reciprocal rank across all topics.

Full results for the track are provided by Büttcher et al. (2006). Table 15.6 shows the results

of applying the retrieval methods from Part III to this task. For this task, BM25F improves

upon BM25. For comparison we include the best result from the track itself (Metzler et al.,

2006). This run incorporated a number of Web-specific techniques, such as link analysis (static

ranking) and anchor text. The gap between the standard retrieval methods from Part III and

Metzler’s run illustrates the importance of these techniques for navigational search tasks.

Chapter 15 Web Search540

15.5.2 Implicit User Feedback

Implicit feedback is provided by users as a side effect of their interaction with a search engine.

Clickthroughs provide one important and readily available source of this implicit feedback.

Whenever a user enters a query and clicks on the link to a result, a record of that clickthrough

may be sent by the browser to the search engine, where it is logged for later analysis.

For a given query the clickthroughs from many users may be combined into a clickthrough

curve showing the pattern of clicks for that query. The plots in Figure 15.5 provide examples

of stereotypical clickthrough curves for navigational and informational queries. In both plots

the number of clickthroughs decreases with rank. If we interpret a clickthrough as a positive

preference on the part of the user, the shapes of these curves are just as we would expect: Higher-

ranked results are more likely to be relevant and to receive more clicks. Even when successive

results have the same relevance, we expect the higher ranked result to receive more clicks. If

the user scans the results in order, higher-ranked results will be seen before lower-ranked ones.

There is also a trust bias (Joachims et al., 2005) in user behavior: Users expect search engines

to return the best results first, and therefore tend to click on highly ranked results even though

they might not contain the information sought.

Figure 15.9 presents a third clickthrough curve, taken from the same paper as the previous

two (Clarke et al., 2007). This figure plots clickthroughs for the informational/transactional

query 〈“kids”, “online”, “games”〉. The plot includes a number of clickthrough inversions, in

which a particular result received fewer clicks than the result ranked immediately below it (e.g.,

the result at rank 2 versus rank 3, or rank 7 versus rank 8).

Clickthrough inversions may indicate a suboptimal ranking, in which a less relevant document

is ranked above a more relevant one. However, they may also arise for reasons unrelated to

relevance. For example, the title and snippet of the higher-ranked result may not accurately

describe the underlying page (Clarke et al., 2007; Dupret et al., 2007). If a user does not

understand how or why a result is relevant after reading its title and snippet, she may be

inclined to ignore it and to move on to other results. Nonetheless, when the titles and snippets

provide accurate descriptions of results, a clickthrough inversion may be interpreted as a pairwise

preference for the lower-ranked result (Joachims and Radlinski, 2007).

Query abandonment — issuing a query but not clicking on any result — suggests user dis-

satisfaction of a more substantial nature (Joachims and Radlinski, 2007). When many users

abandon a given query, this behavior may indicate that none of the top results are relevant.

In some cases an abandonment is followed by a query reformulation in which the user adds,

removes, or corrects terms. A search service may capture these query reformulations by tracking

search activity through browser cookies and similar mechanisms.7

By examining query reformulations from large numbers of users, it is possible to correct

spelling errors, to suggest expansion terms, and to identify acronyms (Cucerzan and Brill, 2004;

Jones et al., 2006). For example, a user entering the query 〈“brittany”, “spears”〉 may correct

7 www.w3.org/Protocols/rfc2109/rfc2109

15.6 Web Crawlers 541

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 c

lic
ks

Result position

Figure 15.9 Clickthrough curve for the query 〈“kids”, “online”, “games”〉. Inversions (e.g., rank 2
versus rank 3) indicate a suboptimal ranking of search results.

it to 〈“britney”, “spears”〉.8 A click after a reformulation may indicate a page that is relevant

to the original query. For example, Joachims and Radlinski (2007) report that users frequently

reformulate 〈“oed”〉 to 〈“oxford”, “english”, “dictionary”〉 and then click on the first result.

Capturing other forms of implicit feedback requires the cooperation of the user, who must

install a browser toolbar or similar application, and give explicit permission to capture this

feedback (Kellar et al., 2007). Page dwell time provides one example of feedback that may be

captured in this way. If a user clicks on a result and then immediately backtracks to the result

page, this action may indicate that the result is not relevant.

Taken together, these and other sources of implicit feedback can lead to substantial improve-

ments in the quality of Web search results, both by facilitating evaluation (Agichtein et al.,

2006b) and by providing additional ranking features (Agichtein et al., 2006a).

15.6 Web Crawlers

The functioning of a Web crawler is similar to that of a user surfing the Web, but on a much

larger scale. Just as a user follows links from page to page, a crawler successively downloads

pages, extracts links from them, and then repeats with the new links. Many of the challenges

associated with the development of a Web crawler relate to the scale and speed at which this

process must take place.

8 labs.google.com/britney.html (accessed Dec 23, 2009)

Chapter 15 Web Search542

Suppose our goal is to download an 8-billion-page snapshot of the Web over the course of a

week (a small snapshot by the standards of a commercial Web search engine). If we assume an

average page is 64 KB in size, we must download data at a steady rate of

64 KB/page · 8 giga-pages/week = 512 TB/week

= 888 MB/second

To achieve this tremendous download rate, the crawler must download pages from multiple

sites concurrently because it may take an individual site several seconds to respond to a single

download request. As it downloads pages, the crawler must track its progress, avoiding pages it

has already downloaded and retrying pages when a download attempt fails.

The crawler must take care that its activities do not interfere with the normal operation of

the sites it visits. Simultaneous downloads should be distributed across the Web, and visits to a

single site must be carefully spaced to avoid overload. The crawler must also respect the wishes

of the sites it visits by following established conventions that may exclude the crawler from

certain pages and links.

Many Web pages are updated regularly. After a period of time the crawler must return to

capture new versions of these pages, or the search engine’s index will become stale. To avoid

this problem we might recrawl the entire Web each week, but this schedule wastes resources and

does not match the practical requirements of Web search. Some pages are updated regularly

with “popular” or “important” information and should be recrawled more frequently, perhaps

daily or hourly. Other pages rarely change or contain information of minimal value, and it may

be sufficient to revisit these pages less frequently, perhaps biweekly or monthly.

To manage the order and frequency of crawling and recrawling, the crawler must maintain

a priority queue of seen URLs. The ordering of URLs in the priority queue should reflect a

combination of factors including their relative importance and update frequency.

15.6.1 Components of a Crawler

In this section we examine the individual steps and components of a crawler by tracing the

journey of a single URL (en.wikipedia.org/wiki/William Shakespeare) as it travels through

the crawling process. Tracing a single URL allows us to simplify our presentation, but we

emphasize that crawling at the rates necessary to support a Web search engine requires these

steps to take place concurrently for large numbers of URLs.

Figure 15.10 provides an overview of these steps and components. The crawling process begins

when a URL is removed from the front of the priority queue and ends when it is returned to the

queue along with other URLs extracted from the visited page. Although specific implementation

details vary from crawler to crawler, all crawlers will include these steps in one form or another.

For example, a single thread may execute all steps for a single URL, with thousands of such

threads executing concurrently. Alternatively, URLs may be grouped into large batches, with

15.6 Web Crawlers 543

�����
����	
��������
����	�

�������������	�

������������	
�

���
����

�������

��	��	��������

�� �

�� !"���������

�� !"���������

����

����

��

�����

#���	$�

Figure 15.10 Components of a Web crawler.

each step executed for all URLs in the batch before the crawler moves on to execute the next

step for the same batch.

Like the search engine it supports (Section 14.1), the activities of a large-scale Web crawler

must be distributed across multiple machines in order to sustain the necessary download rates.

This distribution may be achieved by assigning subsets of URLs to each machine, essentially

giving each machine responsibility for a portion of the Web. The construction of these subsets

may be based on host name, IP address, or other factors (Chung and Clarke, 2002). For example,

we might assign each machine responsibility for certain hosts. The priority queue might be

centralized at a single machine that would distribute URLs to other machines for crawling, or

each machine might implement its own priority queue for its assigned subset.

Chapter 15 Web Search544

Domain name translation

The processing of a URL begins by translating its host name into a 32-bit IP address. For the

host en.wikipedia.org the corresponding IP address is 208.80.152.2 (at time and place of

writing). This address will be used to contact the machine hosting the page.

As it is for browsers and other Internet applications, this translation is effected through the

Domain Name System (DNS), a standard Internet service that is implemented by a distributed

hierarchy of servers and caches spread across the Internet. Although the speed of DNS is accept-

able for most applications, its speed may be insufficient to satisfy the demands of a Web crawler,

which may require thousands of translations per second. To satisfy this translation rate, the

crawler may need to maintain its own translation cache. This cache would maintain mappings

between host names and IP addresses, expiring and refreshing these entries as they grow stale.

Although the inclusion of a custom DNS cache represents a minor part of a crawler, the need

for this cache illustrates the problems encountered when crawling at high speeds.

Robots exclusion protocol

With the IP address available the crawler must check that access to the page is permitted by the

Web site. This permission is determined through an unofficial (but well-established) convention

known as the robots exclusion protocol (more informally, the “robots.txt protocol”). For a

given site, access permissions are obtained by appending the path "/robots.txt" to the host

name and downloading the corresponding page.

In our example the URL is http://en.wikipedia.org/robots.txt. Figure 15.11 shows a

small portion of the corresponding page. The page is structured as a series of comments and

instructions. A “User-agent” instruction begins a list that applies to the crawler named on the

line, with a “*” indicating that the instructions apply to all crawlers. For example, a “Disallow”

instruction indicates a path prefix to which access is disallowed. Downloading any page having

a path starting with a disallowed prefix is not permitted. The example in the figure denies all

access to the wget program, and requests other crawlers to avoid the random article link and

the search link, both of which generate content dynamically. Full details on the robots exclusion

protocol may be found on the Web Robots site.9

A Web crawler will generally cache the robots.txt page for each host it encounters in order to

avoid repeated downloads whenever a URL from that host is processed. This cached information

should be expired on a regular basis, perhaps after a few hours or days.

When access by the crawler is not permitted, the URL may be returned to the priority queue

and labeled to indicate that download was disallowed. The crawler may retry the URL at a

future time, checking first that access has been permitted, or the URL may be permanently

flagged as disallowed, never to be retried but maintained as a placeholder to prevent further

attempts.

9 www.robotstxt.org

15.6 Web Crawlers 545

#

robots.txt for http://www.wikipedia.org/ and friends

#

...

#

Sorry, wget in its recursive mode is a frequent problem.

#

User-agent: wget

Disallow: /

...

#

Friendly, low-speed bots are welcome viewing article pages, but not

dynamically-generated pages please.

#

User-agent: *

Disallow: /wiki/Special:Random

Disallow: /wiki/Special:Search

...

Figure 15.11 Extracts from a robots.txt file.

Download

After confirming that download is permitted, the crawler accesses the Web site via the HTTP

protocol and downloads the page. The page may be formatted as HTML (e.g., Figure 8.1 on

page 278) or in other formats, such as PDF. Associated pages may be identified and downloaded

at the same time, or they may be left for a future crawling cycle. For example, if the page defines

a frame set, all pages in the set might be downloaded together. Images may also be downloaded,

perhaps in support of an image search service.

During download the crawler may be required to resolve redirections, which indicate that the

actual content of the page is found elsewhere. These redirections can add considerable complexity

to the download process, in part because redirections may be implemented in multiple ways.

At the HTTP protocol level various responses generated by the Web server may indicate that

a page has moved permanently or temporarily to a new location. Redirections may also be

specified by tags appearing in HTML pages. Finally, JavaScript loaded with HTML pages may

generate redirections during execution.

For example, Wikipedia uses an HTTP “301 Moved Permanently” response to redirect the

URL en.wikipedia.org/wiki/william shakespeare to en.wikipedia.org/wiki/William

Shakespeare. Redirections to correct spelling and capitalization are common in Wikipedia.

Chapter 15 Web Search546

Other sites may use HTTP redirections when sites are redesigned or restructured, so that older

URLs continue to work.

The use of JavaScript to generate redirections causes the most trouble for Web crawlers

because correct determination of the redirection’s target potentially requires the crawler to

execute the JavaScript. Moreover, this JavaScript may redirect to different pages depending

on factors such as the user’s browser type. Covering all possibilities theoretically requires the

crawler to repeatedly execute the JavaScript under different configurations until all possible

redirection targets are determined.

Given resource limitations, it may not be feasible for a crawler to execute JavaScript for

millions of downloaded pages. Instead the crawler may attempt partial evaluation or other

heuristics, which may be sufficient to determine redirection targets in many cases. On the other

hand, if the crawler ignores JavaScript redirections, it may be left with little useful content,

perhaps no more than a message suggesting that JavaScript be enabled.

Post-processing

After download, the crawler stores the page in an archive for indexing by the search engine.

Older copies of the page may be retained in this archive, thus allowing the crawler to estimate

the frequency and types of changes the page undergoes. If the download fails, perhaps because

the site is temporarily inaccessible, these older copies remain available for indexing. After a

failed download the URL may be returned to the priority queue and retried at a later time. If

several download attempts fail over a period of days, the older copies may be allowed to expire,

thus removing the page from the index.

In addition to being stored in the archive, the page is analyzed, or scraped, to extract any

URLs it contains. Much like a browser, the crawler parses the HTML to locate anchor tags and

other elements containing links. Anchor text and other information required for indexing may be

extracted at the same time, then stored in the archive for the convenience of the search engine.

Pages that are duplicates (or near-duplicates) of the downloaded page may also be identified

during this analysis (see Section 15.6.3).

During post-processing, the crawler must respect conventions requesting that it not index a

page or follow certain links. If the tag

<meta name="robots" content="noindex">

appears in the header of page, it indicates that a search engine should not include the page in

its index. The “rel=nofollow” attribute appearing in an anchor tag indicates that the crawler

should essentially ignore the link. For example, the following external link appeared on the

Wikipedia Shakespeare page at the time of writing:

Open Source Shakespeare

15.6 Web Crawlers 547

The crawler should crawl this page only if it finds a link elsewhere, and the link should not

influence ranking in any way. Sites such as blogs and wikis, which allow their users to create

external links, may automatically add “rel=nofollow” to all such links. This policy is intended

to discourage the creation of inappropriate links solely for the purpose of increasing the PageR-

ank value of the target page. With the addition of “rel=nofollow” users generating this link

spam will garner no benefit from it.

As it did during download, JavaScript poses problems during post-processing. When it is

executed, JavaScript is capable of completely rewriting a page with new content and links. If

execution is not feasible, the crawler may apply heuristics to extract whatever URLs and other

information it can, but without any guarantee of success.

Priority queue

URLs extracted during post-processing are inserted into the priority queue. If a URL already

appears in the queue, information gathered during post-processing may alter its position.

Implementing the priority queue is a challenging problem. If we assume an average URL is

64 bytes in length, a priority queue for 8 billion pages requires half a terabyte just to store the

URLs (ignoring compression). These storage requirements, coupled with the need to support

millions of updates per second, may limit the sophistication of strategies used to manage the

priority queue. In Section 15.6.2, where these strategies are discussed, we ignore implementation

difficulties. However, when deploying an operational crawler, these difficulties cannot be ignored.

15.6.2 Crawl Order

Suppose we are crawling the Web for the first time, with the goal of capturing and maintaining

a multibillion-page snapshot. We have no detailed knowledge of the sites and pages contained

on the Web, which remain to be discovered. To begin, we might start with a small seed set of

well-known URLs including major portals, retail sites, and news services. The pages linked from

the ODP10 or other Web directory could form one possible seed set. If we then proceed in a

breadth-first manner, we should encounter many high-quality pages early in the crawl (Najork

and Wiener, 2001).

As we conduct the crawl, our knowledge of the Web increases. At some point, especially if

the crawler is feeding an operational search engine, it becomes important to revisit pages as

well as to crawl new URLs. Otherwise, the index of the search service will become stale. From

this point forward, crawling proceeds incrementally, with the crawler continuously expanding

and updating its snapshot of the Web. As it visits and revisits pages, new URLs are discovered

and deleted pages are dropped.

10 www.dmoz.org

Chapter 15 Web Search548

The activities of the crawler are then determined by its refresh policy (Olston and Pandey,

2008; Pandey and Olston, 2008; Cho and Garcia-Molina, 2000, 2003; Wolf et al., 2002; Edwards

et al., 2001). Two factors feed into this policy: (1) the frequency and nature of changes to

pages and (2) the impact that these changes have on search results, compared to the impact

of crawling new URLs. The simplest refresh policy is to revisit all pages at a fixed rate, once

every X weeks, while continuing to crawl new URLs in breadth-first order. However, although

this policy is appropriate for pages that change infrequently, high-impact pages that undergo

frequent alterations (e.g., www.cnn.com) should be revisited more often. Moreover, priority

should be placed on crawling those new URLs that have the highest potential to affect search

results. This potential may, for instance, be estimated by processing existing query logs and

analyzing user behavior (e.g., clickthrough data). It is the role of the refresh policy to determine

revisit rates for existing pages and the crawl order for new URLs.

The Web changes continuously. Ntoulas et al. (2004) tracked the changes to 154 Web sites

over the course of a year and estimated that new pages were created at a rate of 8% per week

and new links at a rate of 25% per week. The deletion rate was also high. After one year only

20% of the initial pages remained available. However, once created, most pages changed very

little until they were deleted. Even after a year, less than half of the pages changed by more

than 5% before deletion, as determined through a measure based on TF-IDF. When pages do

change, Cho and Garcia-Molina (2003) demonstrate that the frequency of these changes may

be modeled by the Poisson distribution (see page 268). Thus, if we know the history of a page,

we can predict how often future changes will take place.

