
UNIT IV 
MINING DATA STREAMS 

4.1. STREAMS: CONCEPTS 
Introduction to streams concepts 

Data streams are data arrives in a stream or streams, and if it is not processed immediately or
stored, then it is lost forever. It is assume that the data arrives so rapidly that it is not feasible to
store  it  in  active  storage  (conventional  database),  and then  interact  with  it  at  the  time  of  our
choosing. 

Data Stream Model 
The  stream  processor  as  a  kind  of  data-management  system  which  has  the  high-level

organization as shown in the figure. Any number of streams can enter the system. Each stream can
provide elements at its own schedule; they need not have the same data rates or data types, and the
time between elements of one stream need not be uniform. The rate of arrival of stream elements is
not under the control of the system. Later, the system controls the rate at which data is read from the
disk, and therefore never data getting lost as it attempts to execute queries. 

Streams may be archived in a large archival store, but we assume it is not possible to answer
queries from the archival store. It could be examined only under special circumstances using time-
consuming retrieval processes. There is also a working store, into which summaries or parts of
streams may be placed, and which can be used for answering queries. The working store might be
disk, main memory, depending on how fast we need to process queries. But either way, it is of
sufficiently limited capacity that it cannot store all the data from all the streams. 

Sources of Data Streams 
Let us consider some of the ways in which stream data arises naturally. 



Sensor Data 
Sensor data like temperature,  wind speed, climate,  ocean behaviour  or GPS information

arriving every day, every hour, it need to think about what can be kept in working storage and what
can only be archived. Such data can be collected by deploying thousands and thousands of sensors,
each sending back a stream. 

Image Data 
Satellites often send down to earth streams consisting of many terabytes of images per day.

Surveillance cameras produce images with lower resolution than satellites, but there can be many of
them, each producing a stream of images at intervals like one second. 

Internet and Web Traffic 
Switching node in the Internet receives streams of IP packets from many inputs and routes

them to its outputs. Normally, the role of the switch is to transmit data and not to retain it or query
it. But there is a tendency to put more capability into the switch, e.g., the ability to detect denial-of-
service  attacks  or  the  ability  to  reroute  packets  based  on  information  about  congestion  in  the
network. 

Web sites receive streams of various types For example; an increase in queries like “sore
throat” enables us to track the spread of viruses. A sudden increase in the click rate for a link could
indicate some news connected to that page, or it could mean that the link is broken and needs to be
repaired. 

Stream Queries 
Queries may be answered for stream data by many ways. Some of them mat require average

of specific number of elements or the one it may be maximum value. We might have a standing
query that, each time a new reading arrives, produces the average of the 24 most recent readings.
That query also can be answered easily, if we store the 24 most recent stream elements. When a new
stream element arrives, we can drop from the working store the 25th most recent element, since it
will never again be needed. 

The other form of query is ad-hoc, a question asked once about the current state of a stream
or streams. If we do not store all streams in their entirety, as normally we can not, then we cannot
expect to answer arbitrary queries about streams. If we have some idea what kind of queries will be
asked through the ad-hoc query interface, then we can prepare for them by storing appropriate parts
or summaries of streams. 

A common approach is to store a sliding window of each stream in the working store. A
sliding window can be the most recent n elements of a stream, for some n, or it can be all the
elements that arrived within the last t time units, If we regard each stream element as a tuple, we
can treat the window as a relation and query it with any SQL query. 

Issues in Data streaming 
Streams often deliver elements very rapidly. So it is required to process elements in real

time, or lose the opportunity to process them at all, without accessing the archival storage. Thus, it
often is important that the stream-processing algorithm is executed in main memory without access
to secondary storage. 

4.2. STREAM DATA MODEL AND ARCHITECTURE
Introduction

Traditional DBMSs have been oriented toward business data processing, and consequently
are designed to address the needs of these applications.First, they have assumed that the DBMS is a
passive repository storing a large collection of data elements and that humans initiate queries and
transactions on this repository.W e call this a human-active, DBMS-passive (HADP) model.Second,



they have assumed that the current state of the data is the only thing that is important.Hence, current
values of data elements are easy to obtain, while previous values can only be found torturously by
decoding  the  DBMS  log.The  third  assumption  is  that  triggers  and  alerters  are  second-class
citizens.These constructs have been added as an afterthought to current systems, and none has an
implementation that scales to a large number of triggers.F ourth, DBMSs assume that data elements
are synchronized and that queries have exact answers.In many stream-oriented applications, data
arrive asynchronously and answers must be computed with incomplete information.Lastly , DBMSs
assume that applications require no real-time services.There is a substantial class of applications
where all five assumptions are problematic.Monitoring applications are applications that monitor
continuous  streams  of  data.This  class  of  applications  includes  military  applications  that
monitorreadings from sensors worn by soldiers (e.g., blood pressure, heart rate, position), financial
analysis applications that monitor streams of stock data reported from various stock exchanges, and
tracking applications that monitor the locations of large numbers of objects  for which they are
responsible  (e.g.,  audiovisual  departments  that  must  monitor  the  location  of  borrowed
equipment).Because of the high volume of monitored data and the query requirements for these
applications, monitoring applications would benefit from DBMS support.Existing DBMS systems,
however,  are  ill  suited  for  such  applications  since  they  target  business  applications.  First,
monitoring applications get their data from external sources (e.g., sensors) rather than from humans
issuing transactions.The role of the DBMS in this context is to alert humans when abnormal activity
is detected.This is a DBMSactive, human-passive (DAHP) model. Second, monitoring applications
require data management that extends over some history of values reported in a stream and not just
over the most recently reported values. Consider a monitoring application that tracks the location of
items of interest, such as overhead transparency projectors and laptop computers, using electronic
property stickers attached to the objects. Ceiling-mounted sensors inside a building and the GPS
system in the open air generate large volumes of location data.If a reserved overhead projector is
not  in its  proper location,then one might  want  to know the geographic position of the missing
projector.In this case, the last value of the monitored object is required. Ho wever, an administrator
might  alsowant  to  know the duty cycle  of  the projector,  thereby requiring access  to  the  entire
historical time series.Third, most monitoring applications are trigger-oriented.If one is monitoring a
chemical plant, then one wants to alert an operator if a sensor value gets too high or if another
sensor value has recorded a value out of range more than twice in the 2  last 24 h.Ev ery application
could potentially monitor multiple streams of data, requesting alerts if complicated conditions are
met.Thus, the scale of trigger processing required in this environment far exceeds that found in
traditional DBMS applications. 

