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NoSQL
•  NoSQL  is  a  non-relational  database  management  systems,  different  from  traditional relational database management systems in some significant ways.
•  It is designed for distributed data stores where very large scale of data storing needs (for example Google or Facebook which collects terabits of data every day for their users).
• These type of data storing may not require fixed schema, avoid join operations and typically scale horizontally.
• It provides a mechanism for storage and retrieval of data other than tabular relations model used in relational databases.
• NoSQL database doesn't use tables for storing data. It is generally used to store big data and real-time web applications.
NoSQL Advantages :• High scalability• Distributed Computing• Lower cost• Schema flexibility, semi-structure data• No complicated Relationships
Disadvantages• No standardization• Limited query capabilities (so far)• Eventual consistent is not intuitive to program for
NoSQL CategoriesThere are four general types (most common categories) of NoSQL databases. Each of these categories has its own specific attributes and limitations. There is not a single solutions which is better than all the others, however there are some databases that are better to solve specific problems. To clarify the NoSQL databases, lets discuss the most common categories :• Key-value stores• Column-oriented• Graph• Document oriented
Aggregate Data Models

A data model is the model through which we perceive and manipulate our data. For people 
using a database, the data model describes how we interact with the data in the database. This is  
distinct from a storage model, which describes how the database stores and manipulates the data 
internally. In an ideal world, we should be ignorant of the storage model.

In conversation, the term “data model” often means the model of the specific data in an 
application. A developer might point to an entity-relationship diagram of their database and refer to 
that as their data model containing customers, orders, products, and the like. However, in this book 
we’ll mostly be using “data model” to refer to the model by which the database organizes data—
what might be more formally called a metamodel.

The dominant data model of the last couple of decades is the relational data model, which is 



best visualized as a set of tables, rather like a page of a spreadsheet. Each table has rows, with each 
row representing some entity of interest. We describe this entity through columns, each having a 
single value. A column may refer to another row in the same or different table, which constitutes a 
relationship between those entities. (We’re using informal but common terminology when we speak 
of tables and rows; the more formal terms would be relations and tuples.)

One of the most obvious shifts with NoSQL is a move away from the relational model. Each 
NoSQL solution has a different model that it uses, which we put into four categories widely used in 
the NoSQL ecosystem: key-value, document, column-family, and graph. Of these, the first three 
share a common characteristic of their data models which we will call aggregate orientation

Key-Value and Document Data Models
The key-value and document databases were strongly aggregate-oriented. What we meant by 

this was that we think of these databases as primarily constructed through aggregates. Both of these 
types of databases consist of lots of aggregates with each aggregate having a key or ID that’s used 
to get at the data.

The  two  models  differ  in  that  in  a  key-value  database,  the  aggregate  is  opaque  to  the 
database—just some big blob of mostly meaningless bits. In contrast, a document database is able 
to see a structure in the aggregate. The advantage of opacity is that we can store whatever we like in 
the aggregate.  The database  may impose  some general  size limit,  but  other  than that  we have 
complete  freedom.  A document  database  imposes  limits  on  what  we  can  place  in  it,  defining 
allowable structures and types. In return, however, we get more flexibility in access.

With a key-value store, we can only access an aggregate by lookup based on its key. With a 
document database, we can submit queries to the database based on the fields in the aggregate, we 
can retrieve part of the aggregate rather than the whole thing, and database can create indexes based 
on the contents of the aggregate.

Column-Family Stores
One of the early and influential NoSQL databases was Google’s BigTable. Its name conjured 

up a tabular structure which it realized with sparse columns and no schema. It is a two-level map. 
But, however think about the structure, it has been a model that influenced later databases such as 
HBase and Cassandra.

Hbase
HBase is a column-oriented database that’s an open-source implementation of Google’s Big Table 
storage architecture. It can manage structured and semi-structured data and has some built-in 
features such as scalability, versioning, compression and garbage collection.

Since its uses write-ahead logging and distributed configuration, it can provide fault-tolerance and 
quick recovery from individual server failures. HBase built on top of Hadoop / HDFS and the data 
stored in HBase can be manipulated using Hadoop’s MapReduce capabilities.

Let’s now take a look at how HBase (a column-oriented database) is different from some other data 
structures and concepts that we are familiar with Row-Oriented vs. Column-Oriented data stores. 
As shown below, in a row-oriented data store, a row is a unit of data that is read or written together. 
In a column-oriented data store, the data in a column is stored together and hence quickly retrieved.

Row-oriented data stores – 

• Data is stored and retrieved one row at a time and hence could read unnecessary data if only 
some of the data in a row is required.

• Easy to read and write records



• Well suited for OLTP systems
• Not efficient in performing operations applicable to the entire dataset and hence aggregation 

is an expensive operation
• Typical compression mechanisms provide less effective results than those on column-

oriented data stores

Column-oriented data stores – 

• Data is stored and retrieved in columns and hence can read only relevant data if only some 
data is required

• Read and Write are typically slower operations
• Well suited for OLAP systems
• Can efficiently perform operations applicable to the entire dataset and hence enables 

aggregation over many rows and columns
• Permits high compression rates due to few distinct values in columns

HBase –

• Is Schema-less
• Is a Column-oriented datastore
• Is designed to store Denormalized Data
• Contains wide and sparsely populated tables
• Supports Automatic Partitioning

HBase Architecture

The HBase Physical Architecture consists of servers in a Master-Slave relationship as shown 
below. Typically,  the HBase cluster  has one Master  node,  called HMaster  and multiple  Region 
Servers called HRegionServer. Each Region Server contains multiple Regions – HRegions.



Just like in a Relational Database, data in HBase is stored in Tables and these Tables are 
stored in Regions. When a Table becomes too big, the Table is partitioned into multiple Regions. 
These Regions are assigned to Region Servers across the cluster. Each Region Server hosts roughly 
the same number of Regions.

The HMaster in the HBase is responsible for 

•Performing Administration

•Managing and Monitoring the Cluster

•Assigning Regions to the Region Servers

•Controlling the Load Balancing and Failover

On the other hand, the HRegionServer perform the following work 

•Hosting and managing Regions

•Splitting the Regions automatically

•Handling the read/write requests

•Communicating with the Clients directly

Each Region Server contains a Write-Ahead Log (called HLog) and multiple Regions. Each 
Region in turn is made up of a MemStore and multiple StoreFiles (HFile). The data lives in these 
StoreFiles in the form of Column Families (explained below). The MemStore holds in-memory 
modifications to the Store (data).

The mapping of Regions to Region Server is kept in a system table called .META. When 
trying to read or write data from HBase, the clients read the required Region information from 
the .META table and directly communicate with the appropriate Region Server. Each Region is 
identified by the start key (inclusive) and the end key (exclusive)

HBase Data Model

The Data Model in HBase is designed to accommodate semi-structured data that could vary 
in field size, data type and columns. Additionally, the layout of the data model makes it easier to  
partition the data and distribute it across the cluster. The Data Model in HBase is made of different 
logical components such as Tables, Rows, Column Families, Columns, Cells and Versions.