Even when a page does change frequently, the determination of the revisit rate depends on

the nature of the changes. Olston and Pandey (2008) recognize that different parts of a Web

page have different update characteristics, and these characteristics must be considered when

establishing a refresh policy for that page. Some parts of a Web page may remain static, while

other parts exhibit churning behavior. For example, the ads on a page may change each time it is

accessed, or a page may update daily with a “quote of the day” while its other content remains

the same. Blogs and forums may exhibit scrolling behavior, with new items pushing down older

items that eventually fall away. Some pages, such as the home pages of news services, may have

the bulk of their content revised several times an hour.

Both revisit rates and the ordering of unvisited URLs must be determined in light of the

impact they have on search results. Pandey and Olston (2008) define impact in terms of the

number of times a page appears, or would appear, in the top results for the queries received by

the search engine. Their work suggests that when choosing a new URL to visit, priority should

be given to URLs that are likely to improve the search results for one or more queries. Similarly,

we may consider impact when determining revisit rates. It might be appropriate to revisit a

news service every hour or more, because the top news services change constantly and have high

impact. A user searching on the topic of a breaking story wants to know the latest news. On

the other hand, a daily visit to a page featuring a “quote of the day” may be unnecessary if the

rest of the page remains unchanged and the searches returning the page as a top result depend

only on this static content.

15.6 Web Crawlers 549

Impact is related to static rank. Pages with high static rank may often be good candidates

for frequent visits. However, impact is not equivalent to static rank (Pandey and Olston, 2008).

For example, a page may have high static rank because it is linked by other pages on the same

site with higher static rank. However, if it always appears well below other pages from the same

site in search results, changes to that page will have little or no impact. On the other hand,

a page may have a low static rank because its topic is relatively obscure, of interest only to a

small subset of users. But for those users the absence of the page would have high impact on

their search results.

15.6.3 Duplicates and Near-Duplicates

Roughly 30–40% of Web pages are exact duplicates of other pages and about 2% are near-

duplicates (Henzinger, 2006). The volume of this data represents a major problem for search

engines because retaining unnecessary duplicates increases storage and processing costs. More

important, duplicates and near-duplicates can impact novelty and lead to less-than-desirable

search results. Although host crowding or similar post-retrieval filtering methods might ame-

liorate the problem, the performance costs must still be paid and near-duplicates may still slip

past the filter.

Detecting exact duplicates of pages is relatively straightforward. The entire page, including

tags and scripts, may be passed to a hash function. The resulting integer hash value may then

be compared with the hash value for other pages. One possible hash function for detecting

duplicates is provided by the MD5 algorithm (Rivest, 1992). Given a string, MD5 computes

a 128-bit “message digest” corresponding to that string. MD5 is often used to validate the

integrity of files after a data transfer, providing a simple way of checking that the entire file was

transferred correctly. With a length of 128 bits inadvertent collisions are unlikely (however, see

Exercise 15.11).

Detection of exact duplicates through these hash values is sufficient to handle many common

sources of duplication, even though pages will match only if they are byte-for-byte the same.

Pages mirrored across multiple sites, such as the Java documentation, may be identified in this

way. Many sites will return the same “Not Found” page for every invalid URL. Some URLs

that contain a user or session id may represent the same content regardless of its value. Ideally,

exact duplicates should be detected during the crawling processing. Once a mirrored page is

detected, other mirrored pages linked from it can be avoided.

From the perspective of a user, two pages may be considered duplicates because they con-

tain essentially the same material even if they are not byte-for-byte copies of one another. To

detect these near-duplicates, pages may be canonicalized into a stream of tokens, reducing their

content to a standard form much as we do for indexing. This canonicalization usually includes

the removal of tags and scripts. In addition we may remove punctuation, capitalization, and

extraneous white space. For example, the HTML document of Figure 8.1 (page 278) might be

canonicalized to:

Chapter 15 Web Search550

william shakespeare wikipedia the free encyclopedia william shakespeare william shake-

speare baptised 26 April 1564 died 23 April 1616 was an english poet and playwright he

is widely regarded as the...

After canonicalization a hash function may be applied to detect duplicates of the remaining

content.

However, near-duplicates often contain minor changes and additions, which would not be

detected by a hash value over the entire page. Menus, titles, and other boilerplate may differ.

Material copied from one site to another may have edits applied. Detecting these near-duplicates

requires that we compare documents by comparing the substrings they contain. For example,

a newswire article appearing on multiple sites will have a large substring (the news story) in

common, but other parts of the pages will differ.

The degree to which a page is a copy of another may be measured by comparing the substrings

they have in common. Consider a newswire story appearing on two sites; the page on the first

site is 24 KB in size and the page on the second site is 32 KB, after canonicalization. If the

story itself has a size of 16 KB, then we might compute the similarity of the two pages in terms

of this duplicate content as

16 KB

24 KB + 32 KB− 16 KB
= 40%.

Thus, the news story represents 40% of the combined content of the pages.

Broder et al. (1997) describe a method to permit the computation of content similarity and

the detection of near-duplicates on the scale of the Web. Their method extracts substrings

known as shingles from each canonicalized page and compares pages by measuring the overlap

between these shingles. We provide a simplified presentation of this method; full details can

be found in Broder et al. (1997) and in related papers (Henzinger, 2006; Bernstein and Zobel,

2005; Charikar, 2002).

The shingles of length w from a page (the w-shingles) consist of all substrings of length

w tokens appearing in the document. For example, consider the following three lines from

Hamlet:

#1: To be, or not to be: that is the question

#2: To sleep: perchance to dream: ay, there’s the rub

#3: To be or not to be, ay there’s the point

The first two lines are taken from the standard edition of Shakespeare’s works used throughout

the book. The last is taken from what may be a “pirated” copy of the play, reconstructed from

memory by a minor actor.11

11 internetshakespeare.uvic.ca/Library/SLT/literature/texts+1.html (accessed Dec 23, 2009)

15.6 Web Crawlers 551

After canonicalization we have the following 2-shingles for each line, where the shingles have

been sorted alphabetically and duplicates have been removed:

#1: be or, be that, is the, not to, or not, that is, the question, to be

#2: ay there, dream ay, perchance to, s the, sleep perchance, the rub, there s, to dream,

to sleep

#3: ay there, be ay, be or, not to, or not, s the, the point, there s, to be

For this example we use w = 2. For Web pages w = 11 might be an appropriate choice (Broder

et al., 1997).

Given two sets of shingles A and B, we define the resemblance between them according to

the number of shingles they have in common

|A ∩B|
|A ∪B| . (15.30)

Resemblance ranges between 0 and 1 and indicates the degree to which A and B contain

duplicate content. To simplify the computation of resemblance, we calculate a hash value for each

shingle; 64-bit hash values are usually sufficient for this purpose (Henzinger, 2006). Although

the range of a 64-bit value is small enough that the Web is likely to contain different shingles

that hash to the same value, pages are unlikely to contain multiple matching shingles unless

they contain duplicate content. For the purpose of our example we assign 8-bit hash values

arbitrarily, giving the following sets of shingle values:

#1: 43, 14, 109, 204, 26, 108, 154, 172

#2: 132, 251, 223, 16, 201, 118, 93, 197, 217

#3: 132, 110, 43, 204, 26, 16, 207, 93, 172.

A Web page may consist of a large number of shingles. One way of reducing this number is to

eliminate all but those that are equal to 0 mod m, where m = 25 might be appropriate for Web

data (Broder et al., 1997). Another approach is to keep the smallest s shingles. Resemblance is

then estimated by comparing the remaining shingles. For our example we are following the first

approach with m = 2, leaving us with the even-valued shingles:

#1: 14, 204, 26, 108, 154, 172

#2: 132, 16, 118

#3: 132, 110, 204, 26, 16, 172.

Chapter 15 Web Search552

For this example it is easy to make pairwise comparisons between the sets of shingles. However,

for billions of Web documents pairwise comparisons are not feasible. Instead, we construct tuples

consisting of pairs of the form

〈 shingle value, document id 〉

and sort the pairs by shingle value (essentially constructing an inverted index). For our example

this gives the following tuples:

〈14, 1〉, 〈16, 2〉, 〈16, 3〉, 〈26, 1〉, 〈26, 3〉 〈108, 1〉, 〈110, 3〉, 〈118, 2〉, 〈132, 2〉, 〈132, 3〉,
〈154, 1〉, 〈172, 1〉, 〈172, 3〉, 〈204, 1〉, 〈204, 3〉.

Our next step is to combine tuples with the same shingle value to create tuples of the form

〈 id1, id2 〉,

where each pair indicates that the two documents share a shingle. In constructing these pairs we

place the lower-valued document identifier first. The actual shingle values may now be ignored

because there will be one pair for each shingle the documents have in common. For our example

we have the following pairs:

〈2, 3〉, 〈1, 3〉, 〈2, 3〉, 〈1, 3〉, 〈1, 3〉.

Sorting and counting gives triples of the form

〈 id1, id2, count 〉.

For our example these triples are

〈1, 3, 3〉, 〈2, 3, 2〉.

From these triples we may estimate the resemblance between #1 and #3 as

3
6+6−3 = 1

3 ,

and the resemblance between #2 and #3 as

2
3+6−2 = 2

7 .

The resemblance between #1 and #2 is 0.

15.7 Summary 553

15.7 Summary

Although this chapter is long and covers a wide range of topics, three factors occur repeatedly:

scale, structure, and users.

• The Web contains an enormous volume of material on all topics and in many languages,

and is constantly growing and changing. The scale of the Web implies that for many

queries there are large numbers of relevant pages. With so many relevant pages, factors

such as novelty and quality become important considerations for ranking. The same query

will mean different things to different users. Maintaining an accurate and appropriate

index for millions of sites requires substantial planning and resources.

• The structure represented by HTML tags and links provides important features for rank-

ing. Link analysis methods have been extensively explored as methods for determining

the relative quality of pages. The weighting of terms appearing in titles and anchor text

may be adjusted to reflect their status. Without links, Web crawling would be nearly

impossible.

• User experience drives Web search. Search engines must be aware of the range of inter-

pretations and intent underlying user queries. Informational queries require different

responses than navigational queries, and search engines must be evaluated with respect

to their performance on both query types. Clickthroughs and other implicit user feedback

captured in search engine logs may be analyzed to evaluate and improve performance.

15.8 Further Reading

A Web search engine is a mysterious and complex artifact that undergoes constant tuning and

enhancement by large teams of dedicated engineers and developers. In this chapter we have

covered only a small fraction of the technology underlying Web search.

The commercial importance of Web search and Web advertising is now significant enough that

a large community of search engine marketing and search engine optimization (SEO) companies

have grown around it. These SEOs advise Web site owners on how to obtain higher rankings

from the major engines by means both fair and (occasionally) foul. Members of this community

often blog about their work, and the technical tidbits appearing in these blogs can make for

fascinating reading. A good place to start is the Search Engine Roundtable.12 The personal blog

of Matt Cutts, the head of Google’s Webspam team, is another good entry point.13

12 www.seroundtable.com
13 www.mattcutts.com

Chapter 15 Web Search554

The first Web search engines appeared in the early 1990s, soon after the genesis of the

Web itself. By the mid-1990s commercial search services, such as Excite, Lycos, Altavista, and

Yahoo!, were handling millions of queries per day. A history of these early search engines may be

found at Search Engine Watch, a site that has tracked the commercial aspects of search engine

technology since 1996.14 Along with the content-based features discussed in Part III, these early

engines incorporated simple link-based features — for example, using a page’s in-degree as an

indicator of its popularity (Marchiori, 1997).

15.8.1 Link Analysis

By the late 1990s the importance of static ranking and link analysis was widely recognized. In

1997 Marchiori outlined a link analysis technique that foreshadowed the intuition underlying

PageRank. In the same year Carrière and Kazman (1997) presented a tool for exploring the

linkage relationships between Web sites.

On 15 April 1998, at the 7th World Wide Web Conference in Brisbane, Australia, Brin and

Page presented their now-classic paper describing the basic PageRank algorithm and the archi-

tecture of their nascent Google search engine (Brin and Page, 1998). In papers published soon

afterwards, they and their colleagues built upon this work, describing foundational algorithms

for personalized PageRank and Web data mining (Brin et al., 1998; Page et al., 1999). While

Brin and Page were creating PageRank (and the Google search engine), Kleinberg independently

developed the HITS algorithm and presented it at the 9th Annual Symposium on Discrete Algo-

rithms in January 1998 (Kleinberg, 1998, 1999). A paper co-authored by Kleinberg, extending

HITS to accommodate anchor text, was presented at the 7th World Wide Web Conference on

the same day as Brin and Page’s paper (Chakrabarti et al., 1998). Together the work of Brin,

Page, and Kleinberg engendered a flood of research into link analysis techniques.

Bharat and Henzinger (1998) combined HITS with content analysis. They also recognized the

problems that tightly connected communities cause for HITS and suggested the solution that

Lempel and Moran (2000) later developed into SALSA. Rafiei and Mendelzon (2000) extended

PageRank along the lines of SALSA to determine the topics for which a page is known (its

“reputation”). Davidson (2000) recognized that some links should be assigned lower weights

than others and trained a classifier to recognize links arising from commercial relationships

rather than solely from merit. Cohn and Chang (2000) applied principal component analysis

(PCA) to extract multiple eigenvectors from the HITS matrix. A number of other authors

explore efficient methods for computing personalized and topic-oriented PageRank (Haveliwala,

2002; Jeh and Widom, 2003; Chakrabarti, 2007).

Ng et al. (2001a,b) compare the stability of HITS and PageRank, demonstrating the role of

PageRank’s jump vector and suggesting the addition of a jump vector to HITS. Borodin et al.

(2001) provide a theoretical analysis of HITS and SALSA and suggest further improvements.

14 searchenginewatch.com/showPage.html?page=3071951 (accessed Dec 23, 2009)

15.8 Further Reading 555

Richardson and Domingos (2002) describe a query-dependent version of PageRank in which the

random surfer is more likely to follow links to pages related to the query. Kamvar et al. (2003)

present a method for accelerating the computation of PageRank.

More recently, Langville and Meyer (2005, 2006) provide a detailed and readable survey

of the mathematics underlying PageRank and HITS. Bianchini et al. (2005) explore further

properties of PageRank. Craswell et al. (2005) discuss the extension of BM25F to incorporate

static ranking. Baeza-Yates et al. (2006) generalize the role of the jump vector and replace it

with other damping functions to create a family of algorithms related to PageRank. Najork

et al. (2007) compare the retrieval effectiveness of HITS and basic PageRank, both alone and

in combination with BM25F, illustrating the limitations of basic PageRank. In a related study

Najork (2007) compares the retrieval effectiveness of HITS and SALSA, finding that SALSA

outperforms HITS as a static ranking feature.

Gyöngyi et al. (2004) present a link analysis technique called TrustRank for identifying Web

spam. A related paper by Gyöngyi and Garcia-Molina (2005) provides a general overview and

discussion of the Web spam problem. In addition to link analysis techniques, content-oriented

techniques such as the e-mail spam filtering methods described in Chapter 10 may be applied

to identify Web spam. The AIRWeb15 workshops provide a forum for the testing and evaluating

methods for detecting Web spam as part of a broader theme of adversarial IR on the Web.

Golub and Van Loan (1996) is the bible of numerical methods for matrix computations. They

devote two long chapters to the solution of eigenvalue problems, including a thorough discussion

of the power method.

15.8.2 Anchor Text

Anchor text was used as a ranking feature in the earliest Web search engines (Brin and Page,

1998). Craswell et al. (2001) demonstrate its importance in comparison to content features.

Robertson et al. (2004) describe the incorporation of anchor text into the probabilistic retrieval

model. Hawking et al. (2004) present a method for attenuating weights for anchor text, adjusting

term frequency values when anchor text is repeated many times.

15.8.3 Implicit Feedback

Joachims and Radlinski (2007) provide an overview of methods for interpreting implicit feed-

back; Kelly and Teevan (2003) provide a bibliography of early work. Dupret et al. (2007), Liu

et al. (2007), and Carterette and Jones (2007) all discuss the use of clickthroughs for Web

search evaluation. Agichtein et al. (2006b) learn relevance judgments by combining multiple

browsing and clickthrough features. Qiu and Cho (2006) present a method for determining a

user’s interests from clickthroughs, thus allowing search results to be personalized to reflect

these interests.

15 airweb.cse.lehigh.edu

Chapter 15 Web Search556

15.8.4 Web Crawlers

A basic architecture for a Web crawler is described by Heydon and Najork (1999). Olston and

Najork (2010) provide a recent and thorough survey of the area.

The problem of optimizing the refresh policy of an incremental crawler has been studied by

several groups (Edwards et al., 2001; Wolf et al., 2002; Cho and Garcia-Molina, 2003; Olston

and Pandey, 2008). Dasgupta et al. (2007) examine the trade-offs between visiting new URLs

and revisiting previously crawled pages. Pandey and Olston (2008) consider the impact of new

pages on search results. Chakrabarti et al. (1999) describe focused crawlers that are dedicated

to crawling pages related to a specific topic. Little has been published regarding the efficient

implementation of priority queues for Web crawlers, but Yi et al. (2003) provide a possible

starting point for investigation.