Fourth, stream data are often lost, stale, or intentionally omitted for processing reasons.An
object being monitored may move out of range of a sensor system, thereby resulting in lost data.The
most recent report on the location of the object becomes more and more inaccurate over time.Moreo
ver, in managing data streams with high input rates, it might be necessary to shed load by dropping
less important input data. All of this, by necessity, leads to approximate answers. 

Lastly, many monitoring applications have real-time requirements. Applications that monitor
mobile sensors (e.g., military applications monitoring soldier locations) often have a low tolerance
for stale data, making these applications effectively real time.The added stress on a DBMS that
must serve real-time applications makes it imperative that the DBMS employ intelligent resource
management  (e.g.,  scheduling)  and  graceful  degradation  strategies  (e.g.,  load  shedding)  during
periods of high load.W e expect that applications will supply quality-of-service (QoS) specifications
that will be used by the running system to make these dynamic resource allocation decisions.

Monitoring applications are very difficult to implement in traditional DBMSs.First, the basic
computation model is wrong: DBMSs have a HADP model while monitoring applications often
require a DAHP model.In addition, to store time-series information one has only two choices.First,
he can encode the time series as current data in normal tables.In this case, assembling the historical
time  series  is  very  expensive  because  the  required  data  is  spread  over  many  tuples,  thereby
dramatically slowing performance.Alternately, he can encode time series information in binary large



objects to achieve physical locality, at the expense of making queries to individual values in the
time series very difficult.One system that tries to do something more intelligent with time series
data is the Informix Universal Server, which implemented a time-series data type and associated
methods that speed retrieval of values in a time series  however, this system does not address the
concerns raised above. 

If  a monitoring application had a very large number of triggers or alerters,  then current
DBMSs would fail because they do not scale past a few triggers per table.The only alternative is to
encode  triggers  in  some  middleware  application.Using  this  implementation,  the  system cannot
reason  about  the  triggers  (e.g.,  optimization),  because  they  are  outside  the  DBMS.  Moreover,
performance  is  typically  poor  because  middleware  must  poll  for  data  values  that  triggers  and
alerters depend on. Lastly,  noDBMSthat we are aware of has built-in facilities for approximate
query answering.The same comment applies to real-time capabilities.Again, the user must build
custom  code  into  his  application.  For  these  reasons,  monitoring  applications  are  difficult  to
implement  using  traditional  DBMS  technology.T  o  do  better,  all  the  basic  mechanisms  in
currentDBMSsmust be rethought. 

Fig. 1. Aurora system model
Monitoring  applications  are  applications  for  which  streams  of  information,  triggers,

imprecise data, and real-time requirements are prevalent.We expect that there will be a large class of
such  applications.F  or  example,  we  expect  the  class  of  monitoring  applications  for  physical
facilities (e.g., monitoring unusual events at nuclear power plants) to grow in response to growing
needs for security.In addition, as GPSstyle devices are attached to an ever broader class of objects,
monitoring applications will expand in scope.Currently such monitoring is expensive and restricted
to costly items like automobiles (e.g., Lojack technology).

Aurora system model
Aurora data are assumed to come from a variety of data sources such as computer programs

that generate values at regular or irregular intervals or hardware sensors.We will use the term data
source  for either case.In addition, a data  stream is the term we will use for the collection of data
values presented by a data source.Each data source is assumed to have a unique source identifier,
andAurora timestamps every incoming tuple to monitor the quality of service being provided. The
basic  job  of  Aurora  is  to  process  incoming  streams  in  the  way  defined  by  an  application
administrator.Aurora is fundamentally a data-flow system and uses the popular boxes and arrows
paradigm found in most process flow and workflow systems.Hence, tuples flow through a loop-free,
directed graph of processing operations (i.e., boxes). Ultimately, output streams are presented to
applications,  which  must  be  programmed  to  deal  with  the  asynchronous  tuples  in  an  output
stream.Aurora  can  also  maintain  historical  storage,  primarily  in  order  to  support  ad  hoc
queries.Figure 1 illustrates the high-level system model. Aurora’s query algebra (SQuAl1) contains



built-in  support  for  seven  primitive  operations  for  expressing  its  stream 1  SQuAl  is  short  for
[S]tream [Qu]ery [Al]gebra.