Tables  –  The HBase  Tables  are  more  like  logical  collection  of  rows  stored  in  separate 
partitions called Regions. As shown above, every Region is then served by exactly one Region 
Server. The figure above shows a representation of a Table.

Rows – A row is one instance of data in a table and is identified by a rowkey. Rowkeys are 
unique in a Table and are always treated as a byte[].

Column Families – Data in a row are grouped together as Column Families. Each Column 
Family has one more Columns and these Columns in a family are stored together in a low level 
storage file known as HFile. Column Families form the basic unit of physical storage to which 
certain HBase features like compression are applied. Hence it’s important that proper care be taken 
when designing Column Families in table.

Columns – A Column Family is made of one or more columns. A Column is identified by a 
Column Qualifier that consists of the Column Family name concatenated with the Column name 
using a  colon – example: columnfamily:columnname. There can be multiple Columns within a 
Column Family and Rows within a table can have varied number of Columns.

Cell – A Cell stores data and is essentially a unique combination of rowkey, Column Family 
and the Column (Column Qualifier). The data stored in a Cell is called its value and the data type is  



always treated as byte[].

Version – The data stored in a cell is versioned and versions of data are identified by the 
timestamp. The number of versions of data retained in a column family is configurable and this 
value by default is 3.

Example

Example: HBase APIs for Java "Hello World" Application 

This example is a very simple "hello world" application, written in Java, that illustrates how 
to:

• Connect to a Cloud Bigtable instance.

• Create a new table.

• Write data to the table.

• Read the data back.

• Delete the table.

Running the sample

The sample uses the HBase APIs to communicate with Cloud Bigtable. The code for this 
sample is in the GitHub repository GoogleCloudPlatform/cloud-bigtable-examples, in the directory 
java/hello-world.

To run this sample program, follow the instructions for the sample on GitHub.

Using the HBase APIs

The  sample  application  connects  to  Cloud  Bigtable  and  demonstrates  some  simple 
operations.

Installing and importing the client library

This samples uses the Cloud Bigtable HBase client for Java. This sample uses Maven. See 
the instructions for how to include it as a Maven dependency.

The sample uses the following imports:

import com.google.cloud.bigtable.hbase.BigtableConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Admin;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
Connecting to Cloud Bigtable
 
Connect to the Cloud Bigtable using the BigtableConfiguration class.
// Create the Bigtable connection, use try-with-resources to make sure it gets closed



try (Connection connection = BigtableConfiguration.connect(projectId, instanceId)) {
  // The admin API lets us create, manage and delete tables
  Admin admin = connection.getAdmin();

Creating a table
// Create a table with a single column family
HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(TABLE_NAME));
descriptor.addFamily(new HColumnDescriptor(COLUMN_FAMILY_NAME));
print("Create table " + descriptor.getNameAsString());
admin.createTable(descriptor);
Reading a row by its key
Get a row directly using its key.
// Get the first greeting by row key
String rowKey = "greeting0";
Result getResult = table.get(new Get(Bytes.toBytes(rowKey)));
String  greeting  =  Bytes.toString(getResult.getValue(COLUMN_FAMILY_NAME, 
COLUMN_NAME));
System.out.println("Get a single greeting by row key");
System.out.printf("\t%s = %s\n", rowKey, greeting);
Scanning all table rows
Use the Scan class to get a range of rows.
// Now scan across all rows.
Scan scan = new Scan();
print("Scan for all greetings:");
ResultScanner scanner = table.getScanner(scan);
for (Result row : scanner) {
  byte[] valueBytes = row.getValue(COLUMN_FAMILY_NAME, COLUMN_NAME);
  System.out.println('\t' + Bytes.toString(valueBytes));
}
Deleting a table
// Clean up by disabling and then deleting the table
print("Delete the table");
admin.disableTable(table.getName());
admin.deleteTable(table.getName());





Cassandra 
The Apache Cassandra database is  the right  choice when you need scalability and high 

availability without compromising performance.  Linear scalability and proven fault-tolerance on 
commodity  hardware  or  cloud  infrastructure  make  it  the  perfect  platform  for  mission-critical 
data.Cassandra's support for replicating across multiple datacenters is best-in-class, providing lower 
latency for your users and the peace of mind of knowing that you can survive regional outages. 

Data Modeling

Conceptual Data Modeling
First, let’s create a simple domain model that is easy to understand in the relational world, 

and then see how we might map it from a relational to a distributed hashtable model in Cassandra.

Our conceptual domain includes hotels, guests that stay in the hotels, a collection of rooms 
for each hotel, the rates and availability of those rooms, and a record of reservations booked for 
guests. Hotels typically also maintain a collection of “points of interest,” which are parks, museums, 
shopping galleries, monuments, or other places near the hotel that guests might want to visit during 
their stay. Both hotels and points of interest need to maintain geolocation data so that they can be 
found on maps for mashups, and to calculate distances.

Logical Data Modeling
Now that after defining our queries, we’re ready to begin designing our Cassandra tables. 

First,  we’ll  create  a  logical  model  containing  a  table  for  each  query,  capturing  entities  and 
relationships from the conceptual model.

To name each table, identify the primary entity type for which we are querying and use that 
to start the entity name. If we are querying by attributes of other related entities, we append those to 
the table name, separated with _by_. For example, hotels_by_poi.

Next,  identify the primary key for the table,  adding partition key columns based on the 
required query attributes,  and clustering columns in  order  to  guarantee uniqueness and support 
desired sort ordering.

Complete each table by adding any additional attributes identified by the query. If any of 
these additional attributes are the same for every instance of the partition key, we mark the column 
as static.

Physical Data Modeling
Once we have  a  logical  data  model  defined,  creating  the physical  model  is  a  relatively 

simple process.

Each of our logical model tables, assigning types to each item. Use any data types, including 
the basic types, collections, and user-defined types. We may identify additional user-defined types 
that can be created to simplify our design.

After assigning our data types, we analyze our model by performing size calculations and 
testing out how the model works. We may make some adjustments based on our findings. 



Cassandra Clients
Cassandra allows you to secure the  client transport (CQL) as well as the cluster transport 

(storage transport).

SSL/TLS have some overhead. This is especially true in the JVM world which is not as 
performant for handling SSL/TLS unless you are using Netty/OpenSSl integration.

If possible, use no encryption for the cluster transport (storage transport), and deploy your 
Cassandra nodes in a private subnet, and limit access to this subnet to the client transport. Also if 
possible avoid using TLS/SSL on the client transport and do client operations from your app tier,  
which is located in a non-public subnet.

Industry  that  requires  the  use  of  encrypted  transports  like  the  U.S.  Health  Insurance 
Portability and Accountability Act (HIPAA), Germany’s Federal Data Protection Act, The Payment 
Card Industry Data Security Standard (PCI DSS), or U.S. Sarbanes-Oxley Act of 2002. Or you 
might work for a bank or other financial institution. Or it just might be a corporate policy to encrypt  
such transports.