Broder et al. (1997) introduced shingles as a method for detecting near-duplicates. Henzinger

(2006) experimentally compared this method with a competing method by Charikar (2002) and

introduced a combined algorithm that outperforms both. Bernstein and Zobel (2005) used a

version of shingling to evaluate the impact of near-duplicates on retrieval effectiveness.

15.9 Exercises

Exercise 15.1 Compute basic PageRank for the following Web graphs. Assume δ = 3/4.

a)

��

�� ��

b)

��

��

��

c) ���� ��

Exercise 15.2 Compute basic PageRank for the following Web graph. Assume δ = 0.85.

��

�� ��

��

��

��

Exercise 15.3 Given Equations 15.9 and 15.10, show that for all n ≥ 0∑
α∈Φ

r(n)(α) = N.

15.9 Exercises 557

Exercise 15.4 Compute extended PageRank for the follow matrix and jump vector in

Equation 15.12 (page 525). Assume δ = 0.85.

Exercise 15.5 Show that the transition matrix M ′ (page 531) is aperiodic for any Web graph.

Exercise 15.6 Suggest additional sources of information, beyond those listed on page 525,

that might be enlisted when setting the follow matrix and jump vector

Exercise 15.7 Compute the co-citation matrix A = WT W and the bibliographic coupling

matrix H = WW T for the adjacency matrix W in Equation 15.24 (page 533).

Exercise 15.8 Compute the authority vector �a and hub vector �h for the adjacency matrix W

in Equation 15.24 (page 533).

Exercise 15.9 Langville and Meyer (2005) suggest the following example to illustrate the

convergence properties of HITS. Compute the authority vector �a for the following adjacency

matrix, starting with the initial estimate �a(0) = 〈 1/2, 1/2, 1/2, 1/2 〉T .

W =

⎛⎜⎜⎜⎜⎝
0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

⎞⎟⎟⎟⎟⎠ (15.31)

Recompute the authority vector �a starting with the initial estimate �a(0) = 〈 1/
√

3, 1/3, 1/3, 2/3 〉T .

Exercise 15.10 View the robots.txt file on well-known Web sites. Are any pages or crawlers

disallowed? Why?

Exercise 15.11 The MD5 algorithm is known to be insecure. Given an MD5 value for a

string, it is possible to construct a different string that gives the same value. How could this

vulnerability be exploited by a malicious site to cause problems for a Web search service? Search

this topic and suggest possible solutions.

Exercise 15.12 Search the term “Google bombing”. Suggest ways in which a search engine

might cope with this problem.

Exercise 15.13 (project exercise) Using the technique described by Bharat and Broder

(1998), as updated by Gulli and Signorini (2005), estimate the size of the indexable Web.

Exercise 15.14 (project exercise) Build a “crawler trap”, which generates dynamic context

to make a Web site appear much larger than it really is (billions of pages). The trap should

generate random pages, containing random text (Exercise 1.13) with random links to other

random pages in the trap. URLs for the trap should have seeds for a random number generator

embedded within them, so that visiting a page will consistently give the same contents.

Warning: Deploying the trap on a live Web site may negatively impact search results for that

site. Be cautious. Ask for permission if necessary. If you do deploy the trap, we suggest that

you add a robots.txt entry to steer well-behaved crawlers away from it.

Chapter 15 Web Search558

15.10 Bibliography

Agichtein, E., Brill, E., and Dumais, S. (2006a). Improving Web search ranking by incorporating

user behavior information. In Proceedings of the 29th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 19–26. Seattle,

Washington.

Agichtein, E., Brill, E., Dumais, S., and Ragno, R. (2006b). Learning user interaction models

for predicting Web search result preferences. In Proceedings of the 29th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 3–10.

Seattle, Washington.

Baeza-Yates, R., Boldi, P., and Castillo, C. (2006). Generalizing PageRank: Damping functions

for link-based ranking algorithms. In Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 308–315.
Seattle, Washington.

Bernstein, Y., and Zobel, J. (2005). Redundant documents and search effectiveness. In Proceed-

ings of the 14th ACM International Conference on Information and Knowledge Management,
pages 736–743. Bremen, Germany.

Bharat, K., and Broder, A. (1998). A technique for measuring the relative size and overlap

of public Web search engines. In Proceedings of the 7th International World Wide Web
Conference, pages 379–388. Brisbane, Australia.

Bharat, K., and Henzinger, M. R. (1998). Improved algorithms for topic distillation in a hyper-

linked environment. In Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 104–111. Melbourne, Australia.

Bianchini, M., Gori, M., and Scarselli, F. (2005). Inside PageRank. ACM Transactions on

Internet Technology, 5(1):92–128.

Borodin, A., Roberts, G. O., Rosenthal, J. S., and Tsaparas, P. (2001). Finding authorities and

hubs from link structures on the World Wide Web. In Proceedings of the 10th International

World Wide Web Conference, pages 415–429. Hong Kong, China.

Brin, S., Motwani, R., Page, L., and Winograd, T. (1998). What can you do with a Web in

your pocket? Data Engineering Bulletin, 21(2):37–47.

Brin, S., and Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. In

Proceedings of the 7th International World Wide Web Conference, pages 107–117. Brisbane,

Australia.

Broder, A. (2002). A taxonomy of Web search. ACM SIGIR Forum, 36(2):3–10.

Broder, A. Z., Glassman, S. C., Manasse, M. S., and Zweig, G. (1997). Syntactic clustering of the

Web. In Proceedings of the 6th International World Wide Web Conference, pages 1157–1166.
Santa Clara, California.

15.10 Bibliography 559

Büttcher, S., Clarke, C. L. A., and Soboroff, I. (2006). The TREC 2006 Terabyte Track. In
Proceedings of the 15th Text REtrieval Conference. Gaithersburg, Maryland.

Carrière, J., and Kazman, R. (1997). WebQuery: Searching and visualizing the Web through
connectivity. In Proceedings of the 6th International World Wide Web Conference, pages

1257–1267.

Carterette, B., and Jones, R. (2007). Evaluating search engines by modeling the relation-

ship between relevance and clicks. In Proceedings of the 21st Annual Conference on Neural
Information Processing Systems. Vancouver, Canada.

Chakrabarti, S. (2007). Dynamic personalized PageRank in entity-relation graphs. In

Proceedings of the 16th International World Wide Web Conference. Banff, Canada.

Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., and Kleinberg, J. (1998).

Automatic resource list compilation by analyzing hyperlink structure and associated text. In
Proceedings of the 7th International World Wide Web Conference. Brisbane, Australia.

Chakrabarti, S., van den Burg, M., and Dom, B. (1999). Focused crawling: A new approach
to topic-specific Web resource discovery. In Proceedings of the 8th International World Wide

Web Conference, pages 545–562. Toronto, Canada.

Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms. In Proceed-

ings of the 34th Annual ACM Symposium on Theory of Computing, pages 380–388. Montreal,
Canada.

Cho, J., and Garcia-Molina, H. (2000). The evolution of the Web and implications for an

incremental crawler. In Proceedings of the 26th International Conference on Very Large Data

Bases, pages 200–209.

Cho, J., and Garcia-Molina, H. (2003). Effective page refresh policies for Web crawlers. ACM
Transactions on Database Systems, 28(4):390–426.

Chung, C., and Clarke, C. L. A. (2002). Topic-oriented collaborative crawling. In Proceedings of
the 11th International Conference on Information and Knowledge Management, pages 34–42.

McLean, Virginia.

Clarke, C. L. A., Agichtein, E., Dumais, S., and White, R. W. (2007). The influence of caption

features on clickthrough patterns in Web search. In Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages

135–142. Amsterdam, The Netherlands.

Clarke, C. L. A., Scholer, F., and Soboroff, I. (2005). The TREC 2005 Terabyte Track. In

Proceedings of the 14th Text REtrieval Conference. Gaithersburg, Maryland.

Cohn, D., and Chang, H. (2000). Learning to probabilistically identify authoritative documents.

In Proceedings of the 17th International Conference on Machine Learning, pages 167–174.

Craswell, N., and Hawking, D. (2004). Overview of the TREC 2004 Web Track. In Proceedings
of the 13th Text REtrieval Conference. Gaithersburg, Maryland.

Craswell, N., Hawking, D., and Robertson, S. (2001). Effective site finding using link anchor
information. In Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 250–257. New Orleans, Louisiana.

Chapter 15 Web Search560

Craswell, N., Robertson, S., Zaragoza, H., and Taylor, M. (2005). Relevance weighting for
query independent evidence. In Proceedings of the 28th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 416–423. Salvador,

Brazil.

Cucerzan, S., and Brill, E. (2004). Spelling correction as an iterative process that exploits the
collective knowledge of Web users. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, pages 293–300.

Dasgupta, A., Ghosh, A., Kumar, R., Olston, C., Pandey, S., and Tomkins, A. (2007). The dis-

coverability of the Web. In Proceedings of the 16th International World Wide Web Conference.
Banff, Canada.

Davidson, B. D. (2000). Recognizing nepotistic links on the Web. In Proceedings of the AAAI-
2000 Workshop on Artificial Intelligence for Web Search, pages 23–28.

Dupret, G., Murdock, V., and Piwowarski, B. (2007). Web search engine evaluation using

clickthrough data and a user model. In Proceedings of the 16th International World Wide Web

Conference Workshop on Query Log Analysis: Social and Technological Challenges. Banff,
Canada.

Edwards, J., McCurley, K., and Tomlin, J. (2001). An adaptive model for optimizing perfor-

mance of an incremental Web crawler. In Proceedings of the 10th International World Wide

Web Conference, pages 106–113. Hong Kong, China.

Golub, G. H., and Van Loan, C. F. (1996). Matrix Computations (3rd ed.). Baltimore, Maryland:
Johns Hopkins University Press.

Gulli, A., and Signorini, A. (2005). The indexable Web is more than 11.5 billion pages. In
Proceedings of the 14th International World Wide Web Conference. Chiba, Japan.

Gyöngyi, Z., and Garcia-Molina, H. (2005). Spam: It’s not just for inboxes anymore. Computer,

38(10):28–34.

Gyöngyi, Z., Garcia-Molina, H., and Pedersen, J. (2004). Combating Web spam with

TrustRank. In Proceedings of the 30th International Conference on Very Large Databases,
pages 576–584.

Haveliwala, T., and Kamvar, S. (2003). The Second Eigenvalue of the Google Matrix. Technical
Report 2003-20. Stanford University.

Haveliwala, T. H. (2002). Topic-sensitive PageRank. In Proceedings of the 11th International
World Wide Web Conference. Honolulu, Hawaii.

Hawking, D., and Craswell, N. (2001). Overview of the TREC-2001 Web Track. In Proceedings

of the 10th Text REtrieval Conference. Gaithersburg, Maryland.

Hawking, D., Upstill, T., and Craswell, N. (2004). Toward better weighting of anchors.

In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 512–513. Sheffield, England.

Henzinger, M. (2006). Finding near-duplicate Web pages: A large-scale evaluation of algorithms.
In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and

development in Information Retrieval, pages 284–291. Seattle, Washington.

15.10 Bibliography 561

Heydon, A., and Najork, M. (1999). Mercator: A scalable, extensible web crawler. World Wide

Web, 2(4):219–229.

Ivory, M. Y., and Hearst, M. A. (2002). Statistical profiles of highly-rated Web sites. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, pages 367–374.

Minneapolis, Minnesota.

Jansen, B. J., Booth, D., and Spink, A. (2007). Determining the user intent of Web search

engine queries. In Proceedings of the 16th International World Wide Web Conference, pages

1149–1150. Banff, Canada.

Jeh, G., and Widom, J. (2003). Scaling personalized Web search. In Proceedings of the 12th

International World Wide Web Conference, pages 271–279. Budapest, Hungary.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2005). Accurately interpreting

clickthrough data as implicit feedback. In Proceedings of the 28th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 154–161.

Salvador, Brazil.

Joachims, T., and Radlinski, F. (2007). Search engines that learn from implicit feedback. IEEE

Computer, 40(8):34–40.

Jones, R., Rey, B., Madani, O., and Greiner, W. (2006). Generating query substitutions. In Pro-

ceedings of the 15th International World Wide Web Conference, pages 387–396. Edinburgh,

Scotland.

Kamvar, S. D., Haveliwala, T. H., Manning, C. D., and Golub, G. H. (2003). Extrapolation

methods for accelerating PageRank computations. In Proceedings of the 12th International

World Wide Web Conference, pages 261–270. Budapest, Hungary.

Kellar, M., Watters, C., and Shepherd, M. (2007). A field study characterizing web-based

information-seeking tasks. Journal of the American Society for Information Science and

Technology, 58(7):999–1018.

Kelly, D., and Teevan, J. (2003). Implicit feedback for inferring user preference: A bibliography.

ACM SIGIR Forum, 37(2):18–28.

Kleinberg, J. M. (1998). Authoritative sources in a hyperlinked environment. In Proceed-
ings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668–677. San

Francisco, California.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632.

Langville, A. N., and Meyer, C. D. (2005). A survey of eigenvector methods of Web information

retrieval. SIAM Review, 47(1):135–161.

Langville, A. N., and Meyer, C. D. (2006). Google’s PageRank and Beyond: The Science of

Search Engine Rankings. Princeton, New Jersey: Princeton University Press.

Lawrence, S., and Giles, C. L. (1998). Searching the World Wide Web. Science, 280:98–100.

Lawrence, S., and Giles, C. L. (1999). Accessibility of information on the Web. Nature, 400:107–

109.

Chapter 15 Web Search562

Lee, U., Liu, Z., and Cho, J. (2005). Automatic identification of user goals in Web search. In
Proceedings of the 14th International World Wide Web Conference, pages 391–400. Chiba,

Japan.

Lempel, R., and Moran, S. (2000). The stochastic approach for link-structure analysis (SALSA)

and the TKC effect. Computer Networks, 33(1-6):387–401.

Liu, Y., Fu, Y., Zhang, M., Ma, S., and Ru, L. (2007). Automatic search engine performance

evaluation with click-through data analysis. In Proceedings of the 16th International World
Wide Web Conference Workshop on Query Log Analysis: Social and Technological Challenges,

pages 1133–1134. Banff, Canada.

Marchiori, M. (1997). The quest for correct information on the Web: Hyper search engines. In

Proceedings of the 6th International World Wide Web Conference. Santa Clara, California.

Metzler, D., Strohman, T., and Croft, W. (2006). Indri TREC notebook 2006: Lessons
learned from three Terabyte Tracks. In Proceedings of the 15th Text REtrieval Conference.

Gaithersburg, Maryland.

Najork, M., and Wiener, J. L. (2001). Breadth-first search crawling yields high-quality pages.

In Proceedings of the 10th International World Wide Web Conference. Hong Kong, China.

Najork, M. A. (2007). Comparing the effectiveness of HITS and SALSA. In Proceedings of the

16th ACM Conference on Information and Knowledge Management, pages 157–164. Lisbon,
Portugal.

Najork, M. A., Zaragoza, H., and Taylor, M. J. (2007). HITS on the Web: How does it compare?

In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 471–478. Amsterdam, The Netherlands.

Ng, A. Y., Zheng, A. X., and Jordan, M. I. (2001a). Link analysis, eigenvectors and stability.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages

903–910. Seattle, Washington.

Ng, A. Y., Zheng, A. X., and Jordan, M. I. (2001b). Stable algorithms for link analysis.

In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 258–266. New Orleans, Louisiana.

Ntoulas, A., Cho, J., and Olston, C. (2004). What’s new on the Web?: The evolution of the
web from a search engine perspective. In Proceedings of the 13th International World Wide

Web Conference, pages 1–12.

Olston, C., and Najork, M. (2010). Web crawling. Foundations and Trends in Information

Retrieval.

Olston, C., and Pandey, S. (2008). Recrawl scheduling based on information longevity. In

Proceedings of the 17th International World Wide Web Conference, pages 437–446. Beijing,
China.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation Ranking:

Bringing Order to the Web. Technical Report 1999-66. Stanford InfoLab.

Pandey, S., and Olston, C. (2008). Crawl ordering by search impact. In Proceedings of the 1st

ACM International Conference on Web Search and Data Mining. Palo Alto, California.

15.10 Bibliography 563

Qiu, F., and Cho, J. (2006). Automatic identification of user interest for personalized

search. In Proceedings of the 15th International World Wide Web Conference, pages 727–736.
Edinburgh, Scotland.

Rafiei, D., and Mendelzon, A. O. (2000). What is this page known for? Computing Web page

reputations. In Proceedings of the 9th International World Wide Web Conference, pages
823–835. Amsterdam, The Netherlands.

Richardson, M., and Domingos, P. (2002). The intelligent surfer: Probabilistic combination of

link and content information in PageRank. In Advances in Neural Information Processing
Systems 14, pages 1441–1448.

Richardson, M., Prakash, A., and Brill, E. (2006). Beyond PageRank: Machine learning for

static ranking. In Proceedings of the 15th International World Wide Web Conference, pages
707–715. Edinburgh, Scotland.

Rivest, R. (1992). The MD5 Message-Digest Algorithm. Technical Report 1321. Internet RFC.

Robertson, S., Zaragoza, H., and Taylor, M. (2004). Simple BM25 extension to multiple

weighted fields. In Proceedings of the 13th ACM International Conference on Information

and Knowledge Management, pages 42–49. Washington, D.C.

Rose, D. E., and Levinson, D. (2004). Understanding user goals in web search. In Proceedings

of 13th International World Wide Web Conference, pages 13–19. New York.