 
Fig. 2. Aurora query model

processing  requirements.Man  y  of  these  have  analogs  in  the  relational  query  operators.F  or
example, we support a filter operator that, like the relational operator select, applies any number of
predicates  to  each  incoming  tuple,  routing  the  tuples  according  to  which  predicates  they
satisfy.Another  operator,  (Aggregate),  computes  stream aggregates  in  a  way that  addresses  the
fundamental push-based nature of streams, applying a function across a window of values in a
stream  (e.g.,  a  moving  average).In  environments  where  data  can  be  stale  or  time  imprecise,
windowed  operations  are  a  necessity.  There  is  no  explicit  split  box;  instead,  the  application
administrator can connect the output of one box to the input of several others.This implements an
implicit split operation. On the other hand, there is an explicit Aurora Union operation, whereby two
streams can be put together.If, additionally, one tuple must be delayed for the arrival of a second
one, then a Resample box can be inserted in the Aurora network to accomplish this effect.

Arcs  in  an  Aurora  diagram  actually  represent  a  collection  of  streams  with  common
schema.The actual number of streams on an arc is unspecified,  making it  easy to have streams
appear and disappear without modification to the Aurora network.

Query model
Aurora supports continuous queries (real-time processing), views, and ad hoc queries all

using substantially the same mechanisms.All three modes of operation use the same conceptual
building blocks.Each mode processes flows based on QoS specifications – each output in Aurora is
associated with two-dimensional QoS graphs that specify the utility of the output in terms of several
performance-related and quality-related attributes (see Sect.4. 1). The diagram in Fig.2 illustrates
the  processing modes supported  by Aurora.  The topmost  path  represents  a  continuous query.In
isolation,  data  elements  flow  into  boxes,  are  processed,  and  flow  further  downstream.In  this
scenario, there is no need to store any data elements once they are processed. Once an input has
worked its way through all reachable paths, that data item is drained from the network.The QoS
specification at the end of the path controls how resources are allocated to the processing elements
along the path.One can also view an Aurora network (along with some of its applications) as a large
collection of triggers.Each path from a sensor input to an output can be viewed as computing the
condition part of a complex trigger. An output tuple is delivered to an application, which can take



the appropriate action. The dark circles on the input arcs to boxes b1 and b2 represent connection
points.A connection point is an arc that supports dynamic modification to the network.Ne w boxes
can  be  added  to  or  deleted  from a  connection  point.When  a  new application  connects  to  the
network, it will often require access to the recent past.As such, a connection point has the potential
for persistent storage .Persistent storage retains data items beyond their processing by a particular
box.In otherwords, as items flowpast a connection point, they are cached in a persistent store for
some period of time.They are not drained from the network by applications.Instead, a persistence
specification indicates exactly how long the items are kept, so that a future ad hoc query can get
historical results. In the figure, the leftmost connection point is specified to be available for 2 h.This
indicates  that  the  beginning of  time for  newly connected  applications  will  be  2 h  in  the  past.
Connection points  can be generalized to  allow an elegant  way of  including  static  data  sets  in
Aurora.Hence we allow a connection point to have no upstream node, i.e., a dangling connection
point.W  ithout  an  upstream  node  the  connection  point  cannot  correspond  to  an  Aurora
stream.Instead, the connection point is decorated with the identity of a stored data set in a traditional
DBMS or other storage system.In this case, the connection point can be materialized and the stored
tuples passed as a stream to the downstream node.In this case, such tuples will be pushed through
an Aurora network.Alternately, query execution on the downstream node can pull tuples by running
a  query to  the  store.If  the  downstream node is  a  filter  or  a  join,  pull  processing  has  obvious
advantages.Moreo ver, if the node is a join between a stream and a stored data set, then an obvious
query execution  strategy is  to  perform iterative  substitution  whenever  a  tuple  from the  stream
arrives and perform a lookup to the stored data.In this case, a windowdoes not need to be specified
as the entire join can be calculated.  

The middle path in Fig.2 represents a view.In this case, a path is defined with no connected
application.It  is  allowed to have a  QoS specification as an indication of  the importance of  the
view.Applications can connect to the end of this path whenever there is a need.Before this happens,
the system can propagate some, all, or none of the values stored at the connection point in order to
reduce latency for applications that connect later.Moreo ver, it can store these partial results at any
point along a viewpath.This is analogous to a materialized or partially materialized view.V iew
materialization is under the control of the scheduler.

The bottom path represents an ad hoc query.An ad hoc query can be attached to a connection
point at any time.The semantics of an ad hoc query is that the system will process data items and
deliver answers from the earliest time  T (persistence specification) stored in the connection point
until the query branch is explicitly disconnected.Thus, the semantics for an Aurora ad hoc query is
the  same as  a  continuous  query that  starts  executing  at  tnow − T  and continues  until  explicit
termination. 