Another  area  of  concern  is  for  compliance  is  authorization,  and encrypted  data  at  rest. 
Cassandra’s  has  essential  security  features:  authentication,  role-based  authorization,  transport 
encryption (JMX, client transport, cluster transport), as well as data at rest encryption (encrypting 
SSTables).

Encrypting the transports
Data that travels over the client transport across a network could be accessed by someone 

you don't want accessing said data with tools like wire shark. If data includes private information, 
SSN number, credentials (password, username), credit card numbers or account numbers, then we 
want  to  make that  data  unintelligible  (encrypted)  to  any and all  3rd parties.  This  is  especially 
important if we don't control the network. You can also use TLS to make sure the data has not been  
tampered with whilst traveling the network. The Secure Sockets Layer (SSL) and Transport Layer 
Security (TLS) protocols are designed to provide these features (SSL is  the old name for what 
became TLS but many people still refer to TLS as SSL).

Cassandra is written in Java. Java defines the JSSE framework which in turn uses the Java 
Cryptography Architecture (JCA). JSSE uses cryptographic service providers from JCA.

Cassandra Hadoop Integration
A Cassandra/Hadoop integration can provide remarkable performance for companies using 

big  data  to  drive  business  improvement.  As  the  leading  platform for  processing  big  data,  the 
Hadoop framework provides the distributed processing and massive scalability needed to process 
enormous amounts of data from widely disparate sources. As a leading NoSQL database, Cassandra 
delivers  linear  scalability  and  high  availability  without  compromising  performance.  Together, 
Cassandra and Hadoop provide the big data tools and processing power it takes to manage big data 
effectively.

But deploying and managing a Cassandra/Hadoop integration is no picnic. Odds are, for 
most organizations,  legacy architecture can't  adequately handle a Cassandra/Hadoop integration. 
Existing integration tools likely won't  cut it  when it  comes to connecting with all  the new and 
emerging data sources that big data requires. And since very few developers have the training to 
manage big data technologies, most enterprises probably don't have the skills they need right now to 
trust business-critical data to a Cassandra/Hadoop integration.

Fortunately,  Talend  provides  a  simple  solution,  delivering  easy-to-use  tools  that  let 
developers work with big data technologies and manage a Cassandra/Hadoop integration using the 
skills they already have.



Talend software for Cassandra/Hadoop integration.

Talend  Big  Data  is  a  powerful,  open  source  platform  that  that  makes  managing  a 
Cassandra/Hadoop integration easier and less costly. Running 100% natively on Hadoop, Talend 
lets  developers  use  existing  skills  to  quickly  load,  extract  and  transform  big  data  sets  with 
technologies like YARN (MapReduce 2.0), HBase, Hive, HCatalog, Oozie, Pig and Sqoop. With 
Talend, organizations can get a Cassandra/Hadoop integration up and running in hours instead of 
days or months.

Talend  delivers  easy-to-use  tools  for  Hadoop/Cassandra  integration.  With  Talend 
organizations can:

• Connect quickly to any data source using more than 800 pre-built connectors. Developers can 
visually map data sources to targets in an easy-to-use graphical environment. NoSQL connectivity 
provides  access  to  Cassandra  and  other  NoSQL and  Hadoop  database  technologies,  to  speed 
development without requiring specific knowledge of NoSQL.

• Perform complex transformations using the skills developers already have to map, compare, filter, 
evaluate and group massive data sets.

• Quickly scale as needed, relying on Talend's massive scalability.  Once a Hadoop connector is 
configured, the underlying code is automatically generated as new data clusters are added.

•  Ensure  data  quality  with  tools  that  provide  clearer  visibility  into  the  accuracy,  integrity  and 
completeness of data.

• Govern big data projects with ease using a simple and intuitive environment to schedule, monitor 
and deploy any job on a Cassandra/Hadoop integration.



Pig
Pig is an abstraction over MapReduce. It is a tool/platform which is used to analyze larger sets of 
data representing them as data flows. Pig is generally used with Hadoop; we can perform all the 
data manipulation operations in Hadoop using Apache Pig.

To write data analysis programs, Pig provides a high-level language known as Pig Latin. This 
language provides various operators using which programmers can develop their own functions for 
reading, writing, and processing data.

To analyze data using Apache Pig, programmers need to write scripts using Pig Latin language. All 
these scripts are internally converted to Map and Reduce tasks. Apache Pig has a component known 
as Pig Engine that accepts the Pig Latin scripts as input and converts those scripts into MapReduce 
jobs.

Grunt
After invoking the Grunt shell, you can run your Pig scripts in the shell. In addition to that, 

there are certain useful shell and utility commands provided by the Grunt shell. This chapter 
explains the shell and utility commands provided by the Grunt shell.

Invoking the Grunt Shell
Invoke the Grunt shell in a desired mode (local/MapReduce) using the −x option as shown below.

Local mode MapReduce mode
Command −

$ ./pig –x local

Command −

$ ./pig -x mapreduce

Either of these commands gives you the Grunt shell prompt as shown below.
grunt>

Exit the Grunt shell using ‘ctrl + d’.
After invoking the Grunt shell, you can execute a Pig script by directly entering the Pig Latin 
statements in it.
grunt> customers = LOAD 'customers.txt' USING PigStorage(',');

Pig Data Model
The data model of Pig Latin is fully nested and it allows complex non-atomic datatypes such as 
map and tuple. Given below is the diagrammatical representation of Pig Latin’s data model.



Atom
Any single value in Pig Latin, irrespective of their data, type is known as an Atom. It is stored as 
string and can be used as string and number. int, long, float, double, chararray, and bytearray are the 
atomic values of Pig. A piece of data or a simple atomic value is known as a field.

Example − ‘raja’ or ‘30’

Tuple
A record that is formed by an ordered set of fields is known as a tuple, the fields can be of any type. 
A tuple is similar to a row in a table of RDBMS.

Example − (Raja, 30)

Bag
A bag is an unordered set of tuples. In other words, a collection of tuples (non-unique) is known as 
a bag. Each tuple can have any number of fields (flexible schema). A bag is represented by ‘{}’. It 
is similar to a table in RDBMS, but unlike a table in RDBMS, it is not necessary that every tuple 
contain the same number of fields or that the fields in the same position (column) have the same 
type.

Example − {(Raja, 30), (Mohammad, 45)}

A bag can be a field in a relation; in that context, it is known as inner bag.

Example − {Raja, 30, {9848022338, raja@gmail.com,}}

Map
A map (or data map) is a set of key-value pairs. The key needs to be of type chararray and should be 
unique. The value might be of any type. It is represented by ‘[]’

Example − [name#Raja, age#30]

Relation
A relation is a bag of tuples. The relations in Pig Latin are unordered (there is no guarantee that 
tuples are processed in any particular order).