Spink, A., and Jansen, B. J. (2004). A study of Web search trends. Webology, 1(2).

Upstill, T., Craswell, N., and Hawking, D. (2003). Query-independent evidence in home page

finding. ACM Transactions on Information Systems, 21(3):286–313.

Wolf, J. L., Squillante, M. S., Yu, P. S., Sethuraman, J., and Ozsen, L. (2002). Optimal crawling

strategies for Web search engines. In Proceedings of the 11th International World Wide Web

Conference, pages 136–147. Honolulu, Hawaii.

Yi, K., Yu, H., Yang, J., Xia, G., and Chen, Y. (2003). Efficient maintenance of materialized

top-k views. In Proceedings of the 19th International Conference on Data Engineering, pages

189–200.

16 XML Retrieval

The representation of documents in XML provides an opportunity for information retrieval

systems to take advantage of document structure by returning individual document components

when appropriate. In response to a user query an XML information retrieval system might return

a mixture of paragraphs, sections, articles, bibliographic entries and other elements. This facility

is of particular benefit when a collection contains very long documents, such as manuals or books,

and the user should be directed to the most relevant portions of these documents.

This chapter completes a thread of ideas relating to document structure that runs throughout

the book. We initiated this thread in Chapter 1, which introduced a simplified view of XML

through a collection of Shakespearean plays, including Macbeth (see Figure 1.2 on page 10). This

collection served as a running example throughout Chapter 2 and as an occasional example in

later chapters. In Section 2.1.3 we introduced an approach to supporting lightweight structure

through inverted indices, which we extended and formalized in Section 5.2. In Section 8.7

we incorporated structure into the probabilistic model by weighting terms according to the

structural elements in which they appear. For example, terms appearing in a title or abstract

might receive a higher weight than terms appearing in an appendix or footnote. In Chapter 15

we explored the role of anchor text and link structure in Web search.

In this chapter we substantially extend our view of XML and XML information retrieval.

Section 16.1 discusses essential aspects of XML that were ignored or avoided in previous

chapters, particularly the recursive structure of XML documents and the inclusion of attributes

in tags. Section 16.2 continues this discussion by examining XML retrieval from a database per-

spective. It introduces the XPath query language, which may be used to retrieve a set of XML

elements that satisfy specified criteria. XPath fills the role with respect to XML retrieval that the

Boolean algebra fills with respect to basic document retrieval, by allowing us to select a subset of

elements that may then be subjected to further processing, such as ranking. Our discussion also

covers a variant of XPath, the NEXI query language, which is specifically intended to address

issues associated with XML IR. In addition, the section briefly introduces the XQuery language,

which provides sophisticated facilities for querying and manipulating XML documents.

Many of the languages described in these sections, including XPath, XQuery, and XML itself,

are standards of the World Wide Web Consortium (W3C) the international standards body for

many Web technologies. The W3C publishes the official definitions for these technologies, which

are available through its Web site.1

1 www.w3.org

16.1 The Essence of XML 565

The third through fifth sections of the chapter parallel Parts II, III, and IV of the book:

Section 16.3 examines indexing and query processing methods; Section 16.4 discusses ranking;

Section 16.5 covers evaluation. Our discussion of indexing and query processing builds on the

lightweight structure of Section 5.2.

Our discussion of ranked retrieval and evaluation is set in the context of the Initiative for the

Evaluation of XML Retrieval (INEX2). Since 2002 INEX has provided a TREC-like experimental

forum for presenting and evaluating technologies for information retrieval over collections of

documents encoded in XML. Roughly 100 groups from industry and academe participate in

INEX annually. Until 2006 INEX used a collection of magazine and journal articles taken from

the publications of the IEEE Computer Society. Since 2006 INEX has worked with an XML

collection developed from articles in the English-language Wikipedia. The NEXI language was

created as part of the INEX effort.

XML retrieval is a broad topic with a strong connection to traditional database research, and

there are many views as to what constitutes the essential aspects of the area. Although major

database vendors now incorporate support for XML into their products, the role of XML from

an IR perspective has not yet solidified. As a result, when compared with previous chapters,

this chapter is flavored as more of an introductory overview than as an in-depth tutorial.

16.1 The Essence of XML

Figure 16.1 shows a portion of a journal article represented in XML. The figure illustrates

several aspects of XML that were not covered in previous chapters. The document begins with

an XML declaration, which indicates that it follows version 1.0 of the XML standard and that

its contents are encoded in UTF-8:

<?xml version="1.0" encoding="UTF-8"?>

Each element begins with a start tag of the form <name> and ends with an end tag of the form

</name>. XML start tags may contain one or more attributes of the form

attribute = value.

In the figure the article tag contains attributes supplying bibliographic information:

<article journal="IEEE TKDE" volume="9" number="2" year="1997">

2 www.inex.otago.ac.nz

Chapter 16 XML Retrieval566

<?xml version="1.0" encoding="UTF-8"?>

<article journal="IEEE TKDE" volume="9" number="2" year="1997">

<!-- Foundational paper on inverted index compression -->

<header>

<title>Text Compression for Dynamic Document Databases</title>

<author>Alistair Moffat</author>

<author>Justin Zobel</author>

<author>Neil Sharman</author>

<abstract><p>For compression of text databases...</p>...</abstract>

</header>

<body>

<section number="1">

<title>Introduction</title>

<p>Modern document databases contain vast quatities of text...</p>

<p>There are good reasons to compress the text...</p>

...

</section>

<section number="2">

<title>Reducing memory requirements</title>

<p>In this section we assume a static text collection...</p>...

<section number="1">

<title>Method A</title>

<p>The first method considered for choosing which words...</p>...

</section>

</section>

...
</body>

</article>

Figure 16.1 A journal article encoded in XML.

The section tag contains an attribute specifying its number:

<section number="2">

Attribute values must be surrounded by either single quotes or double quotes. Tags may also be

of the form <name/>. This form (not illustrated in the figure) is called an empty-element tag.

Empty-element tags are essentially equivalent to a start tag immediately followed by an end tag

(<name></name>). Empty-element tags have no content but may have attributes.

16.1 The Essence of XML 567

XML documents may also include comments that start with the string “<!--” and end with

the string “-->”. In the figure a comment provides a brief review of the paper. When an

XML document is created or updated by an application or tool, it is not unusual for that

software to include a comment indicating the software’s name and version number. Comments

are neither content nor structure. Tools for parsing and processing XML are not required to

make comments visible, and it may not be appropriate to retain comments in documents for

indexing and retrieval purposes.

XML elements must nest. Overlapping elements are not permitted. In contrast to this rule,

the region algebra of Section 5.2 allows overlap. In practice, so does HTML, at least to a limited

extent. For example, consider the HTML fragment

<p> Simple example...<p>

<p> ...illustrating overlapping tags in HTML. </p>

Although technically this fragment is not valid HTML, its intent is perfectly clear. Most browsers

would handle it correctly, rendering it as

Simple example...

...illustrating overlapping tags in HTML.

The requirement for XML elements to nest can make it awkward to capture document structure

that is not strictly hierarchical (Hockey, 2004). For example, in the extract from Macbeth shown

in Figure 1.2, lines 6 and 8 both have multiple speakers. The XML encoding in Figure 1.3 on

page 12 splits these lines to maintain the required hierarchical structure while ignoring the

(arguably more significant) poetic structure. The following encoding better reflects the poetic

structure of line 8:

<SPEECH>

<SPEAKER>First Witch</SPEAKER>

<LINE>Where the place?

</SPEECH>

<SPEECH>

<SPEAKER>Second Witch</SPEAKER>

Upon the heath.</LINE>

</SPEECH>

Unfortunately, this encoding is not well-formed XML.

Although XML does not support overlapping elements, it does support recursive structure. As

illustrated in Figure 16.1, sections may contain sections that contain sections, and so on. This

recursive structure allows us to create subsections and subsubsections as appropriate, without

the need to predefine a maximum depth for nesting.

Chapter 16 XML Retrieval568

The XML standard defines the notion of a well-formed document. Along with other require-

ments a well-formed document must obey the formatting rules for tags, attributes, and

comments outlined above.

An important feature of XML is the ability to provide structural metadata that places con-

straints on the content of a well-formed XML document. These constraints may require certain

elements to contain other certain elements. For example, all journal articles may be required to

include both a header and a body. A set of allowed attributes may be specified for each element,

with some attributes being required and others being optional. For example, an article may be

required to have attributes specifying a journal and a year, and may be allowed to have addi-

tional attributes specifying a volume and issue number. Further restrictions may be placed on

attribute values. For example, section numbers may be restricted to the natural numbers. When

structural metadata is provided for an XML document, a retrieval system can take advantage

of it to optimize query processing.

There are two standards for specifying structural metadata for XML. The first, called a

document type definition or DTD, is the older and simpler of the two. It is concerned primarily

with the structural organization of XML documents — how elements must nest and which

attributes they may possess. The second, called XML Schema, allows complex types to be

defined for elements and attributes. DTDs were inherited from the older SGML standard upon

which XML is based. XML Schema is a newer invention intended to address the limitations of

DTDs. Any constraint that can be expressed by a DTD can be expressed in XML Schema, but

not vice versa.

16.1.1 Document Type Definitions

Figure 16.2 presents a DTD consistent with the journal article in Figure 16.1. For simplicity

the DTD includes only the elements and attributes shown in that figure. In reality a DTD for

journal articles would need to include elements for citations, footnotes, figures, tables, captions,

lists, equations, appendices, and similar structures.

The DTD starts with a declaration indicating that it adheres to version 1.0 of the XML

standard. Despite its cryptic appearance the remainder of the DTD is more or less a context-free

grammar describing how elements nest and what attributes each may contain. Each ELEMENT

declaration defines a rule in the grammar. For example, the declaration

<!ELEMENT article (header, body)>

indicates that an article element contains two child elements: a header and a body. In turn the

header consists of a title, one or more authors, and an optional abstract:

<!ELEMENT header (title, author+, abstract?)>

16.1 The Essence of XML 569

<?xml version="1.0"?>

<!ELEMENT article (header body)>

<!ATTLIST article journal CDATA #REQUIRED>

<!ATTLIST article volume CDATA #IMPLIED>

<!ATTLIST article number CDATA #IMPLIED>

<!ATTLIST article year CDATA #REQUIRED>

<!ELEMENT header (title, author+, abstract?)>

<!ELEMENT body (section+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT section (title, p*, section*)>

<!ATTLIST section number CDATA #REQUIRED>

<!ELEMENT abstract (p)>

<!ELEMENT p (#PCDATA)>

Figure 16.2 A (partial) DTD for journal articles.

A question mark (“?”) after an element name indicates that the element is optional. A plus sign

(“+”) after an element name indicates that the element occurs one or more times. An asterisk

(“*”) after an element name indicates that the the element occurs 0 or more times.

One potentially confusing aspect of a DTD is that the order of elements is not specified by

an ELEMENT declaration. In a header the title, authors, and abstract may appear in any order.

It is perfectly acceptable to have the abstract appear first in the header, followed by an author,

followed by the title, followed by another two authors. For historical reasons inherited from

SGML, specifying order is not possible in an XML DTD.

The declaration for a title indicates that it contains only text:

<!ELEMENT title (#PCDATA)>

The notation “#PCDATA” stands for “parsed character data”, which is essentially ordinary

text. Attributes are declared by ATTLIST declarations. The following declaration indicates that

sections have a required attribute providing the section number:

<!ATTLIST section number CDATA #REQUIRED>

The attribute has type “CDATA”, indicating that it consists of ordinary text. We might wish

to indicate that its value should be a natural number, but such type constraints cannot be

expressed in a DTD.

Why is ordinary text called “#PCDATA” in an element declaration but “#CDATA” in an attribute

declaration? The answer has to do with details of parsing XML, which are beyond the scope

Chapter 16 XML Retrieval570

article

header

title author author author abstract

p

body

section

title p p

section

title p section

title p

Figure 16.3 Tree structure of the XML document shown in Figure 16.1.

of this book. Although the basic concept of a DTD as a context-free grammar is relatively

straightforward, a thorough presentation and discussion of DTDs could fill a chapter on its

own.

To associate a DTD with a document, a document type declaration must be included in the

document. Although the DTD can appear directly in the type declaration, it is usually more

convenient to place the DTD in a separate file and reference it through its file name. In this

way multiple documents can easily share a DTD. For example, the DTD in Figure 16.2 might

be stored in the file “article.dtd”. The following type declaration would then be added as the

second line of the document in Figure 16.1, immediately after the XML declaration:

<!DOCTYPE article SYSTEM "article.dtd">

16.1.2 XML Schema

XML Schema provides powerful type mechanisms for elements and attributes. We provide only

a brief outline of XML Schema; a thorough presentation and discussion could fill a book on its

own (van der Vlist, 2002). At the core of XML Schema is a large number of built-in primitive

types including integers, floating point numbers, dates, times, durations, and URLs. Derived

types place additional restrictions on these primitive types. For example, we might place a

minimum length requirement on strings representing journal names. Complex types combine

primitive types, derived types, and other complex types to provide types for elements. For

example, the ordering of elements in an article and its header might be specified by a complex

type, which might further restrict the values of its volume attribute and number attribute to

the natural numbers, and the value of its year attribute to years.

16.2 Paths, Trees, and FLWORs 571

16.2 Paths, Trees, and FLWORs

Since XML elements must nest, they may be viewed as a tree. Figure 16.3 illustrates the tree

structure of the document in Figure 16.1. The tree represents only the portion of the document

included in that figure; the remainder has been omitted for clarity and simplicity. Although the

figure does not include them, the document’s text (i.e., its #PCDATA) may be viewed as a set of

leaf nodes attached to the elements that contain them. Attributes also may be viewed as leaf

nodes attached to their corresponding elements.

Perhaps because an XML document is naturally viewed as a tree, XML retrieval is often

framed as a tree-matching or path-matching problem. This view is the one taken by the principal

XML query languages, including XPath, NEXI, and XQuery.

16.2.1 XPath

XPath provides a standard notation for specifying sets of elements and other nodes in XML

documents. The W3C finalized and published the initial version of XPath (version 1.0) in

November 1999.3 The second version of XPath (version 2.0) was finalized and published in

conjunction with the first version of the new XQuery standard in January 2007.4 As a result

of a desire to have XPath 2.0 form a strict subset of XQuery, XPath 2.0 does not maintain full

backward compatibility with XPath 1.0. Fortunately, these incompatibilities are mostly related

to the details of the underlying data models and need not concern us for the simple examples

given in this chapter.

XPath provides expressions, called path expressions, to specify sets of document elements and

other nodes. The simplest path expression is just a list of element names separated by the slash

character. For example, the path expression

/article/body/section

specifies the set of all top-level sections in an article’s body. Similarly, the path expression

/article/body/section/section

specifies the set of all second-level sections (subsections). The path expression

/article/body/section/title

specifies all top-level section titles. This notation deliberately resembles the notation used for

specifying the path components of URLs and file paths in UNIX-derived operating systems.

3 www.w3.org/TR/xpath
4 www.w3.org/TR/xpath20

Chapter 16 XML Retrieval572

In addition to path expressions, XPath supports a full range of arithmetic, logical, and string

expressions, and provides a large collection of built-in functions. This support allows XPath to

be incorporated into other languages, filling the role of a general-purpose expression language

for those languages. Such languages include XQuery and the stylesheet language XSL, another

W3C standard. XPath 1.0 also provides an operator for merging sets of elements, which is

extended in XPath 2.0 with support for other set operations.

Predicates may be included in path expressions to specify values for attributes and for the

positions of elements. For example, the path expression

/article/body/section[2]

specifies the second section in document order. The path expression

/article/body/section[@number=2]

specifies top-level sections numbered with an attribute value of 2 (which is the same element as

in the previous example). Predicates also may reference the content of elements and attributes.

The path expression

/article/body/section[contains(./title,"memory requirements")]

specifies sections containing the string “memory requirements” in their titles, where the period

in “./title” indicates the current node. It is also possible to “skip” elements in a path by using

what is known as descendant-or-self notation, which is indicated by a double slash (“//”). For

example, the path expression

/article//section

specifies all sections in an article regardless of nesting or depth. The path expression

//section/title

specifies all section titles.

The examples above do little more than touch upon the complexities of path expressions.

Along with the features illustrated above, XPath provides a bewildering collection of additional

notations for navigating among ancestors, siblings, and descendants.

16.2.2 NEXI

XPath does not support ranked retrieval. Like the Boolean algebra of Section 2.2.3 and the

region algebra of Section 5.2, XPath has exact-match semantics. That is, a path expression

specifies a set of nodes that exactly match the criteria specified by the expression. In particular

16.2 Paths, Trees, and FLWORs 573

the contains function in an XPath expression performs an exact string match. For example,

the path expression

//article//section[contains(.,"compression codes")]

requires the string “compression codes” to appear literally in a matching section. XPath provides

no way to specify a ranked set of paragraphs about compression codes.

Working in the context of INEX, Trotman and Sigurbjörnsson (2004) created a variant of

XPath called NEXI (Narrowed Extended XPath I) to address this limitation. NEXI narrows

path expressions to a subset of those included in XPath while providing extensions in support

of ranked retrieval.

Because exact containment of elements may be less critical in IR applications, NEXI supports

only the descendant-or-self notation (“//”) for paths. To specify ranked retrieval NEXI replaces

the contains function with about. A ranked list of article sections about compression codes

would be requested by the path expression

//article//section[about(.,"compression codes")]

NEXI accommodates both strict and loose interpretations of path expressions. Under a strict

interpretation the solution set for the above expression would include only sections from articles.