Graphical user interface
The Aurora user interface cannot be covered in detail because of space limitations.Here, we

mention only a few salient features. T o facilitate designing large networks, Aurora will support a
hierarchical collection of groups of boxes.A designer can begin near the top of the hierarchy where
only a fewsuperboxes are visible on the screen.A zoom capability is provided to allow him to move
into specific portions of the network, by replacing a group with its constituent boxes and groups. In
this way, a browsing capability is provided for the Aurora diagram.  oxes and groups have a tag, an
argument list, a description of the Functionality, and, ultimately, a manual page.Users can teleport to
specific places in an Aurora network by querying these attributes.Additionally, a user can place
bookmarks  in a network to allow him to return to places of interest.  These capabilities give an
Aurora user a mechanism to query the Aurora diagram.The user interface also allows monitors for
arcs in the network to facilitate debugging as well  as facilities for “single stepping” through a
sequence of Aurora boxes.W e plan a graphical performance monitor as well as more sophisticated
query capabilities. 



4.3. SAMPLING DATA IN A STREAM
Finite-Population Sampling

Database sampling techniques have their roots in classical statistical methods for “finite-
population sampling” (also called “survey sampling”). These latter methods are concerned with the
problem of  drawing inferences  about  a  large  finite  population from a small  random sample of
population elements. The inferences usually take the form either of testing some hypothesis about
the  population—e.g.,  that  a  disproportionate  number  of  smokers  in  the  population  suffer  from
emphysema—or estimating  some parameters  of  the  population— e.g.,  total  income or  average
height.  We  focus  primarily  on  the  use  of  sampling  for  estimation  of  population  parameters.  

The simplest and most common sampling and estimation schemes require that the elements
in a sample be “representative” of the elements in the population. The notion of simple random
sampling (SRS) is one way of making this concept precise. To obtain an SRS of size k from a
population  of  size n,  a  sample element  is  selected randomly and uniformly from among the  n
population elements, removed from the population, and added to the sample. This sampling step is
repeated until k sample elements are obtained. The key property of an SRS scheme is that each of
the (n k) possible subsets of k population elements is equally likely to be produced.

Other “representative” sampling schemes besides SRS are possible. An important example is
simple random sampling with replacement (SRSWR).1 The SRSWR scheme is almost identical to
SRS, except  that  each sampled element  is  returned to  the population prior to  the next  random
selection;  thus  a  given population element  can appear  multiple  times in  the  sample.  When the
sample size is very small with respect to the population size, the SRS and SRSWR schemes are
almost indistinguishable, since the probability of sampling a given population element more than
once is negligible. The mathematical theory of SRSWR is a bit simpler than that of SRS, so the
former scheme is  sometimes used as an approximation to  the latter  when analyzing estimation
algorithms based on SRS. Other representative sampling schemes besides SRS and SRSWR include
the  “stratified”  and “Bernoulli”.  As will  become clear  in  the  sequel,  certain  non-representative
sampling  methods  are  also  useful  in  the  data-stream setting.  Of  equal  importance  to  sampling
methods are techniques for estimating population parameters from sample data. 

Suppose we wish to estimate the total income θ of a population of size n based on an SRS of
size k, where k is much smaller than n. For this simple example, a natural estimator is obtained by
scaling up the total  income s of the individuals in the sample,  ˆ  θ = (n/k)s, e.g.,  if  the sample
comprises 1 % of the population, then scale up the total income of the sample by a factor of 100.
For   more  complicated  population  parameters,  such  as  the  number  of  distinct  ZIP codes  in  a
population of magazine subscribers, the scale-up formula may be much less obvious. In general, the
choice of estimation method is tightly coupled to the method used to obtain the underlying sample.
Even for our simple example, it is important to realize that our estimate is random, since it depends
on the particular sample obtained. For example, suppose (rather unrealistically) that our population
consists of three individuals, say Smith, Abbas, and Raman, whose respective incomes are $10,000,
$50,000, and 1Sometimes, to help distinguish between the two schemes more clearly, SRS is called
simple random sampling without replacement.
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$1,000,000. The total income for this population is $1,060,000. If we take an SRS of size k = 2—
and  hence  estimate  the  income  for  the  population  as  1.5  times  the  income  for  the  sampled
individuals—then the outcome of our sampling and estimation exercise would follow one of the
scenarios given in Table 1. Each of the scenarios is equally likely, and the expected value (also
called the “mean value”) of our estimate is computed as
expected value = (1/3) · (90,000)+(1/3) · (1,515,000)+(1/3) · (1,575,000)
= 1,060,000,

which is equal to the true answer. In general, it is important to evaluate the accuracy (degree
of systematic error) and precision (degree of variability) of a sampling and estimation scheme. The
bias, i.e., expected error, is a common measure of accuracy, and, for estimators with low bias, the
standard error is a common measure of precision. The bias of our income estimator is 0 and the
standard error is computed as the square root of the variance (expected squared deviation from the
mean) of our estimator:
SE = #(1/3) · (90,000−1,060,000)2 +(1/3) · (1,515,000− 1,060,000)2
+(1/3) · (1,575,000− 1,060,000)2#1/2 ≈ 687,000.

For more complicated population parameters and their estimators, there are often no simple
formulas for gauging accuracy and precision. In these cases, one can sometimes resort to techniques
based on subsampling,  that  is,  taking one or more random samples from the initial  population
sample.Well  known subsampling  techniques  for  estimating  bias  and standard  error  include  the
“jackknife” and “bootstrap” methods. In general, the accuracy and precision of a well designed
sampling-based estimator should increase as the sample size increases.