Developing and Testing Pig Latin Scripts
Development Tools

Pig provides several tools and diagnostic operators to help you develop your applications.
It is easier to develop Pig with standard editors and integrated development environments (IDEs).
Syntax Highlighting and Checking

Syntax highlighting often helps users write code correctly, at least syntactically, the first



time around. Syntax highlighting packages exist for several popular editors.
describe

describe shows you the schema of a relation in your script. This can be very helpful for 
developing scripts. It is especially useful as you are learning Pig Latin and understanding how 
various operators change the data. describe can be applied to any
relation in script.
explain

There are two ways to use explain. You can explain any alias in your Pig Latin script, which 
will show the execution plan Pig would use if you stored that relation. You can also take an existing 
Pig Latin script and apply explain to the whole script in Grunt.
illustrate

Often one of the best ways to debug your Pig Latin script is to run your data through it. But 
if you are using Pig, the odds are that you have a large data set. If it takes several hours to process 
your data, this makes for a very long debugging cycle. One obvious solution is to run your script on 
a sample of your data. For simple scripts this works fine. But sampling has another problem: it is 
not always trivial to pick a sample that will exercise your script properly. 
Testing Your Scripts with PigUnit

As part of your development, you will want to test your Pig Latin scripts. Even once they are 
finished, regular testing helps assure that changes to your UDFs, to your scripts, or in the versions 
of Pig and Hadoop that you are using do not break your code.

Second, you will need the pigunit.jar JAR file. This is not distributed as part of the standard 
Pig distribution, but you can build it from the source code included in your distribution. To do this, 
go to the directory your distribution is in and type ant jar pigunit-jar. Once this is finished, there 
should be two files in the directory: pig.jar and pigunit.jar. You will need to place these in your 
classpath when running PigUnit tests. 

Third, you need data to run through your script. You can use an existing input file, or can 
manufacture some input in your test and run that through your script.

Finally, you need to write a Java class that JUnit can be used to run the test.



Hive
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top 
of Hadoop to summarize Big Data, and makes querying and analyzing easy.
Apache Hive is a data ware house system for Hadoop that runs SQL like queries called HQL (Hive 
query language) which gets internally converted to map reduce jobs.
Initially Hive was developed by Facebook, later the Apache Software Foundation took it up and 
developed it further as an open source under the name Apache Hive.
It is used by different companies. For example, Amazon uses it in Amazon Elastic MapReduce.
The Hadoop ecosystem contains different sub-projects (tools) such as Sqoop, Pig, and Hive that are 
used to help Hadoop modules.
• Sqoop: It is used to import and export data to and from between HDFS and RDBMS.
• Pig: It is a procedural language platform used to develop a script for MapReduce operations.
• Hive: It is a platform used to develop SQL type scripts to do MapReduce operations.
Features of Hive
• It stores schema in a database and processed data into HDFS.
• It is designed for OLAP.
• It provides SQL type language for querying called HiveQL or HQL.
• It is familiar, fast, scalable, and extensible.
Architecture of Hive
The following component diagram depicts the architecture of Hive:

This component diagram contains different units. The following table describes each unit:
User Interface
Hive is a data warehouse infrastructure software that can create interaction between user and HDFS. 
The user interfaces that Hive supports are Hive Web UI, Hive command line, and Hive HD Insight  
(In Windows server).
Meta Store
Hive chooses respective database servers to store the schema or Metadata of tables,  databases, 
columns in a table, their data types, and HDFS mapping.
HiveQL Process Engine
HiveQL is  similar  to  SQL for  querying  on  schema  info  on  the  Metastore.  It  is  one  of  the  
replacements  of  traditional  approach  for  MapReduce  program.  Instead  of  writing  MapReduce 
program in Java, we can write a query for MapReduce job and process it.
Execution Engine



The  conjunction  part  of  HiveQL process  Engine  and  MapReduce  is  Hive  Execution  Engine. 
Execution engine processes the query and generates results as same as MapReduce results. It uses 
the flavor of MapReduce.
HDFS or HBASE
Hadoop distributed file system or HBASE are the data storage techniques to store data into file 
system.

Hive Data Types anf File Formats
Hive supports many of the  primitive data types you find in relational databases, as well as three 
collection data types that are rarely found in relational databases, for reasons we’ll discuss shortly.

A related concern is how these types are represented in text files, as well as alternatives to text 
storage that address various performance and other concerns. A unique feature of Hive, compared to 
most databases, is that it provides great flexibility in how data is encoded in files. Most databases 
take total control of the data, both how it is persisted to disk and its life cycle. By letting you control  
all these aspects, Hive makes it easier to manage and process data with a variety of tools.

Primitive Data Types
Hive supports several sizes of integer and floating-point types, a Boolean type, and character strings 
of arbitrary length. Hive v0.8.0 added types for timestamps and binary fields.

The list of primitive types supported by Hive are

Primitive data types

Type Size
TINYINT 1 byte signed integer.
SMALLINT 2 byte signed integer.
INT 4 byte signed integer.
BIGINT 8 byte signed integer.
BOOLEAN Boolean true or false.
FLOAT Single precision floating point.
DOUBLE Double precision floating point.

STRING Sequence of  characters.  The character  set  can be specified. 
Single or double quotes can be used.

TIMESTAMP Integer, float, or string.
BINARY Array of bytes.

Collection Data Types
Hive supports columns that are structs, maps, and arrays. 

Collection data types

Type Description

STRUCT 

Analogous to  a  C  struct or  an  “object.”  Fields  can be accessed 
using the “dot” notation. For example, if a column  name is of type 
STRUCT {first STRING; last STRING}, then the first name 
field can be referenced using name.first.

MAP 

A collection of key-value tuples, where the fields are accessed using 
array notation (e.g., ['key']). For example, if a column name is of type 
MAP with  key→value  pairs  'first'→'John' and 
'last'→'Doe',  then  the  last  name  can  be  referenced  using 



Type Description
name['last'].

ARRAY 

Ordered sequences  of  the  same type that  are  indexable using zero-
based integers. For example, if a column name is of type ARRAY of 
strings with the value ['John', 'Doe'], then the second element 
can be referenced using name[1].

File Formats

Text files delimited with commas or tabs, the so-called  comma-separated values (CSVs) or  tab-
separated values (TSVs), respectively. Hive can use those formats. However, there is a drawback to 
both formats; commas or tabs embedded in text and not intended as field or column delimiters. For 
this reason, Hive uses various control characters by default, which are less likely to appear in value 
strings. Hive uses the term field when overriding the default delimiter.

Hive’s default record and field delimiters

Delimiter Description
\n For text files, each line is a record, so the line feed character separates records.
^A 
(“control” A)

Separates all fields (columns). Written using the octal code  \001 when explicitly 
specified in CREATE TABLE statements.

^B 
Separate the elements in an  ARRAY or  STRUCT, or the key-value pairs in a  MAP. 
Written using the octal code  \002 when explicitly specified in  CREATE TABLE 
statements.

^C Separate the key from the corresponding value in MAP key-value pairs. Written using 
the octal code \003 when explicitly specified in CREATE TABLE statements

Example
CREATE TABLE employees (
  name         STRING,
  salary       FLOAT,
  subordinates ARRAY<STRING>,
  deductions   MAP<STRING, FLOAT>,
  address      STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE;
Hive has many ways to create, modify, and even damage the data that Hive will query. Therefore, 
Hive can only enforce queries on read. This is called schema on read.
If the schema doesn’t match the file contents, Hive does the best 
that it can to read the data.  If some fields are numbers and Hive 
encounters  nonnumeric  strings,  it  will  return  nulls  for  those 
fields. Above all else, Hive tries to recover from all errors.