Under a loose interpretation the structural information is treated as a hint regarding the user’s

requirements: The path expression indicates that the user prefers article sections, but the system

is free to return other elements, such as paragraphs. When ranking elements the system must

balance the content of elements against the structural hints provided by the user to determine

overall relevance.

NEXI allows path elements to be combined with the Boolean operators “and” and “or”. For

example, the path expression

//article[about(.//p,"compression codes") and about(.//author, Moffat)]

requests a ranked list of articles written by Moffat that contain paragraphs about compression

codes. NEXI uses quotes only for phrases, so “Moffat” is not quoted in this expression. NEXI also

permits wildcards in path expressions, which are indicated by an asterisk (“*”). For example,

the path expression

//section//*[about(.,"compression codes")]

requests a ranked list of elements about compression codes that are contained in sections.

Although NEXI is not an official W3C standard, it is widely accepted within the XML IR

community. Outside this community NEXI is still relatively unknown, a situation that may

change as XML IR gains wider usage.

Chapter 16 XML Retrieval574

16.2.3 XQuery

We conclude this section with a brief glimpse at the XQuery language. XQuery (also called

XML Query) substantially extends XPath with facilities for manipulating and transforming

XML documents. Notably, XQuery allows expressions to dynamically construct XML, so that

the output of an expression is itself XML. XQuery expressions operate over ordered sequences

of nodes and values. Each node and value in a sequence must have a type associated with it,

with XML Schema providing the type system.

At the heart of XQuery is the FLWOR expression (pronounced “flower”), which is an acronym

for for, let, where, order by and return. The expansion of this acronym lists the parts of

a FLWOR expression and hints at its operation. FLWOR expressions provide a mechanism for

creating, filtering, sorting, and iterating over sequences. Analogously to the select statement

in SQL, FLWOR expressions can compute joins across multiple XML documents.

To illustrate FLWOR expressions we adapt an example from the XQuery standard.5 Assume

we have a bibliography of plays encoded in XML as follows:

<bib>

<play>

<author>Shakespeare</author>

<title>Hamlet</title>

<year>1599</year>

</play>

<play>

<author>Beckett</author>

<title>Waiting For Godot</title>

<year>1949</year>

</play>

<play>

<author>Shakespeare</author>

<title>Macbeth</title>

<year>1603</year>

</play>

<play>

<author>Stoppard</author>

<title>Rosencrantz and Guildenstern Are Dead</title>

<year>1966</year>

</play>

</bib>

5 www.w3.org/TR/xquery

16.2 Paths, Trees, and FLWORs 575

<works>

{

for $a in fn:distinct-values($bib/play/author)

order by $a

return

<playwright>

<name> {$a} </name>

<plays>

{

for $p in $bib/play[author = $a]

order by $p/title

return $p/title

}

</plays>

</playwright>

}

</works>

Figure 16.4 An XQuery FLWOR expression.

The FLWOR expression in Figure 16.4 reorganizes this data by creating a list of playwrights,

each accompanied by a list of his plays. The example consists of two nested expressions. The

outer expression constructs a list of authors; the inner expression constructs a list of plays for

a single author. Executing this expression over the bibliography above (bound to the variable

�bib) generates the following output:

<works>

<playwright>

<name>Beckett</name>

<plays>

<title>Waiting For Godot</title>

</plays>

</playwright>

<playwright>

<name>Shakespeare</name>

<plays>

<title>Hamlet</title>

<title>Macbeth</title>

</plays>

</playwright>

Chapter 16 XML Retrieval576

<playwright>

<name>Stoppard</name>

<plays>

<title>Rosencrantz and Guildenstern Are Dead</title>

</plays>

</playwright>

</works>

Heavily influenced by theoretical database and programming language research, XQuery pos-

sesses complex formal semantics and static typing. Its learning curve is steep. Surprisingly, given

the effort and complexity underlying the type system, static typing is optional. An implemen-

tation is free to choose how types are enforced: either statically before a query is executed or

dynamically by throwing type errors during execution. Hybrid approaches are also permitted.

16.3 Indexing and Query Processing

Indexing and query processing for XML pose two significant problems that are not easily handled

by the region algebra of Section 5.2. First, elements may nest recursively. The solution to the

expression

//section/section

includes all sections contained in another section, regardless of nesting or depth. Although

the solution could be represented as a set of intervals, some nesting in others, it cannot be

represented as a GC-list. XPath query processing strategies must handle this recursion properly.

Second, XPath expressions may specify direct containment relationships. The solution to the

expression

/article/body/section/p

includes only paragraphs directly contained in top-level sections, not those contained in subsec-

tions or subsubsections. On the other hand, unlike the region algebra, XPath has no requirement

for overlapping structure. Elements must nest, and we may treat documents as trees.

To accommodate recursive structure and direct containment, we extend our inverted list ADT

(page 33) so that each element of a postings list becomes a tuple containing three values: a start

position, an end position, and a depth in the tree:

(start, end, depth)

Unlike the region algebra the start and end tags of elements do not have separate postings lists

but share a combined postings list. For an element the start position in the tuple indicates the

16.3 Indexing and Query Processing 577

position of the start tag, and the end position indicates the position of the end tag. For other

tokens, such as words, the start and end positions are equal, indicating the position of the token.

The tuples in these extended postings lists are ordered by start position.

For example, returning to the inverted index for Macbeth in Figure 2.1 (page 34), the extended

postings list for plays becomes

{(3, 40508, 1), (40511, 75580, 1), . . . , (1234602, 1271504, 1)}.

In this postings list the depth is always 1, because plays occur only as topmost elements, but

the depth need not be the same for all tuples in a postings list. For example, the extended

postings list for speeches is

{(312, 470, 4), (471, 486, 4), . . . , (506542, 506878, 3), . . . , (1271273, 1271498, 4)}.

Speeches usually occur at depth 4, nested in a scene of an act of a play, but may appear at

depth 3 in the prologue of a play. The postings list for “witch” is

{(1598, 1598, 6), (27555, 27555, 6), . . . , (432149, 432149, 4), . . . , (1245276, 1245276, 6)}.

A witch may occur as a speaker at depth 6 or in a list of personae at depth 4. To accommodate

this extension the four methods of our inverted list ADT are modified as follows:

first(term) returns the first tuple for the given term

last(term) returns the last tuple for the given term

next(term, current) returns the first tuple starting after the current position

prev(term, current) returns the last tuple starting before the current position

For example,

first(“〈PLAY〉”) = (3, 40508, 1)

last(“〈SPEECH〉”) = (1271273, 1271498, 4)

next(“〈SPEECH〉”, 400) = (471, 486, 4)

prev(“witch”, 20000) = (1598, 1598, 6)

This modified inverted index may be combined with knowledge taken from structural metadata

to efficiently solve XPath expressions. For example, the code in Figure 16.5 solves the path

expression

//section//section

over a journal article like that in Figure 16.1. From the DTD in Figure 16.2 we see that sections

are recursive, and thus the path expression may have a nonempty solution set. Rather than

explicitly identifying all sections containing sections, we note that the only sections that form

Chapter 16 XML Retrieval578

1 (u, v, d)← first(“〈section〉”)
2 (u′, v′, d′)← next(“〈section〉”, u)
3 while u <∞ do
4 if v′ < v then
5 report the interval [u′,v′]
6 (u′, v′, d′)← next(“〈section〉”, u′)
7 else
8 (u, v, d)← (u′, v′, d′)

Figure 16.5 Code to solve the path expression //section//section.

1 (u, v, d)← first(“〈section〉”)
2 while u <∞ do
3 (u′, v′, d′)← next(“〈p〉”, u)
4 while v′ < v do
5 if d′ = 4 then
6 report the interval [u′,v′]
7 (u′, v′, d′)← next(“〈p〉”, u′)
8 (u, v, d)← next(“〈section〉”, v)

Figure 16.6 Code to solve the path expression /article/body/section/p.

a part of the solution set are those that do not appear at the topmost level. Thus, the code

processes each top-level section in turn and reports all the sections that are contained within

it, regardless of depth.

On line 1 the first section is stored in the tuple (u, v, d). This section must be a top-level

section because its starting position has the lowest value. On line 2 the first candidate section,

which may be an element of the solution set, is stored in the tuple (u′, v′, d′). The loop over

lines 3 to 8 checks each candidate section in turn, determining if it is contained in the current

top-level section. If so, it is reported on line 5. If not, it becomes the new top-level section on

line 8. Reporting a section may involve displaying it to a user or, more likely, storing it for

further processing. Note that depth values are not required in order to compute the solution.

The use of depth values is illustrated by the code in Figure 16.6, which provides a solution

to the path expression

/article/body/section/p .

From the DTD we see that sections are only contained within article bodies, making it unnec-

essary to explicitly consider articles and bodies when evaluating this path expression. To satisfy

the path expression, a paragraph in the solution set must be contained directly in a top-level

section. From the DTD, we see that such a paragraph must lie at depth 4. Beginning with

the first top-level section (line 1), the code iterates over the top-level sections, reporting the

16.4 Ranked Retrieval 579

paragraphs at depth 4 contained in each (lines 2 to 8). To advance from one top-level section

to another, the method call on line 8 skips lower-level sections by indexing beyond the end of

the current top-level section. Lines 4 to 7 iterate over the paragraphs contained in the current

top-level section, reporting a paragraph only if it appears at depth 4 (lines 5 to 7).

16.4 Ranked Retrieval

Ranked retrieval for XML may be viewed as two distinct problems distinguished by the types

of queries supported. First, we may view XML IR as ranking elements with respect to a query

expressed as a term vector, just as standard document retrieval ranks documents with respect

to a term vector. For example, given the term vector 〈“text”, “compression”〉, the IR system

returns a ranked list of elements ordered according to their probability of relevance to this query.

Under the second view queries are expressed as path expressions in a language such as NEXI.

Elements are ranked by considering both content and structure. The structure specified by the

query may be interpreted either as a strict filter or more loosely as a hint. When interpreted

as a filter, only elements exactly matching the structure indicated by the path expression are

included in the result list. When interpreted loosely, the IR system must strike a balance between

the potentially competing requirements of structure and content. Consider the path expression

/article/body/section[about(./title,"memory requirements")] .

When interpreted strictly, the IR system is constrained to return only top-level sections, ranked

according to the relevance of their titles to the topic of memory requirements. When interpreted

loosely, the IR system may give preference to sections over other elements and give greater weight

to query terms occurring in their titles, but it is free to return subsections, subsubsections,

paragraphs and other elements.

In the jargon of INEX the problem of ranking elements according to term vector is called a

content-only task, or CO task. The problem of filtering and ranking elements according to a

path expression is called a content-and-structure task, or CAS task. Queries for CO tasks may

be treated as a special case of CAS queries. Given a term vector 〈t1, t2, . . . , tn〉 for a CO task,

we may view it as equivalent to the CAS query

//*[about(.,"t1 t2 tn")] .

Although many ranking methods for CAS queries have been proposed in the research liter-

ature, the problem is still poorly understood, and none of the proposed methods has emerged

as the clear winner. One simple but reasonable method for handling CAS queries is to treat

structure and content separately, through a two-step retrieval process. As the first step the path

expression is applied as a filter restricting the results to a subset of the elements. In this first step

the path expression’s about functions are ignored, with all elements being treated as equally

relevant to any topic. In the second step a query vector is constructed from the terms appearing

Chapter 16 XML Retrieval580

in the about functions. The elements selected in the first step are then ranked according to this

term vector. For example, given the path expression

/article/body/section[about(./title,"memory requirements")] ,

the first step would create a set of top-level sections and the second step would rank these

sections according to the term vector 〈“memory”, “requirements”〉. The structural constraint

in the about function (./title) might be honored by the ranking function or might be ignored.

Similarly, for the path expression

//article[about(.//p,"compression codes") and about(.//author, Moffat]) ,

the method would rank articles according to the term vector 〈“compression”, “codes”, “moffat”〉.
Although this simple method may ignore some aspects of a CAS query, such as the separate

author and paragraph constraints in the previous example, no other method has been shown to

produce consistently better performance. The problem remains open for further research.

In the remainder of Section 16.4 we focus on the CO task. As with CAS queries, many ranking

methods for CO queries have been proposed in the literature and tested at INEX. Although

many of these methods have merit, none has been shown to consistently outperform the simple

approach of ranking individual elements by using a standard ranking formula, such as BM25.

Under this approach, elements are treated as if each is a separate document. Document ranking

methods are then applied to this collection of elements.

When applying document ranking techniques to a collection of elements, several problems

immediately arise. First, a fragment of text may belong to several different elements. For exam-

ple, a fragment of text contained in the journal article of Figure 16.1 may form part of a

paragraph, a subsection, a section, the body, and the article itself. If each of these elements

is considered to be a separate “document” for retrieval purposes, this repetition may distort

term and document statistics. Second, the nesting of these elements (called “overlap” in INEX

jargon) can lead to excessive redundancy in the search results. If a paragraph is highly relevant,

then the subsection, section, body, and article that contain it may also be highly relevant, but

it may not be useful to report all of these elements individually in the result list. Finally, not all

element types are suitable as retrieval results. Some elements, such as paragraphs and sections,

may be reasonably presented to a user, but others are not appropriate. For example, a section

title by itself may be much less useful to the user than the section that contains it.

16.4.1 Ranking Elements

If we consider our collection to consist of XML elements treated as separate documents for

ranking purposes, a specific term occurrence may be contained in several different elements.

For example, consider the term “method” occurring in the first paragraph of Section 2.1 of

the document in Figure 16.1 (“The first method considered...”). This term occurrence may be

viewed as part of a paragraph, a subsection, a section, a body, and an article. If we view each

of these elements as a separate document, the term appears five times in the “collection”.

16.4 Ranked Retrieval 581

Table 16.1 Top ranking elements for the query 〈“text”, “index”, “compression”, “algorithms”〉
over the INEX collection of IEEE magazine and journal articles. IDF values were computed
by treating each article as a document.

BM25 Score Document Identifier Element

32.000923 /co/2000/ry037.xml /article[1]/body[1]

31.861366 /co/2000/ry037.xml /article[1]

31.083460 /co/2000/ry037.xml /article[1]/body[1]/section[2]

30.174324 /co/2000/ry037.xml /article[1]/body[1]/section[5]

29.420393 /tk/1997/k0302.xml /article[1]

29.250019 /tk/1997/k0302.xml /article[1]/body[1]/section[1]

29.118382 /tk/1997/k0302.xml /article[1]/body[1]

29.075621 /co/2000/ry037.xml /article[1]/body[1]/section[3]

28.417294 /tk/1997/k0302.xml /article[1]/body[1]/section[6]

28.106693 /tp/2000/i0385.xml /article[1]

27.761749 /co/2000/ry037.xml /article[1]/body[1]/section[7]

27.686905 /tk/1997/k0302.xml /article[1]/body[1]/section[3]

27.584927 /tp/2000/i0385.xml /article[1]/body[1]

27.273247 /co/2000/ry037.xml /article[1]/body[1]/section[4]

27.186977 /tp/2000/i0385.xml /article[1]/body[1]/section[1]

27.072521 /tk/1997/k0302.xml /article[1]/body[1]/section[3]/section[1]

26.992224 /co/2000/ry037.xml /article[1]/body[1]/section[5]/section[1]

.

When applying standard relevance ranking techniques in the context of XML information

retrieval, term-frequency statistics may be computed for each element independently (Mass

and Mandelbrod, 2004). For a given element e we compute its term-frequency value ft,e as the

number of times the term t occurs in the element e. Although the same term occurrence may

be contained in multiple elements, for the purposes of computing term frequencies it may be

treated as a different occurrence in each element that contains it.

Most ranking techniques also require global statistics, such as inverse document frequency,

computed over the collection as a whole. Such global statistics should not be computed as if

each element is an independent document. It is not appropriate to compute inverse document

frequency under the assumption that a given term is repeated in all of the elements that con-

tain it, because the number of elements that contain a term depends solely on the structural

arrangement of the original XML (Vittaut et al., 2004; Kekäläinen et al., 2004). Instead, we

choose a subset of the elements such that each term occurrence is contained in exactly one of

the elements in this subset. For example, the subset might consist of all article elements. Inverse

document frequency and other global statistics may then be computed over this subset.

Chapter 16 XML Retrieval582

Table 16.2 Top ranking elements from Table 16.1 after overlap removal.

BM25 Score Document Identifier Element

32.000923 /co/2000/ry037.xml /article[1]/body[1]

29.420393 /tk/1997/k0302.xml /article[1]

28.106693 /tp/2000/i0385.xml /article[1]

.

Using these conventions for computing term frequency and inverse document frequency, we

may then apply standard ranking formulae to rank elements. Table 16.1 shows the top ranking

elements for INEX topic number 162 (“Text and Index Compression Algorithms”) over the

INEX collection of IEEE magazine and journal articles. In this example the original INEX

markup has been modified to make it consistent with the DTD in Figure 16.2. The first column

lists BM25 scores; the second column lists document identifiers; the third column lists elements

within those documents. All elements are drawn from only three documents. The document

/tk/1997/k0302.xml is the journal article shown in Figure 16.1.

16.4.2 Overlapping Elements

As illustrated by Table 16.1, the direct application of a standard relevance ranking technique to

a set of XML elements can produce a list in which the top ranks are dominated by structurally

related elements. A highly scoring section is likely to contain several highly scoring paragraphs

and to be contained in a highly scoring article. If each of these elements is presented as a separate

result, the user may waste considerable time reviewing and rejecting redundant content.