Database Sampling
Although database sampling overlaps heavily with classical finite-population sampling, the

former setting differs from the latter in a number of important respects. 
• Scarce versus ubiquitous data. In the classical setting, samples are usually expensive to obtain and
data is hard to come by, and so sample sizes tend to be small. In database sampling, the population
size can be enormous (terabytes of data), and samples are relatively easy to collect, so that sample
sizes can be relatively large. The emphasis in the database setting is on the sample as a flexible,
lossy, compressed synopsis of the data that can be used to obtain quick approximate answers to user
queries.
•  Different  sampling  schemes.  As  a  consequence  of  the  complex storage  formats  and retrieval
mechanisms that are characteristic of modern database systems, many sampling schemes that were
unknown or  of  marginal  interest  in  the  classical  setting  are  central  to  database  sampling.  For
example, the classical literature pays relatively little attention to Bernoulli sampling schemes, but
such schemes are very important for database sampling because they can be easily parallelized
across data partitions. As another example, tuples in a relational database are typically retrieved
from disk in units of pages or extents. This fact strongly influences the choice of sampling and
estimation schemes, and indeed has led to the introduction of several novel methods. As a final
example, estimates of the answer to an aggregation query involving select–project–join operations
are often based on samples drawn individually from the input base relations, a situation that does
not arise in the classical setting.
• No domain expertise. In the classical setting, sampling and estimation are often carried out by an
expert statistician who has prior knowledge about the population being sampled. As a result, the
classical literature is rife with sampling schemes that explicitly incorporate auxiliary information
about the population, as well as “model-based” schemes  in which the population is assumed to be a
sample from a hypothesized “super-population” distribution. In contrast, database systems typically
must view the population (i.e., the database) as a black box, and so cannot exploit these specialized
techniques. 
•  Auxiliary  synopses.  In  contrast  to  a  classical  statistician,  a  database  designer  often  has  the
opportunity  to  scan  each  population  element  as  it  enters  the  system,  and  therefore  has  the
opportunity to maintain auxiliary data synopses, such as an index of “outlier” values or other data



summaries, which can be used to increase the precision of sampling and estimation algorithms. If
available, knowledge of the query workload can be used to guide synopsis creation.
Online-aggregation algorithms take, as input, streams of data generated by random scans of one or
more (finite) relations, and produce continually-refined estimates of answers to aggregation queries
over the relations, along with precision measures. The user aborts the query as soon as the running
estimates  are  sufficiently  precise;  although  the  data  stream is  finite,  query  processing  usually
terminates long before the end of the stream is reached. Recent work on database sampling includes
extensions  of  online  aggregation  methodology,  application  of  bootstrapping  ideas  to  facilitate
approximate answering of very complex aggregation queries, and development of techniques for
sampling-based discovery of correlations, functional dependencies, and other data relationships for
purposes of query optimization and data integration.

Collective experience has shown that sampling can be a very powerful tool, provided that it
is  applied judiciously.  In general,  sampling is  well  suited to very quickly identifying pervasive
patterns and properties of the data when a rough approximation suffices; for example, industrial-
strength sampling-enhanced query engines can speed up some common decision-support queries by
orders  of  magnitude.  On  the  other  hand,  sampling  is  poorly  suited  for  finding  “needles  in
haystacks” or for producing highly precise estimates. The needle-in-haystack phenomenon appears
in numerous guises. For example, precisely estimating the selectivity of a join that returns very few
tuples is  an extremely difficult  task,  since a random sample from the base relations will  likely
contain almost no elements of the join result. As another example, sampling can perform poorly
when data values are highly skewed. For example, suppose we wish to estimate the average of the
values in a data set that consists of 106 values equal to 1 and five values equal to 108. The five
outlier values are the needles in the haystack: if, as is likely, these values are not included in the
sample, then the sampling-based estimate of the average value will be low by orders of magnitude.
Even when the data is relatively well behaved, some population parameters are inherently hard to
estimate from a sample. One notoriously difficult parameter is the number of distinct values in a
population. Problems arise both when there is skew in the data-value frequencies and when there
are many data values, each appearing a small number of times. In the former scenario, those values
that appear few times in the database are the needles in the haystack; in the latter scenario, the
sample is likely to contain no duplicate values, in which case accurate assessment of a scale-up
factor is impossible. Other challenging population parameters include the minimum or maximum
data value. Researchers continue to develop new methods to deal with these problems, typically by
exploiting auxiliary data synopses and workload information.

Sampling from Data Streams
Data-stream sampling problems require the application of many ideas and techniques from

traditional  database  sampling,  but  also  need  significant  new  innovations,  especially  to  handle
queries over infinite-length streams. Indeed, the unbounded nature of streaming data represents a
major  departure  from  the  traditional  setting.We  give  a  brief  overview  of  the  various  stream-
sampling techniques considered.