HiveQL: Data Definition
HiveQL is  the  Hive  query language.  Like  all  SQL dialects  in  widespread use,  it  doesn’t  fully 
conform to any particular revision of the ANSI SQL standard. It is perhaps closest to MySQL’s 



dialect, but with significant differences. Hive offers no support for row-level inserts, updates, and 
deletes. Hive doesn’t support transactions. Hive adds extensions to provide better performance in 
the context of Hadoop and to integrate with custom extensions and even external programs.

Databases in Hive
The Hive concept of a database is essentially just a catalog or namespace of tables. However, they 
are very useful for larger clusters with multiple teams and users, as a way of avoiding table name 
collisions. It’s also common to use databases to organize production tables into logical groups.
If you don’t specify a database, the default database is used.
The  simplest  syntax  for  creating  a  database  is  shown  in  the 
following example:
hive> CREATE DATABASE databasename;
drop a database:
hive> DROP DATABASE IF EXISTS databasename;
The IF EXISTS is optional 

Alter Database
You can set key-value pairs in the DBPROPERTIES associated with a database using the ALTER 
DATABASE command. No other metadata about the database can be changed, including its name 
and directory location:
hive> ALTER DATABASE financials SET DBPROPERTIES ('edited-by' = 'Joe Dba');
There is no way to delete or “unset” a DBPROPERTY.

Creating Tables
The  CREATE TABLE statement follows SQL conventions, but Hive’s version offers significant 
extensions  to  support  a wide range of flexibility where the data  files  for  tables are  stored,  the 
formats used, etc. 

Example
CREATE TABLE IF NOT EXISTS mydb.employees (
  name         STRING COMMENT 'Employee name',
  salary       FLOAT  COMMENT 'Employee salary',
  subordinates ARRAY<STRING> COMMENT 'Names of subordinates',
  deductions   MAP<STRING, FLOAT>
               COMMENT 'Keys are deductions names, values are percentages',
  address      STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>
               COMMENT 'Home address')
COMMENT 'Description of the table'
TBLPROPERTIES ('creator'='me', 'created_at'='2012-01-02 10:00:00', ...)
LOCATION '/user/hive/warehouse/mydb.db/employees';
If not currently working in the target database, databse prefix can be used( mydb) .

If the option IF NOT EXISTS is added, Hive will silently ignore the statement if the table 
already exists. This is useful in scripts that should create a table the first time they run.
If the schema specified differs from the schema in the table that 
already exists, Hive won’t warn. 



Alter Table
Most table properties can be altered with ALTER TABLE statements, which change metadata about 
the table but not the data itself. These statements can be used to fix mistakes in schema.

ALTER TABLE modifies table metadata only. The data for the table is untouched. It’s up to you to 
ensure that any modifications are consistent with the actual data.

Renaming a Table
Use this statement to rename the table log_messages to logmsgs:
ALTER TABLE log_messages RENAME TO logmsgs;

Adding, Modifying, and Dropping a Table Partition
ALTER TABLE table ADD PARTITION … is used to add a new partition to a table (usually 
an external table). 
ALTER TABLE log_messages ADD IF NOT EXISTS
PARTITION (year = 2011, month = 1, day = 1) LOCATION '/logs/2011/01/01'
PARTITION (year = 2011, month = 1, day = 2) LOCATION '/logs/2011/01/02'
PARTITION (year = 2011, month = 1, day = 3) LOCATION '/logs/2011/01/03'
...;
Multiple partitions can be added in the same query when using Hive v0.8.0 and later. As always, IF 
NOT EXISTS is optional and has the usual meaning.

Similarly, you can change a partition location, effectively moving it:
ALTER TABLE log_messages PARTITION(year = 2011, month = 12, day = 2)
SET LOCATION 's3n://ourbucket/logs/2011/01/02';
This command does not move the data from the old location, nor does it delete the old data.

Finally, drop a partition:
ALTER TABLE log_messages DROP IF EXISTS PARTITION(year = 2011, month = 12, day = 
2);
The  IF EXISTS clause is optional, as usual. For managed tables, the data for the partition is 
deleted, along with the metadata, even if the partition was created using ALTER TABLE … ADD 
PARTITION. For external tables, the data is not deleted.

Changing Columns
Rename a column, change its position, type, or comment:
ALTER TABLE log_messages
CHANGE COLUMN hms hours_minutes_seconds INT
COMMENT 'The hours, minutes, and seconds part of the timestamp'
AFTER severity;
Specify the old name, a new name, and the type, even if the name or type is not changing. The  
keyword  COLUMN is optional as is the  COMMENT clause. If not moving the column, the  AFTER 
other_column clause is not necessary.  If want to move the column to the first position, use 
FIRST instead of AFTER other_column.

As always, this command changes metadata only. If you are moving columns, the data must already 
match the new schema or you must change it to match by some other means.



Adding Columns
Add new columns to the end of the existing columns, before any partition columns.
ALTER TABLE log_messages ADD COLUMNS (
 app_name   STRING COMMENT 'Application name',
 session_id LONG   COMMENT 'The current session id');
The COMMENT clauses are optional, as usual. If any of the new columns are in the wrong position, 
use an  ALTER COLUMN table CHANGE COLUMN statement for each one to move it to the 
correct position.

Deleting or Replacing Columns
The following example removes all the existing columns and replaces them with the new columns 
specified:
ALTER TABLE log_messages REPLACE COLUMNS (
 hours_mins_secs INT    COMMENT 'hour, minute, seconds from timestamp',
 severity        STRING COMMENT 'The message severity'
 message         STRING COMMENT 'The rest of the message');
This  statement  effectively  renames  the  original  hms column  and  removes  the  server and 
process_id columns from the original schema definition. As for all ALTER statements, only the 
table metadata is changed.

The REPLACE statement can only be used with tables.

Alter Table Properties
Add additional table properties or modify existing properties, but not remove them:
ALTER TABLE log_messages SET TBLPROPERTIES (
 'notes' = 'The process id is no longer captured; this column is always NULL');

Alter Storage Properties
There are several ALTER TABLE statements for modifying format and SerDe properties.

The following statement changes the storage format for a partition to be SEQUENCEFILE.
ALTER TABLE log_messages
PARTITION(year = 2012, month = 1, day = 1)
SET FILEFORMAT SEQUENCEFILE;
The PARTITION clause is required if the table is partitioned.

Alter the storage properties
ALTER TABLE stocks
CLUSTERED BY (exchange, symbol)
SORTED BY (symbol)
INTO 48 BUCKETS;
The SORTED BY clause is optional, but the CLUSTER BY and INTO … BUCKETS are required. 