One possible solution is to report only the highest-scoring element along a given path in the

tree, and to remove from the lower ranks any element containing it or contained within it.

Table 16.2 shows the outcome of this approach on the ranked list of Table 16.1. All but three

elements are eliminated. Of the remaining elements, two are full articles and one is an article

body. The predominance of larger elements, such as articles, is not unusual for this method

when it is applied to the INEX collections. Due to their source, many of the articles in the

INEX collections are narrow in focus and are not long, often less than ten thousand words in

length. As a result full articles often rank highly, depending on the topic.

In addition, the practice of reporting only one solution along a given path destroys some of the

possible benefits of XML IR. For example, an outer element may contain a substantial amount

of information that does not appear in an inner element, but the inner element may be heavily

focused on the query topic and provide a short overview of the key concepts. In such cases it is

reasonable to report elements that contain, or are contained in, higher-ranking elements. Even

when an entire book is relevant, a user may still wish to have the most important paragraphs

identified, to guide her reading and to save time (Fuhr and Großjohann, 2001; Clarke, 2005).

16.5 Evaluation 583

16.4.3 Retrievable Elements

Although an XML IR system may potentially retrieve any element, many elements may not

be appropriate retrieval results. This is usually the case when elements contain very little text

(Kamps et al., 2004). For example, a section title containing only the query terms may receive

a high score from a ranking algorithm but alone will be of limited value to a user, who may

prefer the actual section. Other elements may reflect the document’s physical rather than logical

structure, such as font changes, which may have little or no meaning to a user. An effective

XML IR system must return only those elements that have sufficient content to be usable and

can stand alone as independent objects (Pehcevski et al., 2004; Mass and Mandelbrod, 2003).

Standard document components such as paragraphs, sections, subsections, and abstracts often

meet these requirements; titles, italicized phrases, and similar elements often do not.

16.5 Evaluation

The evaluation of XML IR systems extends the effectiveness measures presented in Chapter 12.

In extending these measures we must address the same concerns as we did when considering

ranking methods in the previous section, particularly the issue of overlap.

16.5.1 Test Collections

To date, INEX represents the only large-scale evaluation effort directed toward XML IR. Until

2006 the main collection at INEX consisted of over 12,000 articles taken from the IEEE Com-

puter Society’s magazines and journals between 1995 and 2002. Figure 16.1 provides an example

of a typical document from this collection (although the markup used in the INEX collection

is slightly different). The collection has a total size of roughly 500MB. In 2006 a larger collec-

tion was developed from Wikipedia articles. This new collection consists of more than 600,000

English-language articles and has a total size of more than 4GB. Denoyer and Gallinari (2006)

describe the creation and organization of this collection. In recent years a third collection has

been developed and used for a limited set of INEX experiments. This collection consists of more

than 50,000 out-of-copyright books and has a total size of more than 50GB (Wu et al., 2008).

The creation of topics and judgments at INEX has always been a cooperative effort of the

participants. Each participating group creates two or three topics, which are collected and

reviewed by the INEX organizers. After the topic set is finalized, the organizers distribute

it to the groups, who return ranked lists of XML elements to the organizers. Judging pools

are created from the submitted runs. Using a judging interface supplied by the organizers,

participants judge the pools for the topics they contributed. On the basis of these judgements

the organizers compute effectiveness measures that then become the official results.

Chapter 16 XML Retrieval584

16.5.2 Effectiveness Measures

Overlap causes considerable problems with retrieval evaluation, and the INEX organizers and

participants have wrestled with these problems since INEX’s inception (Kazai and Lalmas,

2006). Although notable progress has been made, these problems are still not fully solved.

In addition, because XML information retrieval is concerned with locating those elements that

provide complete coverage of a topic while containing as little extraneous information as possible,

simple “relevant” versus “not relevant” judgments for individual elements are not sufficient.

Several attempts have been made to develop measures that satisfy the requirements of XML IR

while retaining a tractable judging process.

In one approach the INEX organizers adopted two dimensions for relevance assessment

(Piwowarski and Lalmas, 2004). Each element is judged independently with respect to these

dimensions. The first dimension, the exhaustivity dimension, reflects the degree to which an

element covers the topic. The second dimension, the specificity dimension, reflects the degree to

which an element is focused on the topic. A four-point scale is used on both dimensions. Thus,

a (3,3) element is highly exhaustive and highly specific, a (1,3) element is marginally exhaustive

and highly specific, and a (0,0) element is not relevant.

Efforts were then made to adapt existing effectiveness measures to use these two-dimensional

judgments. One attempt, used at early INEX conferences, is a version of the mean average

precision (MAP) measure described in Section 2.3. This version of MAP is adjusted by vari-

ous quantization functions to give different weights to different elements, depending on their

exhaustivity and specificity values. For example, a strict quantization function gives a weight

of 1 to (3,3) elements and a weight of 0 to all others. This variant is essentially the standard

MAP value, with (3,3) elements treated as “relevant” and all other elements treated as “not

relevant”. Other quantization functions are designed to give partial credit to elements that are

“near misses” due to a lack of exhaustivity and/or specificity. Both the generalized quantization

function and the specificity-oriented generalization (sog) function credit elements “according to

their degree of relevance” (Kazai et al., 2004), with the second function placing greater emphasis

on specificity.

Unfortunately, this version of MAP does not penalize overlap. In particular, both the gener-

alized and the sog quantization functions can give credit to elements even when (3,3) elements

containing them are reported at higher ranks. To address this problem Kazai et al. (2004)

and Kazai and Lalmas (2006) developed an XML cumulated gain measure called XCG, which

extends the nDCG measure of Section 12.5.1. The XCG measure compares the cumulated gain

of a ranked list with an ideal gain vector. This ideal gain vector is constructed from the relevance

judgments by eliminating overlap and retaining only the best element along a given path. Thus,

the XCG measure rewards retrieval runs that avoid overlap.

At more recent INEX conferences assessors have made relevance judgments by highlighting

the relevant parts of articles. When judging a ranked list of elements, recall may be computed

as the fraction of highlighted text retrieved, and precision may be computed as the fraction of

retrieved text that is highlighted.

16.6 Further Reading 585

16.6 Further Reading

XML is a prominent Web standard with importance far beyond the boundaries of information

retrieval. A large and growing set of applications uses XML for data storage and interchange.

For example, XML is the primary document format for both Microsoft Office 2007 and the

OpenOffice productivity suite. Most major database vendors now provide support for XML

through extensions to their traditional relational DB offerings. Introductions to XML are avail-

able at all levels, from the basic (Tittel and Dykes, 2005) to the professional (Evjen et al.,

2007).

During the late 1990s, database researchers developed and evaluated a number of proposals

for XML query languages, most notably the Lorel language from Stanford (Abiteboul et al.,

1997), the YATL language from INRIA (Cluet et al., 2000), and the Quilt language (Chamberlin

et al., 2000). Within a few years this research had coalesced into a preliminary standard for

XQuery, although version 1.0 of the standard was not finalized until 2007.6 Melton and Buxton

(2006) provide a readable and detailed explanation of XPath, XQuery, and other methods for

querying XML.

The XQuery 1.0 standard does not include facilities for updating XML documents. These

were added through the XQuery Update Facility 1.0, released by the W3C in August 2008.7

Recently the W3C has proposed recommendations for “Full Text” extensions to XQuery and

XPath.8 These recommendations include extensive facilities for keyword and Boolean search

along with limited support for element ranking.

Efficiently solving path expressions requires specialized indexing. Al-Khalifa et al. (2002)

describe a structural index for efficient pattern matching between queries and document trees.

Zhang et al. (2001) propose methods for solving a subset of path expressions in the context

of a traditional relational database system. Bruno et al. (2002) substantially extend this work,

describing algorithms to support the pattern matching of a small query tree (called a twig)

against a much larger tree representing the XML document collection. Their algorithms, which

they call holistic twig joins, represent the foundational methods for solving path expressions

through the use of inverted lists. Our extended ADT for inverted lists, which we presented in

Section 16.3, is based upon their data structures.

Much of subsequent research on solving path expressions builds upon the holistic twig join

algorithms. Jiang et al. (2003) present methods for improving the efficiency of holistic twig

joins. Kaushik et al. (2004) combine holistic twig joins with structural joins to take better

advantage of available structural information. Lu et al. (2005) suggest additional algorithmic

improvements and extensions for holistic twig join processing. Gottlob et al. (2005) explore

6 www.w3.org/TR/xquery
7 www.w3.org/TR/xquery-update-10
8 www.w3.org/TR/xpath-full-text-10/

Chapter 16 XML Retrieval586

beyond tree matching, taking into account the detailed semantics of XPath queries. Zhang

et al. (2006) propose feature-based indexing of document substructures as a method for quickly

identifying a set of candidate answers for a path expression.

In the database community ranked retrieval is often called “top-k” retrieval. Theobald et al.

(2008) describe index structures and query processing for top-k retrieval over XML and other

semi-structured data, including support for the proposed XML Full-Text extension. Trotman

(2004) presents another proposal for index structures for ranked retrieval over XML and other

structured documents.

Research into XML IR has been greatly accelerated through the efforts of the INEX organizers

and participants.9 Ongoing activities at INEX have now expanded beyond basic retrieval tasks

to explore topics such as entity ranking, question answering, data mining, passage retrieval, and

link analysis. Recent INEX proceedings should be consulted for a detailed picture of current

research work (Fuhr et al., 2007, 2008).

Other XML IR research has addressed a wide range of issues with a particular focus on the

trade-offs between content and structure. Amer-Yahia et al. (2005) describe and evaluate effi-

cient query processing methods for XML IR that account for both content and structure over

heterogeneous collections. Kamps et al. (2006) examine how best to express queries that refer-

ence both structure and content. Lehtonen (2006) considers problems associated with XML IR

over heterogeneous collections. Chu-Carroll et al. (2006) propose an XML-based query language

for semantic search over XML collections. Amer-Yahia and Lalmas (2006) provide a short survey

of XML IR research covering up to 2006.

Work continues on evaluation methodologies for XML IR. Kazai et al. (2004) provide a

detailed exposition of the overlap problem in the context of INEX retrieval evaluation and

propose a number of potential evaluation measures. Further information on exhaustivity and

specificity can be found in Piwowarski and Lalmas (2004), who provide a detailed rationale

for these concepts. Kazai and Lalmas (2006) provide a careful analysis of the application of

the nDCG measure to the problem of XML IR evaluation. Piwowarski et al. (2008) provide a

thorough discussion of XML IR evaluation, summarizing many of the lessons learned at INEX.

Ali et al. (2008) develop a framework for XML IR evaluation that considers the user’s probable

browsing history when accounting for the impact of overlap.

An ideal XML IR test collection should perhaps be less homogeneous than the two main

INEX collections: the IEEE collection and the Wikipedia collection. For both collections a single

DTD describes all the articles that the collection contains. The articles in these collections are

similar in size. Each small enough to be read in its entirety in a short period of time. An ideal

test collection for XML would consist of a wider variety of documents with differing sizes and

differing DTDs. Such a collection would include books and other long documents as well as

shorter articles. In future years it is possible that the newer XML book collection may evolve

to meet these requirements (Wu et al., 2008; Koolen et al., 2009).

9 www.inex.otago.ac.nz

16.7 Exercises 587

16.7 Exercises

Exercise 16.1 Create a DTD consistent with the structure of Shakespearean plays, as

illustrated in Figure 1.3.

Exercise 16.2 The path expression /article/body/section/p may be solved without con-

sidering depth by modifying lines 5–7 of Figure 16.6 to skip paragraphs contained in subsections.

Write this modified algorithm. Is your version more efficient than the version shown in

Figure 16.6?

Exercise 16.3 Write an algorithm to solve the expression /article/body/section/section,

assuming the DTD of Figure 16.2 and the inverted index ADT described in Section 16.3.

Exercise 16.4 Write an algorithm to solve the expression /article/body/section[2],

assuming the DTD of Figure 16.2 and the inverted index ADT described in Section 16.3.

16.8 Bibliography

Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. (1997). The Lorel query

language for semistructured data. International Journal on Digital Libraries, 1(1):68–88.

Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas, N., and Srivastava, D. (2002).

Structural joins: A primitive for efficient XML query pattern matching. In Proceedings of the

18th IEEE International Conference on Data Engineering, pages 141–152.

Ali, M. S., Consens, M. P., Kazai, G., and Lalmas, M. (2008). Structural relevance: A common

basis for the evaluation of structured document retrieval. In Proceedings of the 17th ACM

Conference on Information and Knowledge Management, pages 1153–1162. Napa, California.

Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., and Toman, D. (2005). Structure and

content scoring for XML. In Proceedings of the 31st International Conference on Very Large

Data Bases, pages 361–372. Trondheim, Norway.

Amer-Yahia, S., and Lalmas, M. (2006). XML search: Languages, INEX and scoring. SIGMOD

Record, 35(4):16–23.

Bruno, N., Koudas, N., and Srivastava, D. (2002). Holistic twig joins: Optimal XML pat-

tern matching. In Proceedings of the 2002 ACM SIGMOD International Conference on

Management of Data, pages 310–321. Madison, Wisconsin.

Chamberlin, D., Robie, J., and Florescu, D. (2000). Quilt: An XML query language for

heterogeneous data sources. In Proceedings of WebDB 2000 Conference, pages 53–62.

Chapter 16 XML Retrieval588

Chu-Carroll, J., Prager, J., Czuba, K., Ferrucci, D., and Duboue, P. (2006). Semantic search via

XML fragments: A high-precision approach to IR. In Proceedings of the 29th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 445–452. Seattle, Washington.

Clarke, C. L. A. (2005). Controlling overlap in content-oriented XML retrieval. In Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 314–321. Salvador, Brazil.

Cluet, S., Siméoni, J., and De Voluceau, D. (2000). YATL: A functional and declarative language
for XML. Bell Labs, Murray Hill, New Jersey.

Denoyer, L., and Gallinari, P. (2006). The Wikipedia XML corpus. ACM SIGIR Forum,

40(1):64–69.

Evjen, B., Sharkey, K., Thangarathinam, T., Kay, M., Vernet, A., and Ferguson, S. (2007).

Professional XML (Programmer to Programmer). Indianapolis, Indiana: Wiley.

Fuhr, N., and Großjohann, K. (2001). XIRQL: A query language for information retrieval in

XML documents. In Proceedings of the 24th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 172–180. New Orleans, Louisiana.

Fuhr, N., Kamps, J., Lalmas, M., and Trotman, A., editors (2008). Focused Access to XML

Documents: Proceedings of the 6th International Workshop of the Initiative for the Evaluation

of XML Retrieval, volume 4862 of Lecture Notes in Computer Science. Berlin, Germany.

Springer.

Fuhr, N., Lalmas, M., Malik, S., and Szlávik, Z., editors (2005). Advances in XML Retrieval:

Proceedings of the 3rd International Workshop of the Initiative for the Evaluation of XML

Retrieval, volume 3493 of Lecture Notes in Computer Science. Berlin, Germany. Springer.

Fuhr, N., Lalmas, M., and Trotman, A., editors (2007). Proceedings of the 5th International

Workshop of the Initiative for the Evaluation of XML Retrieval, volume 4518 of Lecture Notes

in Computer Science.

Gottlob, G., Koch, C., and Pichler, R. (2005). Efficient algorithms for processing XPath queries.

ACM Transactions on Database Systems, 30(2):444–491.

Hockey, S. (2004). The reality of electronic editions. In Modiano, R., Searle, L., and Shillings-

burg, P. L., editors, Voice, Text, Hypertext: Emerging Practices in Textual Studies, pages

361–377. Seattle, Washington: University of Washington Press.

Jiang, H., Wang, W., Lu, H., and Yu, J.X. (2003). Holistic twig joins on indexed XML

documents. In Proceedings of the 29th International Conference on Very Large Data Bases,

pages 273–284. Berlin, Germany.

Kamps, J., de Rijke, M., and Sigurbjörnsson, B. (2004). Length normalization in XML retrieval.

In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 80–87. Sheffield, England.

Kamps, J., Marx, M., de Rijke, M., and Sigurbjörnsson, B. (2006). Articulating information

needs in XML query languages. ACM Transactions on Information Systems, 24(4):407–436.

16.8 Bibliography 589

Kaushik, R., Krishnamurthy, R., Naughton, J. F., and Ramakrishnan, R. (2004). On the
integration of structure indexes and inverted lists. In Proceedings of the 2004 ACM SIGMOD

International Conference on Management of Data, pages 779–790. Paris, France.

Kazai, G., and Lalmas, M. (2006). eXtended cumulated gain measures for the evaluation of
content-oriented XML retrieval. ACM Transactions on Information Systems, 24(4):503–542.

Kazai, G., Lalmas, M., and de Vries, A. P. (2004). The overlap problem in content-oriented XML

retrieval evaluation. In Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 72–79. Sheffield, England.

Kekäläinen, J., Junkkari, M., Arvola, P., and Aalto, T. (2004). TRIX 2004 — Struggling with

the overlap. In Proceedings of INEX 2004, pages 127–139. Dagstuhl, Germany. Published in
LNCS 3493, see Fuhr et al. (2005).

Koolen, M., Kazai, G., and Craswell, N. (2009). Wikipedia pages as entry points for book
search. In Proceedings of the 2nd ACM International Conference on Web Search and Data
Mining.