Our discussion centers around the problem of obtaining a sample from a window, i.e., a
subinterval of the data stream, where the desired sample size is much smaller than the number of
elements in the window. We draw an important distinction between a stationary window, whose
endpoints are specified times or specified positions in the stream sequence, and a sliding window
whose endpoints move forward as time progresses. Examples of the latter type of window include
“the most recent n elements in the stream” and “elements that have arrived within the past hour.”
Sampling from a finite stream is a special case of sampling from a stationary window in which the
window boundaries correspond to the first and last stream elements. When dealing with a stationary
window, many traditional tools and techniques for database sampling can be directly brought to
bear. In general, sampling from a sliding window is a much harder problem than sampling from a
stationary window: in the former case, elements must be removed from the sample as they expire,
and maintaining a sample of adequate size can be difficult.We also consider “generalized” windows



in which the stream consists  of a sequence of transactions that insert  and delete items into the
window; a sliding window corresponds to the special case in which items are deleted in the same
order that they are inserted.

Much attention has focused on SRS schemes because of the large body of existing theory
and methods for inference from an SRS; we therefore discuss such schemes in detail.  We also
consider Bernoulli sampling schemes, as well as stratified schemes in which the window is divided
into equal disjoint segments (the strata) and an SRS of fixed size is drawn from each stratum.
Stratified sampling can be advantageous when the data stream exhibits significant autocorrelation,
so that elements close together in the stream tend to have similar values. The foregoing schemes fall
into the category of equal-probability sampling because each window element is equally likely to be
included in the sample. For some applications it may be desirable to bias a sample toward more
recent elements. 

4.4. MINING DATA STREAMS AND MINING TIME

WINDOWING APPROACH TO DATA STREAM MINING 

One of the main issues in the stream data mining is to find out a model which will suit the
extraction process of the frequent item set from the streaming in data. There are three stream data
processing  model  that  are  Landmark  window,  Damped window and Sliding  window model.  A
transaction data stream is a sequence of incoming transactions and an excerpt of the stream is called
a window. A window, W, can be either time-based or count-based, and either a landmark window or
a sliding window. W is time-based if W consists of a sequence of fixed-length time units, where a
variable  number  of  transactions  may  arrive  within  each  time  unit.  W is  count-based  if  W is
composed of a sequence of batches, where each batch consists of an equal number of transactions.
W is a landmark window if W = (T1, T2, . . . , T); W is a sliding window if W = (TT−w+1, . . . ,
TT), where each Ti is a time unit or a batch, T1 and TT are the oldest and the current time unit or
batch, and w is the number of time units or batches in the sliding window, depending on whether W
is time-based or count-based. Note that a count-based window can also be captured by a time-based
window by assuming that a uniform number of transactions arrive within each time unit. 
The frequency of an item set, X, in W, denoted as freq(X), is the number of transactions in W
support X. The support of X in W, denoted as sup(X), is defined as freq(X)/N, where N is the total
number of transactions received in W. X is a Frequent Item set (FI) in W, if sup(X) ≥ σ, where σ (0
≤ σ ≤ 1) is a user-specified minimum support threshold. X is a Frequent Maximal Item set (FMI) in
W, if X is an FI in W and there exists no item set Y in W such that X  Y . X is a Frequent Closed⊂
Item set (FCI) in W, if X is an FI in W and there exists no item set Y in W such that X  Y and⊂
freq(X) = freq(Y). 

a) Landmark Window Concept 
In  this  section  we  will  discuss  some  of  important  land  mark  window algorithms.  One  of  the
algorithm proposed by Manku and Motwani is a lossy counting approximation algorithm. It will
compute the approximate set of frequent item sets over the  entire stream so far. In this algorithm
the stream is divided into sequence of buckets. The lossy counting algorithm processes a batch of
transactions  arriving  at  a  particular  time.  In  this  paper they  are  maintaining  the  item set,  the
frequency of  item set  and the error  as the upper  bound of  the frequency of the item set.  This
algorithm uses three different modules, Buffer, Trie and Set Gen. The Buffer module keeps filling
the  available  memory  with  the  incoming  transactions.  This  module  frequently  computes  the
frequency of every item in the current transactions and prune if it is less than N. The Trie module
maintains set D, as a forest of prefix trees. The Trie forest as an array of tuples (X, freq(X), err (X),
level ) that correspond to the pre-order traversal of the forest, where the level of a node is the
distance of the node from the root. The Trie array is maintained as a set of chunks. On updating the



Trie array, a new Trie array is created and chunks from the old Trie are freed as soon as they are not
required. 

All the item sets in the current batch having the support will be generated by the Set Gen
module. The Apriori-like pruning[21] will help to avoid the generation of superset of an item set if
the frequency less than β in the current batch. The Set Gen implemented with the help of Heap
queue. Set Gen repeatedly processes the smallest item in Heap to generate a 1-itemset. If this 1-
itemset  is  in  Trie  after  the  Add  Entry  or  the  Update  Entry  operation  is  utilized,  Set  Gen  is
recursively invoked with a new Heap created out of the items that follow the smallest items in the
same transactions. During each call of Set Gen, qualified old item sets are copied to the new Trie
array according to their orders in the old Trie array, while at the same time new item sets are added
to the new Trie array in lexicographic order. When the recursive call returns, the smallest entry in
Heap is removed and the recursive process continues with the next smallest item in Heap. 