Dynamic Partition Inserts
If  lot of partitions are there to create, you have to write a lot of SQL! Fortunately, Hive also 

supports  a  dynamic partition feature,  where it  can infer the partitions to create based on query 
parameters. By comparison, up until now we have considered only static partitions.
Consider this change to the previous example:
INSERT OVERWRITE TABLE employees
PARTITION (country, state)



SELECT ..., se.cnty, se.st
FROM staged_employees se;
Hive determines the values of the partition keys, country and state, from the last two columns 
in  the  SELECT clause.  This  is  why  we  used  different  names  in  staged_employees,  to 
emphasize that the relationship between the source column values and the output partition values is 
by position only and not by matching on names.
Suppose that  staged_employees has  data  for  a  total  of  100 country and state  pairs.  After 
running this query, employees will have 100 partitions!
You can also mix  dynamic and  static partitions. This variation of the previous query specifies a 
static value for the country (US) and a dynamic value for the state:
INSERT OVERWRITE TABLE employees
PARTITION (country = 'US', state)
SELECT ..., se.cnty, se.st
FROM staged_employees se
WHERE se.cnty = 'US';
The static partition keys must come before the dynamic partition keys.
Dynamic partitioning is not enabled by default. When it is enabled, it works in “strict” mode by 
default,  where it  expects at  least  some columns to be static.  This helps protect against  a badly 
designed query that generates a gigantic number of partitions.Dynamic partitions properties

Name Default Description
hive.exec.dynamic.partition false Set to true to enable dynamic partitioning.
hive.exec.dynamic.partition.
mode 

stric
t 

Set to  nonstrict to enable all partitions to 
be determined dynamically.

hive.exec.max.dynamic.partit
ions.pernode 100 

The maximum number of  dynamic partitions 
that can be created by each mapper or reducer. 
Raises a fatal error if one mapper or reducer 
attempts to create more than the threshold.

hive.exec.max.dynamic.partit
ions +1000

The  total  number  of  dynamic  partitions  that 
can be created by one statement with dynamic 
partitioning. Raises a fatal error if the limit is 
exceeded.

hive.exec.max.created.files 
10000
0 

The maximum total number of files that can be 
created globally. A Hadoop counter is used to 
track the number of files created. Raises a fatal 
error if the limit is exceeded.

So, for example, using dynamic partitioning for all partitions might actually look this, where we set 
the desired properties just before use:
hive> set hive.exec.dynamic.partition=true;
hive> set hive.exec.dynamic.partition.mode=nonstrict;
hive> set hive.exec.max.dynamic.partitions.pernode=1000;

hive> INSERT OVERWRITE TABLE employees
    > PARTITION (country, state)
    > SELECT ..., se.cty, se.st
    > FROM staged_employees se;
Creating Tables and Loading Them in One Query
A table can be created and insert query results into it in one statement:
CREATE TABLE ca_employees



AS SELECT name, salary, address
FROM employees
WHERE se.state = 'CA';

This table contains just the name, salary, and address columns from the employee 
table records for employees in California. The schema for the new table is taken from the SELECT 
clause.

A common use for this feature is to extract a convenient subset of data from a larger, more 
unwieldy table.

This feature can’t be used with external tables. Recall that “populating” a partition for an 
external table is done with an ALTER TABLE statement, where we aren’t “loading” data, per se, 
but pointing metadata to a location where the data can be found.
Exporting Data

 If the data files are already formatted the way you want, then it’s simple enough to copy the 
directories or files:
hadoop fs -cp source_path target_path
Otherwise, you can use INSERT … DIRECTORY …, as in this example:
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/ca_employees'
SELECT name, salary, address
FROM employees
WHERE se.state = 'CA';

OVERWRITE and  LOCAL have  the  same  interpretations  as  before  and  paths  are  interpreted 
following the usual rules. 
Just like inserting data to tables, multiple inserts to directories can be specified:
FROM staged_employees se
INSERT OVERWRITE DIRECTORY '/tmp/or_employees'
  SELECT * WHERE se.cty = 'US' and se.st = 'OR'
INSERT OVERWRITE DIRECTORY '/tmp/ca_employees'
  SELECT * WHERE se.cty = 'US' and se.st = 'CA'
INSERT OVERWRITE DIRECTORY '/tmp/il_employees'
  SELECT * WHERE se.cty = 'US' and se.st = 'IL';



Hive Queries
SELECT … FROM Clauses
SELECT is the projection operator in SQL. The FROM clause identifies from which table, view, or 
nested query we select records.
CREATE TABLE employees (
  name         STRING,
  salary       FLOAT,
  subordinates ARRAY<STRING>,
  deductions   MAP<STRING, FLOAT>,
  address      STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>
)
PARTITIONED BY (country STRING, state STRING);
Here are queries of this table and the output they produce:
hive> SELECT name, salary FROM employees;
John Doe    100000.0
Mary Smith   80000.0
Todd Jones   70000.0
Bill King    60000.0
The following two queries are identical. The second version uses a table alias e.
hive> SELECT   name,   salary FROM employees;
hive> SELECT e.name, e.salary FROM employees e;
The  deductions is  a  MAP, where the JSON representation for maps is used,  namely a comma-
separated list of key:value pairs, surrounded with {...}:
hive> SELECT name, deductions FROM employees;
John Doe    {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}
Mary Smith  {"Federal Taxes":0.2,"State Taxes":0.05,"Insurance":0.1}
Todd Jones  {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}
Bill King   {"Federal Taxes":0.15,"State Taxes":0.03,"Insurance":0.1}
Finally, the address is a STRUCT, which is also written using the JSON map format:
hive> SELECT name, address FROM employees;
John Doe    {"street":"1 Michigan Ave.","city":"Chicago","state":"IL","zip":60600}
Mary Smith  {"street":"100 Ontario St.","city":"Chicago","state":"IL","zip":60601}
Todd Jones  {"street":"200 Chicago Ave.","city":"Oak Park","state":"IL","zip":60700}
Bill King   {"street":"300 Obscure Dr.","city":"Obscuria","state":"IL","zip":60100}
Specify Columns with Regular Expressions
Use regular expressions to select the columns. 
The following query selects the  symbol column and all columns from  stocks whose names start 
with the prefix price
hive> SELECT symbol, `price.*` FROM stocks;
AAPL    195.69  197.88  194.0   194.12  194.12
AAPL    192.63  196.0   190.85  195.46  195.46
AAPL    196.73  198.37  191.57  192.05  192.05
AAPL    195.17  200.2   194.42  199.23  199.23
AAPL    195.91  196.32  193.38  195.86  195.86
...
Computing with Column Values
Manipulate column values using function calls and arithmetic expressions.
hive> SELECT upper(name), salary, deductions["Federal Taxes"],
    > round(salary * (1 - deductions["Federal Taxes"])) FROM employees;
JOHN DOE    100000.0  0.2   80000
MARY SMITH   80000.0  0.2   64000
TODD JONES   70000.0  0.15  59500



BILL KING    60000.0  0.15  51000
Using Functions
Our  tax-deduction  example  also uses  a  built-in  mathematical  function,  round(),  for  finding the 
nearest integer for a DOUBLE value.
Mathematical functions
Return 
type Signature Description

BIGINT round(d) Return the BIGINT for the rounded value of DOUBLE d.