Lehtonen, M. (2006). Preparing heterogeneous XML for full-text search. ACM Transactions on
Information Systems, 24(4):455–474.

Lu, J., Ling, T. W., Chan, C. Y., and Chen, T. (2005). From region encoding to extended

Dewey: On efficient processing of XML twig pattern matching. In Proceedings of the 31st
International Conference on Very Large Data Bases, pages 193–204. Trondheim, Norway.

Mass, Y., and Mandelbrod, M. (2003). Retrieving the most relevant XML components. In

Advances in XML Retrieval: Proceedings of the 3rd International Workshop of the Initiative
for the Evaluation of XML Retrieval, number 3493 in Lecture Notes in Computer Science,

pages 53–58. Berlin, Germany: Springer.

Mass, Y., and Mandelbrod, M. (2004). Component ranking and automatic query refinement for
XML retrieval. In Proceedings of INEX 2004, pages 53–58. Dagstuhl, Germany. Published in

LNCS 3493, see Fuhr et al. (2005).

Melton, J., and Buxton, S. (2006). Querying XML. San Francisco, California: Morgan
Kaufmann.

Pehcevski, J., Thom, J. A., and Vercoustre, A. (2004). Hybrid XML retrieval re-visited. In

Proceedings of INEX 2004, pages 153–167. Dagstuhl, Germany. Published in LNCS 3493, see
Fuhr et al. (2005).

Piwowarski, B., and Lalmas, M. (2004). Providing consistent and exhaustive relevance

assessments for XML retrieval evaluation. In Proceedings of the 13th ACM Conference on
Information and Knowledge Management, pages 361–370. Washington, D.C.

Piwowarski, B., Trotman, A., and Lalmas, M. (2008). Sound and complete relevance assessment
for XML retrieval. ACM Transactions on Information Systems, 27(1):1–37.

Theobald, M., Bast, H., Majumdar, D., Schenkel, R., and Weikum, G. (2008). Topx: Efficient

and versatile top-k query processing for semistructured data. The VLDB Journal, 17(1):81–
115.

Tittel, E., and Dykes, L. (2005). XML for Dummies (4th ed.). New York: Wiley.

Chapter 16 XML Retrieval590

Trotman, A. (2004). Searching structured documents. Information Processing & Management,

40(4):619–632.

Trotman, A., and Sigurbjörnsson, B. (2004). Narrowed Extended XPath I (NEXI). In Pro-

ceedings of INEX 2004. Dagstuhl, Germany. Published in LNCS 3493, see Fuhr et al.

(2005).

van der Vlist, E. (2002). XML Schema: The W3C’s Object-Oriented Descriptions for XML.

Sebastopol, California: O’Reilly.

Vittaut, J., Piwowarski, B., and Gallinari, P. (2004). An algebra for structured queries

in Bayesian networks. In Proceedings of INEX 2004, pages 100–112. Dagstuhl, Germany.

Published in LNCS 3493, see Fuhr et al. (2005).

Wu, H., Kazai, G., and Taylor, M. (2008). Book search experiments: Investigating IR methods

for the indexing and retrieval of books. In Proceedings of the 30th European Conference on

Information Retrieval Research, pages 234–245.

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., and Lohman, G. (2001). On supporting contain-

ment queries in relational database management systems. In Proceedings of the 2001 ACM

SIGMOD International Conference on Management of Data, pages 425–436. Santa Barbara,

California.

Zhang, N., Özsu, M. T., Ilyas, I. F., and Aboulnaga, A. (2006). FIX: Feature-based indexing

technique for XML documents. In Proceedings of the 32nd International Conference on Very

Large Data Bases, pages 259–270. Seoul, South Korea.

VI Appendix

A Computer Performance

The chapters in Part II of this book list performance numbers for various techniques related to

inverted indices. To put these numbers into the right context, we give a brief overview of some

important aspects of computer performance and provide a summary of the key performance

characteristics of the computer system that was used to conduct the experiments described in

this book (see Table A.1).

IR systems, like most database systems, spend a large fraction of their time moving data from

one part of the computer to another. Their performance is determined largely by two factors:

locality of data access and pipelined execution.

Data locality, in this context, means sequential versus random access. An example of a sequen-

tial data-access pattern is the term-at-a-time query processing strategy for disjunctive queries

described in Section 5.1.2. An example of random data access is the sort-based dictionary from

Section 4.2, which realizes lookup operations by means of binary search. Regardless of whether

we store the index in memory or on disk, performance is usually improved. We rearranged the

data so as to facilitate sequential access.

Pipelined execution is a feature of modern microprocessors that allows the CPU to begin

executing instruction In+1 while still working on instruction In. In order for this to be possible,

the CPU needs to know the address of In+1 before it is done with In. This can be tricky if In

is a branch instruction (i.e., an “IF” statement).

A.1 Sequential Versus Random Access on Disk

For hard disk drives, the difference between sequential and random access is obvious, given

that we first have to tell the drive’s read head to position itself above the data before they

can be read. This positioning operation involves two phases. In the first phase the read head

is positioned over the disk track that contains the data (seek latency). In the second phase we

wait for the disk to spin into the right location so that the data we want to read are directly

under the head (rotational latency).

The average rotational latency depends on the hard drive’s rotational velocity. If the disk

spins at 7200 revolutions per minute (rpm), one rotation takes 1/120 sec ≈ 8.3 ms. In order

to read a piece of data from a random location on disk, on average we have to wait half a

rotation — approximately 4.2 ms.

A.2 Sequential Versus Random Access in RAM 593

Table A.1 Key performance characteristics of the computer system used for the experi-
ments described in this book. The system is equipped with two hard disk drives, arranged
in a RAID-0 (striping). All disk operations in the indexing/retrieval experiments from Part
II were carried out on the RAID-0.

CPU

Model 1× AMD Opteron 154, 2.8 GHz

Data cache 64 KB (L1), 1024 KB (L2)

TLB cache 40 entries (L1), 512 entries (L2)

Execution pipeline 12 stages

Disk

Total size 2× 465.8 GB

Average rotational latency 4.2 ms (7000 rpm)

Average seek latency 8.6 ms

Average random access latency 12.8 ms (≈ 36 million CPU cycles)

Sequential read/write throughput (single disk) 45.5 MB/sec

Sequential read/write throughput (RAID-0) 87.4 MB/sec

Memory

Total size 2048 MB

Random access latency 75 ns (≈ 210 CPU cycles)

Sequential read/write throughput 3700 MB/sec

The average seek latency for index operations depends on the size of the index. A smaller

index covers fewer disk tracks, and the disk head needs to travel less between subsequent read

operations. For example, although the hard drive used in our experiments has an average random

access latency of roughly 12.8 ms (seek latency: 8.6 ms; rotational latency: 4.2 ms), the average

lookup latency in our dictionary interleaving experiments for the GOV2 collection (Table 4.4

on page 116) was only 11.4 ms — because the index covered only around 13% of the disk.1

A.2 Sequential Versus Random Access in RAM

For main memory the difference between sequential and random access is not quite as obvious,

and the fact that we often refer to main memory as random access memory suggests that the

difference, if it exists, is likely to be negligible. However, this is not the case.

1 Note, however, that the file system (ext3) did not make any strong guarantees regarding the contiguity
of the index on disk. It is quite likely that the index was not strictly contiguous and that an even lower
latency could have been achieved if its contiguity has been enforced.

Chapter A Computer Performance594

Data transfers between the CPU and main memory are sped up through the use of caches.

In this context the two most relevant caches are the following:

• The data cache. This cache sits between the CPU and main memory and holds a copy of

recently used data. It is arranged in cache lines, in which a single line typically holds 64

bytes of data. A cache line represents the granularity with which the cache communicates

with the computer’s main memory. If a process reads a single byte of data from RAM,

the whole cache line is loaded into the cache, so that subsequent operations, involving

other bytes within the same line, will be faster.

The data cache is usually not a single cache but a hierarchy of caches referred to as

level-1 (L1), level-2 (L2), and so forth. The L1 cache, at the top of the hierarchy, is the

fastest, but also the smallest, among these caches.

• The translation lookaside buffer (TLB). Essentially all modern microprocessors sup-

port virtual memory, wherein the address under which a process accesses a given piece

of data (its virtual address) is different from the address at which it is actually stored

in main memory (its physical address). The translation between virtual and physical

addresses is realized through the page table; the granularity of the translation is a page,

usually 4 or 8 KB.

In a näıve implementation of virtual memory, each memory access requires two physical

operations — one for the page table (translating the virtual address into a physical

address) and the other for the actual data access. To avoid the resulting performance

degradation, processors employ a special cache, the TLB, which holds copies of recently

accessed page table entries.

Cache misses, both data and TLB misses, are quite expensive and can easily consume several

dozen CPU cycles. In the worst case a memory access can trigger a data cache miss as well as

a TLB miss. For the computer used in our experiments, such a double miss carries a penalty of

roughly 75 ns, enough time to read almost 300 bytes sequentially.

It is worth pointing out that many random-access index operations cause combined data/TLB

cache misses. This is one of the reasons why the grouping technique from Section 6.4 not only

reduces the size of the search engine’s dictionary but also improves its lookup performance (see

Table 6.12 on page 220), as it decreases the number of random memory accesses in the binary

search phase of each dictionary lookup.

A.3 Pipelined Execution and Branch Prediction

Pipelined execution has been a standard technique in CPU design since at least the mid-1980s,

when Intel launched its i386 family of microprocessors. The basic idea is that a given machine

instruction never utilizes all components of the CPU at the same time. Therefore, by pipelining

the individual stages of the execution, utilization and overall performance can be improved.

A.3 Pipelined Execution and Branch Prediction 595

Consider a simplistic three-stage pipeline:

1. Fetch. The instruction is loaded into the CPU either from main memory or from a

cache.

2. Decode. The instruction’s in-memory representation is translated into microcode that

can be executed by the CPU.

3. Execute. The processor executes the instruction and updates the affected CPU registers

and memory locations.

If we run a linear program without any branch instructions, then all three stages of the pipeline

can be kept busy at all times. However, if one of the instructions currently in the pipeline,

say In, is a branch instruction, then the processor does not know the location of the following

instructions In+1 and In+2 and thus cannot load them before it has executed In. The pipeline

is stalled.

Modern processors address this problem by employing a technique called branch prediction, in

which they try to predict, based on past branching behavior, whether the IF case or the ELSE

case of a given branch instruction will be invoked. Based on this prediction, they speculatively

load the following instructions into the pipeline. In case of a misprediction, the work carried

out for In+1 and In+2 has to be discarded and different instructions have to be loaded into the

CPU, leaving the pipeline partially empty.

Prediction accuracy is usually well above 90%, but can be much lower for certain types of

operations. You may remember the γ code from Section 6.3.1. A näıve decoder for this code

would process the unary part of each codeword by inspecting the compressed bit sequence, one

bit at a time, until it encounters the first 1 bit, roughly along the following lines:

1 bitPos← 0

2 for i← 1 to n do

3 k← 1

4 while bitSequence[bitPos] = 0 do

5 bitPos← bitPos + 1

6 k ← k + 1

7 fetch the next k bits in order to decode the current codeword

8 bitPos← bitPos + k

The conditional jump in line 2 is unproblematic because the processor quickly learns that it

should not break out of the loop (assuming that n is large). The branch in line 4, however,

is more complicated to predict. Consider an encoded postings sequence in which the unary

component of the γ code is 1 (i.e., bit sequence 1) for half the postings and 2 (i.e., bit sequence

01) for the other half. Then the CPU will go from line 4 to line 5 about one-third of the time,

and to line 8 two-thirds of the time. The optimal strategy is always to predict a branch (i.e., to

assume that bitSequence[bitPos] is 1). It leads to a misprediction rate of 33%.

Chapter A Computer Performance596

For the simplistic three-stage pipeline from before, a misprediction rate of 33% does not seem

too bad. However, the execution pipelines of modern microprocessors consist of a dozen or more

stages, and repeated mispredictions can reduce the processor’s execution rate substantially.

Table-driven decoding (page 208) decreases the number of branch mispredictions and should

usually be preferred over bit-by-bit decoding procedures.

Index

α-nDCG, 459
γ code, 193, 209, 214
δ code, 193–194, 209
Δ-value, 191
ω code, 194–195

abandonment, 540
abstract data type, 33, 48, 160, 577
accumulator, 145, 493
accumulator pruning, 147–151, 493
accuracy, 322, 335
active learning, 337
Active Server Pages, 510
adaptive algorithm, 38, 62, 65, 304
adaptive coding, 177
adaptive compression, 190
AdaRank-MAP, 399
adhoc task, 24
ADT, see abstract data type
advanced search, 160
adversarial IR, 507
alternative hypothesis, 427
anchor text, 277, 507, 513, 536–537, 555
Antony and Cleopatra, 14
AOL query log, 480
Apache, 27
Arabic, 98
arithmetic coding, 186–189, 189, 223
arithmetic mean, 44, 68, 409
ASCII, 13, 91
ASP, 510
assessment, 8, 67, 73, 411, 441–446
average precision, 71, 408
average response time, 75

B-tree, 113
background language model, 290
backlinks, 534
bag of words, 60, 145, 151, 158

bagging, 376, 385–387
Basque, 94
batch updates, 229–231
Bayes’ Rule, see Bayes’ Theorem
Bayes’ Theorem, 260, 333
Bengali, 97
Bernoulli trials, 418
bias, 413
bigram, 19, 96, 115
binary document format, 11
Binary Independence Model, 261–263
binary interval, 187
binary search, 39, 107, 111, 133, 217, 220
binomial distribution, 418, 491
bit buffering, 208
blind feedback, see pseudo-relevance feedback
blocking, 186, 216
Bloom filter, 131
BM1, 273
BM11, 273
BM15, 273
BM25, 73, 138–139, 258, 272, 296, 301, 312, 354
BM25F, 258, 277–279, 539
body, 193
Bonferroni correction, 428
Bookstein, Abraham, 267
Boolean retrieval, 52, 63–66, 137, 573
boosting, 376, 387–388
bootstrap, 424
bootstrap aggregation, 386
Bosak, Jon, 11, 29
Bose-Einstein statistics, 300
bpref, 461
branch prediction, 199, 208, 595
Bray, Tim, 169
browser extensions, 526
Buckley, Chris, 71
Burrows-Wheeler compression, 191
burst trie, 133

Index598

byte-aligned coding, 205–206
bzip2, 191

cache, 41, 479–484, 544
cache hierarchy, 481
cache line, 594
cache policy, 482–483
candidate phrase, 39
candidate solution, 63
Carnegie Mellon University, 27
case normalization, 84
categorization, 4, 310, 320, 376
central limit theorem, 431, 439
CGI, 510
chaining, 107, 121, 122
Chinese, 95–96, 98
CJK languages, 95–96
classification, 312, 331–366
binary, 331
decision trees, 360, 364–366
feature engineering, 338–339
kernel methods, 357
linear classifier, 349–353
multicategory, 388–394
perceptron algorithm, 352
probabilistic, 339–349
Rocchio’s method, 354
SVM, 353

CLEF, 98
Cleverdon, Cyril, 460
clickthrough curve, 540
clickthrough inversion, 540
ClueWeb09 collection, 25
clustering, 4, 215, 224, 337
code, 177
code tree, 179, 181, 183
codepoint (Unicode), 91, 95, 97
combiner, 502
Common Gateway Interface, 510
compression model, 19, 177–180, 188–190, 196,

202, 361–363
confidence interval, 416–426, 432, 470
confidence level, 416
contingency table, 332
continuation flag, 205
cosine similarity, 56, 72
CPU cache, 109, 124, 594
Cranfield paradigm, 460

Cranfield tests, 460
crawler trap, 557
cross-entropy, 361, 373
cross-validation, 384–385, 399
Cutting, Doug, 27, 504
Cutts, Matt, 553

damping factor (PageRank), 518
DDS, see deadline-driven scheduling
De Morgan’s laws, 65
deadline-driven scheduling, 478
decision tree, 360, 364–366
DECO algorithm, 539
decoder, 175
decoding performance, 204–209, 223
decompounding, 94, 98
deep Web, 511
degrees of freedom, 423
delta code, see δ code
density function, see probability density function
desktop search, 3, 251
DFR, see divergence from randomness
dictionary, 33, 106–110
hash-based, 107
sort-based, 107

dictionary compression, 216–222
dictionary group, 217
dictionary interleaving, 114–118, 221–222
dictionary operations, 106
dictionary-as-a-string approach, 108
diff, 252
digital library, 4
Dijkstra, Edsger, 86
dimensionality reduction, 338, 356
Dirichlet smoothing, 291, 295
disk seek, 111, 145, 233, 238, 493
distribution, 417
binomial, 418, 491
empirical, 419
exponential, 473
Gaussian, 417
geometric, 192, 196, 210
normal, 417
Poisson, 267–268, 473, 548
Student’s t-distribution, 423
Zipfian, see Zipf’s law

divergence from randomness, 287, 298–302
diversity, 455–460, 537

Index 599

DMC, 190, 361
docid, 48
docid index, 49
docLeft, 64
docRight, 64
document, 7–8, 45
element, 7, 564
update, 7

document format
binary, 11
HTML, 9
Microsoft Office, 13
OOXML, 13
PDF, 11
PostScript, 11
raw text, 13
SGML, 11
XML, 11, 565

document length normalization, 78, 139,
271–273, 295, 296, 299, 301

document map, 105, 214
document partitioning, 490–493, 496
document reordering, 214–216
document structure
logical, 11
physical, 11

document type declaration, 570
document type definition, see DTD
dot product, 55
double index, 86
DTD, 568–570
duplicate Web page, 549
Dutch, 94, 95, 98
dwell time, 541
dynamic Markov compression, see DMC
dynamic page, 510
dynamic programming, 492
dynamic rank, 517, 535