The quality of the approximation mining results  by using the relaxed minimum support
threshold leads to the extra usage of memory and the processing power. That is, the smaller relaxed
minimum support leads to increase of number of sub-FIs generated, so the increase of memory and
the extra usage of processing power. , if approaches σ, more false-positive answers will be included
in the result, since all sub-FIs whose computed frequency is at least (σ − )N ≈ 0 are displayed while
the computed frequency of the sub-FIs can be less than their actual frequency by as much as σN.
The same problem is in other mining algorithms [21, 22, 23, 24, 13, 4] that use a relaxed minimum
support threshold to control the accuracy of the mining result.  ∈∈ ∈

One of the algorithm called DSM-FI developed by Li[13], is to mine an approximate set of
FIs over the entire history of the stream. This algorithm is used a prefix-tree based in memory data
structure. DSM-FI is also using the relaxed minimum support threshold and all the generated FIs are
stored in the IsFI-forest.  The DSM-FI consists of Header Table(HT) and Sub-Frequent Itemsets
tree(SFI-tree). For every unique item in the set of sub-FIs it inserts an entry with frequency, batch id
and  head  link,  it  increments  otherwise.  The  DSM-FI  frequently  prunes  the  items  that  are  not
satisfied the minimum support. 

One of the approximation algorithm developed by Lee[4] used the compressed prefix tree
structure called CP-tree. The structure of the CP-tree is described as follows. Let D be the prefix
tree used in estDec. Given a merging gap threshold δ, where 0 ≤ δ ≤ 1, if all the itemsets stored in a
subtree S of D satisfy the following equation, then S is compressed into a node in the CP-tree. 

Where X is the root of S and Y is an item set in S. Assume S is compressed into a node v in
the CP-tree. The node v consists of the following four fields: item-list, parent-list, freqTmax and
freqTmin where v.item-list is a list of items which are the labels of the nodes in S, v. parent-list is a
list of locations (in the CP-tree) of the parents of each node in S, v. freqTmax is the frequency of the
root of S and freqTmin is the frequency of the right-most leaf of S. 

The use of the CP-tree results in the reduction of memory consumption, which is important
in mining data streams. The CP-tree can also be used to mine the FIs, however, the error rate of the
computed frequency of the FIs, which is estimated from freqTmin and freqTmax, will be further
increased. Thus, the CP-tree is more suitable for mining FMIs. 
b) Sliding Window Concept 

The sliding window model processes only the items in the window and maintains only the
frequent item sets. The size of the sliding window can be decided according to the applications and
the system resources. The recently generated transactions in the window will influence the mining
result of the sliding windowing, otherwise all the items in the window to be maintained. The size of
the sliding window may vary depends up on  the applications it may use. In this section we will
discuss some of the important windowing approaches for stream mining. 

An  in  memory  prefix  tree  based  algorithm  following  the  windowing  approach  to



incrementally  update  the  set  of  frequent  closed  item sets  over  the  sliding  window .  The  data
structure  used  for  the  algorithm is  called  as  Closed  Enumeration  Tree  (CET)  to  maintain  the
dynamically selected set of item set over the sliding window. This algorithm will compute the exact
set of frequent closed item sets over the sliding window. The updation will be for each incoming
transaction but not enough to handle the handle the high speed streams. 

One  another  notable  algorithm in  the  windowing  concept  is  estWin[3].  This  algorithm
maintains the frequent item sets over a sliding window. The data structure used to maintain the item
sets is prefix tree. The prefix tree holds three parameters for each items set in the tree, that are
frequency of x in current window before x is inserting in the tree, that is freq(x). The second is an
upper bound for the frequency of x in the current window before x is inserted in the tree, err(x). The
third is the ID of the transaction being processed, tid(x).b. The item set in the tree will be pruned
along with all supersets of the item set, we prune the item set X and the supersets if tid(X) ≤ tid1
and freq(X) < N , or (2) tid(X) > tid1 and freq(X) < (N − (tid(X) − tid1)) . The expression tid(X) >⌈ ⌉ ⌈ ⌉
tid1 means that X is  inserted into D at some transaction that arrived within the current sliding
window and hence the expression (N−(tid(X)−tid1))returns the number of transactions that arrived
within the current window since the arrival of the transaction having the ID tid(X). We note that X
itself is not pruned if it is a 1-itemset, since estWin estimates the maximum frequency error of an
itemset based on the computed frequency of its subsets [84] and thus the frequency of a 1-itemset
cannot be estimated again if it is deleted. ∈∈
c) Damped Window Concept 

The estDec algorithm proposed to reduce the effect of the old transactions on the stream
mining result.  They have used a decay rate to reduce the effect of the old transactions and the
resulted frequent  item sets  are  called recent  frequent  Item sets.  The algorithm, for maintaining
recent FIs is an approximate algorithm that adopts the mechanism to estimate the frequency of the
item sets. 

The use of a decay rate diminishes the effect of the old and obsolete information of a data
stream on the mining result. However, estimating the frequency of an item set from the frequency of
its subsets can produce a large error and the error may propagate all the way from the 2-subsets to
the n-supersets, while the upper bound is too loose. Thus, it is difficult to formulate an error bound
on the computed frequency of the resulting item sets and a large number of false-positive results
will be returned, since the computed frequency of an item set may be much larger than its actual
frequency. Moreover, the update for each incoming transaction (instead of a batch) may not be able
to handle high-speed streams. 

Another approximation algorithm uses a tilted time window model . In this frequency FIs
are kept in different time granularities such as last one hour, last two hours, last four hours and so
on. The data structure used in this algorithm is called FP-Stream. There are two components in the
FP-Stream which are pattern tree based prefix tree and tilted time window which is at the end node
of the path. The pattern tree can be constructed using the FP-tree algorithm. The tilted time window
guarantees that the granularity error is at most T/2, where T is the time units. 