DOUBLE round(d, N) Return the DOUBLE for the value of d, a DOUBLE, rounded to 
N decimal places.

BIGINT floor(d) Return the largest BIGINT that is <= d, a DOUBLE.

BIGINT ceil(d), 
ceiling(DOUBLE d) Return the smallest BIGINT that is >= d.

DOUBLE rand(), rand(seed) Return a pseudorandom  DOUBLE that changes for each row. 
Passing in an integer seed makes the return value deterministic.

DOUBLE exp(d) Return e to the d, a DOUBLE.
DOUBLE ln(d) Return the natural logarithm of d, a DOUBLE.
DOUBLE log10(d) Return the base-10 logarithm of d, a DOUBLE.
DOUBLE log2(d) Return the base-2 logarithm of d, a DOUBLE.

DOUBLE log(base, d) Return  the  base-base logarithm  of  d,  where  base and  d are 
DOUBLEs.

DOUBLE pow(d, p), power(d, p) Return d raised to the power p, where d and p are DOUBLEs.
DOUBLE sqrt(d) Return the square root of d, a DOUBLE.

STRING bin(i) Return  the  STRING representing  the  binary  value  of  i,  a 
BIGINT.

STRING hex(i) Return the STRING representing the hexadecimal value of i, a 
BIGINT.

STRING hex(str) 
Return the  STRING representing the hexadecimal value of  s, 
where each two characters in the STRING s is converted to its 
hexadecimal representation.

STRING unhex(i) The inverse of hex(str).

STRING conv(i,  from_base, 
to_base) 

Return the  STRING in base  to_base, an  INT, representing the 
value of i, a BIGINT, in base from_base, an INT.

STRING conv(str,  from_base, 
to_base) 

Return the  STRING in base  to_base, an  INT, representing the 
value of str, a STRING, in base from_base, an INT.

DOUBLE abs(d) Return  the  DOUBLE that  is  the  absolute  value  of  d,  a 
DOUBLE.

INT pmod(i1, i2) Return the positive module INT for two INTs, i1 mod i2.

DOUBLE pmod(d1, d2) Return the positive module  DOUBLE for two  DOUBLEs,  d1 
mod d2.

DOUBLE sin(d) Return  the  DOUBLE that  is  the  sin of  d,  a  DOUBLE,  in 
radians.

DOUBLE asin(d) Return the  DOUBLE that is  the  arcsin of  d,  a  DOUBLE, in 
radians.

DOUBLE cos(d) Return the  DOUBLE that is  the  cosine of  d,  a  DOUBLE, in 
radians.

DOUBLE acos(d) Return the DOUBLE that is the arccosine of d, a DOUBLE, in 



Return 
type Signature Description

radians.

DOUBLE tan(d) Return the  DOUBLE that is the  tangent of  d, a  DOUBLE, in 
radians.

DOUBLE atan(d) Return the DOUBLE that is the arctangent of d, a DOUBLE, in 
radians.

DOUBLE degrees(d) Return  the  DOUBLE that  is  the  value  of  d,  a  DOUBLE, 
converted from radians to degrees.

DOUBLE radians(d) Return  the  DOUBLE that  is  the  value  of  d,  a  DOUBLE, 
converted from degrees to radians.

INT positive(i) Return the INT value of i (i.e., it’s effectively the expression \
+i).

DOUBLE positive(d) Return  the  DOUBLE value  of  d (i.e.,  it’s  effectively  the 
expression \+d).

INT negative(i) Return the negative of the  INT value of  i (i.e., it’s effectively 
the expression -i).

DOUBLE negative(d) Return the negative of the DOUBLE value of d; effectively, the 
expression -d.

FLOAT sign(d) 
Return  the  FLOAT value  1.0 if  d,  a  DOUBLE,  is  positive; 
return the  FLOAT value  -1.0 if  d is negative; otherwise return 
0.0.

DOUBLE e() Return  the  DOUBLE that  is  the  value  of  the  constant  e, 
2.718281828459045.

DOUBLE pi() Return  the  DOUBLE that  is  the  value  of  the  constant  pi, 
3.141592653589793.

Note the functions  floor,  round, and  ceil (“ceiling”) for converting  DOUBLE to  BIGINT, 
which is floating-point numbers to integer numbers. These functions are the preferred technique, 
rather than using the cast operator we mentioned above.
Also, there are functions for converting integers to strings in different bases (e.g., hexadecimal).
Aggregate functions

A special kind of function is the aggregate function that returns a single value resulting from 
some computation over many rows. 
More precisely, this is the User Defined Aggregate Function, as we’ll see in Aggregate Functions. 
Perhaps the two best known examples are count, which counts the number of rows (or values for a 
specific column), and avg, which returns the average value of the specified column values.
Here is a query that counts the number of our example employees and averages their salaries:
hive> SELECT count(*), avg(salary) FROM employees;
4  77500.0
Aggregate functions
Return type Signature Description

BIGINT count(*) Return the total number of retrieved rows, including 
rows containing NULL values.

BIGINT count(expr) Return the number of rows for which the supplied 
expression is not NULL.

BIGINT count(DISTINCT  expr[, 
expr_.]) 

Return the number of rows for which the supplied 
expression(s) are unique and not NULL.

DOUBLE sum(col) Return the sum of the values.

https://www.safaribooksonline.com/library/view/programming-hive/9781449326944/ch13.html#Aggregate-Functions2


Return type Signature Description
DOUBLE sum(DISTINCT col) Return the sum of the distinct values.
DOUBLE avg(col) Return the average of the values.
DOUBLE avg(DISTINCT col) Return the average of the distinct values.
DOUBLE min(col) Return the minimum value of the values.
DOUBLE max(col) Return the maximum value of the values.
DOUBLE var_samp(col) Return the sample variance of a set of numbers.

Improve the performance of aggregation by setting the following property to true, hive.map.aggr, as 
shown here:
hive> SET hive.map.aggr=true;

hive> SELECT count(*), avg(salary) FROM employees;
This setting will attempt to do “top-level” aggregation in the map phase, as in this example. (An 
aggregation that isn’t top-level would be aggregation after performing a  GROUP BY.) However, 
this setting will require more memory.

Table generating functions
Return 
type Signature Description

N rows explode(array) Return 0 to  many rows,  one row for each element  from the 
input array.

N rows explode(map) 
(v0.8.0 and later) Return 0 to many rows, one row for each map 
key-value pair, with a field for each map key and a field for the 
map value.

tuple json_tuple(jsonStr,  p1, 
p2, …, pn) 

Like get_json_object, but it takes multiple names and returns a 
tuple.  All  the  input  parameters  and output  column types  are 
STRING.

tuple 

parse_url_tuple(url, 
partname1,  partname2, 
…, partnameN) where N 
>= 1

Extract N parts from a URL. It takes a URL and the partnames 
to extract, returning a tuple. All the input parameters and output 
column  types  are  STRING.  The  valid  partnames are  case-
sensitive and should only contain a minimum of white space: 
HOST,  PATH,  QUERY,  REF,  PROTOCOL,  AUTHORITY, 
FILE, USERINFO, QUERY:<KEY_NAME>.