EBCDIC, 91
effect size, 426
effectiveness, 8, 67, 538, 584
efficiency, 8, 75, 468
eigenvalue, 529
eigenvector, 529
eliteness, 267, 299, 301
empirical distribution, 419
encoder, 175

English, 95
enterprise search, 4, 511
entropy, 180, 223, 360
of English text, 190, 191
relative, 296

ergodic, 529
Euclidean distance, 56
exhaustivity, 8, 584
exponential search, see galloping search
eXtensible Markup Language, see XML

ft,d, 48
F-measure, 68, 371
false negative, 332
false positive, 332
fault tolerance, 472, 496–498
FCFS, see first-come first-served
feature engineering, 338–339
feedback, see pseudo-relevance feedback
file system search, 3
filtering, 4, 310, 313, 320
spam, 325, 342

finite-context model, 178, 190
Finnish, 94, 95, 97
FIRE, 98
first, 33
first-come first-served, 473, 474, 478
first-order language model, 19
firstDoc, 49
Fisher, Ronald Aylmer, 414, 427
fixed-effect model, 440
fixed-point iteration, 519
Flash, 13
flat index, see schema-independent index
FLWOR expression, 574
follow matrix, 523
forward index, 131
fragmentation, 233, 242
internal, 108, 123, 124, 483

French, 94, 95
frequency index, 49
front coding, 219–221
function word, 89
fusion, 376, 377–381

galloping search, 42–44, 62, 65, 111, 246
gamma code, see γ code
garbage collection, 245–250

Index600

Gaussian distribution, 417
GC-list, 160–162
generalizability, 415
generalized concordance list, see GC-list
generative model, 286, 289
geometric mean, 44, 409
geometric mean average precision, see GMAP
geometric partitioning, 240–242
German, 95, 98
GMAP, 410, 422
Goldilocks, 75
Golomb code, 196–200, 209
Gosset, William Sealy, 423
GOV2 collection, 25
GPU, 504
graded relevance, see relevance
gradient descent, 348
granularity, 112
grouping, 124
gzip, 191

Hadoop, 504
Hamlet, 87, 90
Hamlet, 290, 508
harmonic mean, 68
weighted, 68

hash table, 107
Hathaway, Anne, 51
heap, 128, 141, 184
hidden Markov model, 306
hidden Web, 511
HITS algorithm, 532–534, 554
holdout validation, 383
holistic twig joins, 585
home page finding, 539
host crowding, 493
HTML, 9, 525, 567
HTML anchor, 277, 536
HTML body, 277
HTML header, 277
Huffman code, 181–185, 189, 200
canonical, 184–185, 199, 201
length-limited, 185, 201, 209

Hungarian, 94
hybrid index maintenance, 238–239
hyperlinks, 9
HyperText Markup Language, see HTML
hypothesis test, 427–429

IDF, see inverse document frequency
IE, see information extraction
Immediate Merge, 233–235, 239
impact ordering, 153, 494
implicit user feedback, 526, 535, 540, 555
in-degree, 509
incremental crawling, 547
independence assumption, 261
index block size, 116
index construction, 118–131
in-memory, 119–125
merge-based, 127–131, 229
sort-based, 125–127
two-pass, 123

index partition, 127, 228, 240, 471, 488
index pruning, 153–160, 495
index types, 46–51
index updates
distributed, 490
incremental, 231–242
non-incremental, 243–251

indexable Web, 511
indexing time, 105
Indri, 27–28
INEX, 565, 579
CAS task, 579
CO task, 579

infAP, 449–450
inference network model, 280
inferred average precision, see infAP
information extraction, 5
information gain, 366
information need, 5
informational query, 514
inner product, 55
Inplace, 236–237
insert-at-back heuristic, 121
inter-query parallelism, 488
interactive search and judging, 443
interpolative coding, 202–204, 213, 223
intra-query parallelism, 489, 494
intranet, 511
invalidation list, 243–244
inverse document frequency, 57, 264, 581
inverted index, 33
docid, 49
frequency, 49
positional, 49

Index 601

schema-dependent, 48
schema-independent, 33, 48, 49

Irish, 94
Italian, 94, 95

Japanese, 95, 98
JavaScript, 13
Jelinek-Mercer smoothing, 291, 295
jump vector (PageRank), 523

Kendall’s notation, 474
Kendall’s τ , 445
Kendall, David, 474
Kendall, Maurice, 445
kernel trick, 358
KL divergence, see Kullback-Leibler divergence
Korean, 95
Kullback-Leibler divergence, 156, 286, 296, 527

lavg, 48
ld, 48
lt, 34
lC, 34
LAM, 328
landmark-diff, 252
language model, 17–23
language modeling, 258, 286, 287–298
Laplace’s law of succession, 301
Laplace, Pierre-Simon, 298
last, 33
lastDoc, 49
latency, 8, 470
Latent Semantic Analysis, 78
lazy evaluation, 244
learning
incremental, 337
on-line, 337
semi-supervised, 336
supervised, 336
transductive, 336
unsupervised, 337

learning to rank, 312, 376, 394–400
legal search, 46
lemma, 87
lemmatization, 87
length normalization, see document length

normalization
LETOR, 399

lexeme, 87
LFU, 482
lightweight structure, 160–168
likelihood ratio, 333, 341
linear classifier, 349
link analysis, 517–534, 554
link function, 356
linked list, 122
unrolled, 123, 124, 130

list compression
batched, 196
global, 195
local, 195, 210

ListNet, 399
Little’s law, 475, 476
Little, John, 475
LLRUN, 200–201, 209, 212, 253
LLRUN-k, 202
log, 422
log-odds, 260
Logarithmic Merge, 240–242, 249
logical document structure, 11
logistic regression, 346, 383, 389
gradient descent, 348
multicategory, 392

logit, 260, 422
logit average, 328
long tail, 480, 513
lookup table, 208
Lovins stemmer, 97
LRU, 482
LSA, 78
Lucene, 27

m-cover, 303
M/M/1 queueing model, 475–477
Macbeth, 9, 33, 290, 508, 567, 577
machine learning, 312, 336
macro-average, 322
MAP, 71–74, 137, 409, 444, 447, 584
MapReduce, 498–503
Markov chain, 23, 529
aperiodic, 529
continuous, 475
irreducible, 529
periodic, 529

Markov model, 21–23, 362
maximal marginal relevance, 461, 493

Index602

maximum likelihood, 17, 289, 297
MaxScore, 143–145, 491
mean
arithmetic, 44, 68, 409
geometric, 44, 409
harmonic, 68
weighted harmonic, 68

mean average precision, see MAP
mean reciprocal rank, see MRR
merge operation
cascaded, 126, 129
multiway, 126, 128, 241

meta-analysis, 415, 439–441
metalanguage, 11
metasearch, 380
micro-average, 322
Microsoft Office, 13
Monty Python’s Flying Circus, 78
morphology, 86
move-to-front heuristic, 121
move-to-front pooling, 444
MRR, 322, 409, 539
multicategory classification, 388–394
multicategory ranking, 388–394

N , 48
Nt, 48
n-gram, 92–93, 95, 96
näıve Bayes, 334
named page finding, 538
navigational query, 513, 539
nDCG, 451–453, 538
near-duplicate Web page, 549
New Oxford English Dictionary, 160, 169
NEXI, 564, 572–573
next, 33
nextDoc, 49
NIST, 23
No Merge, 232, 233
nonparametric code, 192–195, 216
normal distribution, 417
Normalized Discounted Cumulative Gain, see

nDCG
novelty, 455–460, 537, 549
NTCIR, 98
nugget, 459
null hypothesis, 427

Obama, Barack, 441, 515
OCR, see optical character recognition, 97
odds, 333
odds ratio, 333
ODP, see Open Directory Project
offset, 48
Okapi BM25, see BM25
Okapi BM25F, see BM25F
omega code, see ω code
on-line indexing, see index updates
Open Directory Project, 526, 547
open source, 27
Open Source IR Systems, 27–28
optical character recognition, 4, 85
order-preserving, 260
orthography, 94
out-degree, 509
overfitting, 338, 349
overlap, 580

p-value, 426
Package-Merge, 185
PageRank, 105, 517–532, 554
focused, 526
personalized, 526
topic-oriented, 526

parametric code, 195–201, 216
passage retrieval, 302–305
Pat, 160, 169
path expressions, 571
PCA, 554
PDF, 11
Pearson, Karl, 427
per-term index, 112, 133
perceptron algorithm, 352–353, 357
Perron-Frobenius theorem, 530
phrase search, 35–39, 111
physical document structure, 11
Pike, Rob, 97
Pinyin, 96
pivoted document length normalization, 78
Poisson distribution, 267–268, 473, 548
Poisson, Siméon Denis, 268
Polish, 94
pooling (TREC), 73–75, 411, 441, 443–448
Popper, Karl Raimund, 427
population, 414
Porter stemmer, 87

Index 603

Porter, Martin, 87, 95
Portuguese, 94
position tree, see suffix tree
positional index, 49
postings list, 33, 110–114, 161
PostScript, 11
power, 406, 434–438
power method, 530
PPM, 190
pre-allocation
proportional, 123, 236

pre-allocation factor, 123
preamble, 184, 186, 212, 223
precision, 67–68, 318, 328, 407
at k documents, 69, 408
interpolated, 70

precision of measurement, 413
prefix query, 106, 110, 113, 133
prefix-free, 178
prev, 33
prevDoc, 49
PRF, see pseudo-relevance feedback
principal component analysis, 554
prior odds, 334
probabilistic model, 258
probability density function, 341, 417, 473
cumulative, 417

probability distribution, see distribution
Probability Ranking Principle, 8, 259, 287
proper binary tree, 179
prosecutor’s fallacy, 332
proximity ranking, see term proximity
PRP, see Probability Ranking Principle
pseudo-frequencies, 279
pseudo-relevance feedback, 131, 156, 275–277,

469

qt, 51, 271
qrels, 24, 411, 441, 443
query, 6
query abandonment, 540
query arrival rate, 473
query drift, 277
query execution plan, 244
query expansion, 273, 297
query log, 98, 472, 480, 513
query processing
document-at-a-time, 139–145

term-at-a-time, 145–151, 493
top-k, 142–145

query reformulation, 540
query term frequency, 271
query time, 105
question answering, 5, 302, 457
queue discipline, 474, 478
queueing theory, 472–477

random access, 35, 111, 116, 196, 216
random error, 413
range encoding, 223
rank effectiveness, 454
rank-biased precision, 461
rank-equivalent, 260
rank-preserving, 260
RankBoost, 399
RankEff, 454
RankSVM, 399
realloc, 123, 124
Rebuild, 229, 243
recall, 67–68, 88, 138, 318, 328, 407
recall-precision curve, 70
receptionist, 490
reciprocal rank, 409, 461
reciprocal rank fusion, 380
redundancy, 496–498
refresh policy, 548
region algebra, 160–168, 169, 567
relevance, 8, 24, 67, 261, 442
binary, 8, 407
graded, 8, 395, 451–453

relevance feedback, 273–275, 319, 326, 354
relevance ranking, 3
Remerge, 229, 233
replacement algorithm, 482
replication, 471, 497
dormant, 498
partial, 497

resampling, 424
research hypothesis, 427
response time, 8, 75, 470, 476
restart probability (PageRank), 518
retrieval model
Boolean, 63
language modeling, 258, 286
probabilistic, 258
vector space, 54

Index604

retrieval status value, see score
Rice code, see Golomb code
Robertson, Stephen, 258
Robertson/Spärck Jones weighting formula, 265
robots exclusion protocol, 544
robots.txt, 544
ROC curve, 329, 397
Rocchio classifier, 354
Rocchio feedback, 280
Romeo and Juliet, 50, 58
routing, 4, 310
RSV, see score
run (TREC), 73, 411
Russian, 94

S stemmer, 97
SALSA algorithm, 532–534, 554
Salton, Gerald, 54
sample, 420
scalar product, 55
scheduling algorithm, 478
schema-dependent index, 48
schema-independent index, 33, 48, 49
score, 7, 59
Scottish Gaelic, 94
seek latency, 493, 592
segmentation, 94, 95
selective dissemination of information, 4, 310
selector, 193, 208
self-indexing, 112
self-information, 299
semi-static coding, 177
semi-supervised learning, 336
sensitivity, 332
SEO, 553
sequential scan, 40
SERP, 510
service rate, see throughput
service time, 470
SGML, 11, 568
Shakespeare in Love, 303
Shakespeare, William, 9, 33, 51, 89, 160, 263,

278, 302, 536
Shannon’s theorem, see source coding th’m
Shannon, Claude, 180, 191
shape property, 141
shard, 500
shingle, 550

shortest job first, 478
signature file, 77, 131
significance, 425
significance level, 416
significance test, 430–438
significant inversion rate, 445
Simple-9, 207
SJF, see shortest job first
SMART, 78
smoothing, 20–21, 264, 290, 340, 450
Dirichlet, 291, 295
Jelinek-Mercer, 291, 295
linear, 291

snippet, 7, 131, 540
generation, 302

Snowball stemmer, 95, 97
source coding theorem, 180, 188
source population, 415
Spärck Jones, Karen, 258
spam, 507, 555
spam filtering, 325, 342
Spanish, 94, 95, 98
SPEC, 469
specificity, 8, 332, 584
spelling correction, 98
splits, 384
stacking, 376, 381–385
standard error, 386, 422, 429
Standard Generalized Markup Language, see

SGML
starvation, 479
static coding, 177
static page, 510
static rank, 54, 517–535
stationary distribution of a Markov chain, 530
steady state, 231, 248, 249
stemming, 84, 86–89, 95, 97
STL, 120
stochastic matrix, 22
stochastically independent, 268
stopping, 84
stopword, 85, 89–90
structural index, 585
structural metadata, 568
Student’s t-distribution, 423
suffix array, 77, 131
suffix tree, 77, 131, 133
summarization, 5

Index 605

supervised learning, 319, 336
support vector machine, see SVM
support vectors, 353
SVM, 353, 368
multicategory, 393
ranking, 396

SVMlight, 397–399
Swedish, 94, 95
symbol, 14, 176
synchronization point, 112, 195, 219
synonymy, 78
systematic error, 413

t-distribution, 423
table-driven decoding, 208–209
target population, 415
TDT, see topic detection and tracking
teleport (PageRank), 523
term, 6, 15
term descriptor, 217
term frequency, 48, 53, 57, 266
term partitioning, 493–495, 496
term proximity, 54, 60–63, 302–304
term selection value, 274
term vector, 51
test collection, 23–26, 411, 453
ClueWeb09, 25
construction, 73–75
GOV2, 25
INEX, 583
TREC45, 26

Text REtrieval Conference, see TREC
TF, see term frequency
TF-IDF, 57, 270, 293
The Merry Wives of Windsor, 20
The Winter’s Tale, 14
Thompson, Ken, 97
throughput, 8, 75, 470, 477
token, 13
toolbars, 526
topic, 5
topic detection and tracking, 5
traffic intensity, see utilization
transactional query, 514
transductive learning, 336
transfer function, 356, 422
transferability, 415
transition matrix, 22

TREC, 23–26, 67, 98, 272, 410–412
Filtering Track, 314
Million Query Track, 25
Public Spam Corpus, 325
Robust Track, 282
Spam Track, 371
Terabyte Track, 25, 213, 539

TREC45 collection, 26
trigram, 115
true negative, 332
true negative rate, 332
true positive, 332
true positive rate, 332
trust bias, 540
TrustRank, 555
TSV, see term selection value
Turkish, 95
twig, 585
two-Poisson model, 267
type 1 error, 331
type 2 error, 331

unary code, 192
Unicode, 13, 91, 95, 97
universal codeword set, 223
University of Massachusetts, 27
unsupervised learning, 337
URL, 525
user intent, 513
user satisfaction, 410, 453, 470
UTF-8, 13, 91, 97
utilization, 476, 477, 493

validity, 406, 413, 434–438
external, 415
internal, 415

vByte, 205–206, 213, 220, 223, 253
vector space model, 54–60, 78
vocabulary, 14

W3C, 564, 572
warmup period (cache), 480
Web
hidden, 511
indexable, 511

Web crawler, 507, 541–552, 556
crawler trap, 557
incremental, 547

Index606

Web graph, 508
Web query, 507, 513
Web search evaluation, 538
Web spam, 507, 555
Webster, John, 18
Wikipedia, 3, 27, 277
Wilcoxon T distribution, 433
Winnie the Pooh, 80
wisdom of crowds, 376
word-aligned coding, 206–207
World Wide Web Consortium, 564
Wumpus, 28

XCG, 584
XML, 11, 29, 160, 565–570
declaration, 565
DTD, 568
empty-element tag, 566
exhaustivity, 584
overlap, 580
ranked retrieval, 579–584
specificity, 584
well-formed document, 568
XCG, 584
XML Schema, 568

XML Query, 574
XML Schema, 568, 570
XPath, 564, 571–572
XQuery, 564, 574–576
XSL, 572

Zelazny, Roger, 39
zero-order model, 178, 286
Zipf’s law, 16, 107, 121, 237, 239, 480, 513
Zipf, George, 16
Ziv-Lempel compression, 191, 220