N rows stack(n, col1, …, colM) Convert M columns into N rows of size M/N each.
Here is an example that uses parse_url_tuple where we assume a url_table exists that 
Other built-in functions

Return type Signature Description
BOOLEAN test in(val1, val2, …) Return true if test equals one of the values in the list.
INT length(s) Return the length of the string.
STRING reverse(s) Return a reverse copy of the string.

STRING concat(s1, s2, …) 

Return the string resulting from s1 joined with  s2, etc. 
For example,  concat('ab', 'cd') results in 'abcd'. You can 
pass  an  arbitrary number  of  string  arguments  and the 
result will contain all of them joined together.

STRING concat_ws(separator,  s1, 
s2, …) Like concat, but using the specified separator.



Return type Signature Description

STRING substr(s, start_index) 
Return the substring of  s starting from the  start_index 
position, where 1 is the index of the first character, until 
the end of s. For example, substr('abcd', 3) results in 'cd'.

STRING substr(s,  int  start,  int 
length) 

Return the substring of s starting from the start position 
with  the  given  length,  e.g.,  substr('abcdefgh',  3,  2) 
results in 'cd'.

STRING upper(s) 
Return  the  string  that  results  from  converting  all 
characters of  s to upper case, e.g.,  upper('hIvE') results 
in 'HIVE'.

STRING ucase(s) A synonym for upper().

STRING lower(s) 
Return  the  string  that  results  from  converting  all 
characters of  s to lower case, e.g.,  lower('hIvE') results 
in 'hive'.

STRING lcase(s) A synonym for lower().

STRING trim(s) Return the string that results from removing whitespace 
from both ends of s, e.g., trim(' hive ') results in 'hive'.

STRING ltrim(s) 
Return the string resulting from trimming spaces from 
the  beginning (lefthand side)  of  s,  e.g.,  ltrim('  hive  ') 
results in 'hive '.

STRING rtrim(s) 
Return the string resulting from trimming spaces from 
the end (righthand side) of s, e.g.,  rtrim(' hive ') results 
in ' hive'.

LIMIT Clause
The results of a typical query can return a large number of rows. The LIMIT clause puts an upper 
limit on the number of rows returned:
hive> SELECT upper(name), salary, deductions["Federal Taxes"],
    > round(salary * (1 - deductions["Federal Taxes"])) FROM employees
    > LIMIT 2;
JOHN DOE    100000.0  0.2   80000
MARY SMITH   80000.0  0.2   64000
Column Aliases

It’s sometimes useful to give those anonymous columns a name, called a column alias. Here 
is the previous query with column aliases for the third and fourth columns returned by the query, 
fed_taxes and salary_minus_fed_taxes, respectively:
hive> SELECT upper(name), salary, deductions["Federal Taxes"] as fed_taxes,
    > round(salary * (1 - deductions["Federal Taxes"])) as salary_minus_fed_taxes
    > FROM employees LIMIT 2;
JOHN DOE    100000.0  0.2   80000
MARY SMITH   80000.0  0.2   64000
Nested SELECT Statements

The column alias feature is especially useful in nested select statements. 
hive> FROM (
    >   SELECT upper(name), salary, deductions["Federal Taxes"] as fed_taxes,
    >   round(salary * (1 - deductions["Federal Taxes"])) as salary_minus_fed_taxes
    >   FROM employees
    > ) e
    > SELECT e.name, e.salary_minus_fed_taxes
    > WHERE e.salary_minus_fed_taxes > 70000;
JOHN DOE    100000.0  0.2   80000



The previous result set is aliased as e, from which we perform a second query to select the name 
and the  salary_minus_fed_taxes,  where the latter  is  greater  than 70,000.  (We’ll  cover  WHERE 
clauses in WHERE Clauses below.)
CASE … WHEN … THEN Statements

The  CASE … WHEN … THEN clauses are like  if statements for individual columns in 
query results. For example:
hive> SELECT name, salary,
    >   CASE
    >     WHEN salary <  50000.0 THEN 'low'
    >     WHEN salary >= 50000.0 AND salary <  70000.0 THEN 'middle'
    >     WHEN salary >= 70000.0 AND salary < 100000.0 THEN 'high'
    >     ELSE 'very high'
    >   END AS bracket FROM employees;
John Doe         100000.0   very high
Mary Smith        80000.0   high
Todd Jones        70000.0   high
Bill King         60000.0   middle
Boss Man         200000.0   very high
Fred Finance     150000.0   very high
Stacy Accountant  60000.0   middle
...
WHERE Clauses

While  SELECT clauses  select  columns,  WHERE clauses  are  filters;  they  select  which 
records to return. Like SELECT clauses, we have already used many simple examples of WHERE 
clauses  before  defining  the  clause,  on  the  assumption  you  have  seen  them before.  Now we’ll 
explore them in a bit more detail.
WHERE clauses  use  predicate  expressions,  applying  predicate  operators. Several  predicate 
expressions can be joined with AND and OR clauses. When the predicate expressions evaluate to 
true, the corresponding rows are retained in the output.
Example
SELECT * FROM employees
WHERE country = 'US' AND state = 'CA';
GROUP BY Clauses

The GROUP BY statement is often used in conjunction with aggregate functions to group 
the result set by one or more columns and then perform an aggregation over each group.

hive> SELECT year(ymd), avg(price_close) FROM stocks
    > WHERE exchange = 'NASDAQ' AND symbol = 'AAPL'
    > GROUP BY year(ymd);
1984    25.578625440597534
1985    20.193676221040867
1986    32.46102808021274
1987    53.88968399108163
1988    41.540079275138766
1989    41.65976212516664
1990    37.56268799823263
1991    52.49553383386182
1992    54.80338610251119
1993    41.02671956450572
1994    34.0813495847914
...
HAVING Clauses

https://www.safaribooksonline.com/library/view/programming-hive/9781449326944/ch06.html#Where-Clauses


The HAVING clause lets you constrain the groups produced by GROUP BY in a way that 
could be expressed with a subquery, using a syntax that’s easier to express. 
hive> SELECT year(ymd), avg(price_close) FROM stocks
    > WHERE exchange = 'NASDAQ' AND symbol = 'AAPL'
    > GROUP BY year(ymd)
        > HAVING avg(price_close) > 50.0;
1987    53.88968399108163
1991    52.49553383386182
1992    54.80338610251119
1999    57.77071460844979
2000    71.74892876261757
2005    52.401745992993554
...
Without the HAVING clause, this query would require a nested SELECT statement:
hive> SELECT s2.year, s2.avg FROM
    > (SELECT year(ymd) AS year, avg(price_close) AS avg FROM stocks
    > WHERE exchange = 'NASDAQ' AND symbol = 'AAPL'
    > GROUP BY year(ymd)) s2
    > WHERE s2.avg > 50.0;
1987    53.88968399108163
...
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