The updation of the frequency record will be done by shifting the recent records to merge
with the older records. To reduce the number of frequency records in the tilted-time windows, the
old  frequency records  of  an item set,  X,  are  pruned as  follows.  Let  freqj(X) be the  computed
frequency of X over a time unit Tj and Nj be the number of transactions received within Tj , where
1 ≤ j ≤ τ . For some m, where 1 ≤ m ≤ τ, the frequency records freq1(X), . . . ,freqm(X) are pruned if
the following condition holds: 

n ≤ τ, i, 1 ≤ i ≤ n, freqi(X) < σNi and ∃ ∀
l, 1 ≤ l ≤ m ≤ n, Σ−(x)< Σ∀

The FP-stream mining algorithm computes a set of sub-FIs at the relaxed minimum support
threshold, , over each batch of incoming transactions by using the FI mining algorithm, FP-growth
[25]. For each sub-FI X obtained, FP-streaming inserts X into the FP-stream if X is not in the FP-
stream. If X is already in the FP-stream, then the computed frequency of X over the current batch is
added to its tilted-time window. Next, pruning is performed on the tilted-time window of X and if



the window becomes empty, FP-growth stops mining supersets of X by the Apriori property. After
all sub-FIs mined by FP-growth are updated in the FP-stream, the FP-streaming scans the FP-stream
and, for each item set X visited, if X is not updated by the current batch of transactions, the most
recent frequency in X’s tilted-time window is recorded as 0. Pruning is then performed on X. If the
tilted-time window of some item set visited is empty (as a result of pruning), the item set is also
pruned from the FP-stream. ∈

The tilted-time window model allows us to answer more expressive time-sensitive queries,
at the expense of some frequency record kept for each item set. The tilted-time window also places
greater importance on recent data than on old data as does the sliding window model; however, it
does not lose the information in the historical data completely. A drawback of the approach is that
the FP-stream can become very large over time and updating and scanning such a large structure
may degrade the mining throughput. 

4.5. SERIES DATA
A time series is a series of data points indexed (or listed or graphed) in time order. Most

commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a
sequence  of  discrete-time  data.  Examples  of  time  series  are  heights  of  ocean  tides,  counts  of
sunspots, and the daily closing value of the Dow Jones Industrial Average.

Time series are very frequently plotted via line charts. Time series are used in statistics,
signal  processing,  pattern recognition,  econometrics,  mathematical  finance,  weather  forecasting,
earthquake  prediction,  electroencephalography,  control  engineering,  astronomy,  communications
engineering, and largely in any domain of applied science and engineering which involves temporal
measurements.

Time series analysis comprises methods for analyzing time series data in order to extract
meaningful statistics and other characteristics of the data. Time series forecasting is the use of a
model to predict future values based on previously observed values. While regression analysis is
often employed in such a way as to test theories that the current values of one or more independent
time series affect the current value of another time series, this type of analysis of time series is not
called "time series analysis", which focuses on comparing values of a single time series or multiple
dependent time series at different points in time. Interrupted time series analysis is the analysis of
interventions on a single time series

Time series data have a natural temporal ordering. This makes time series analysis distinct
from  cross-sectional  studies,  in  which  there  is  no  natural  ordering  of  the  observations  (e.g.
explaining people's wages by reference to their respective education levels, where the individuals'
data could be entered in any order). Time series analysis is also distinct from spatial data analysis
where the observations typically relate to geographical locations (e.g. accounting for house prices
by the location as well as the intrinsic characteristics of the houses). A stochastic model for a time
series will generally reflect the fact that observations close together in time will be more closely
related than observations further apart. In addition, time series models will often make use of the
natural one-way ordering of time so that values for a given period will be expressed as deriving in
some way from past values, rather than from future values.

Time series analysis can be applied to real-valued, continuous data, discrete numeric data, or
discrete  symbolic  data  (i.e.  sequences  of  characters,  such  as  letters  and  words  in  the  English
language).

Methods for analysis
Methods  for  time  series  analysis  may  be  divided  into  two  classes:  frequency-domain

methods and time-domain methods. The former include spectral analysis and wavelet analysis; the
latter include auto-correlation and cross-correlation analysis. In the time domain, correlation and
analysis can be made in a filter-like manner using scaled correlation, thereby mitigating the need to
operate in the frequency domain.

Additionally,  time  series  analysis  techniques  may  be  divided  into  parametric  and  non-



parametric methods. The parametric approaches assume that the underlying stationary stochastic
process has a certain structure which can be described using a small number of parameters (for
example, using an autoregressive or moving average model). In these approaches, the task is to
estimate  the  parameters  of  the  model  that  describes  the  stochastic  process.  By  contrast,  non-
parametric approaches explicitly estimate the covariance or the spectrum of the process without
assuming that the process has any particular structure.

Methods  of  time  series  analysis  may  also  be  divided  into  linear  and  non-linear,  and
univariate and multivariate.

Panel data
A time series is one type of panel data. Panel data is the general class, a multidimensional

data set, whereas a time series data set is a one-dimensional panel (as is a cross-sectional dataset). A
data set may exhibit characteristics of both panel data and time series data. One way to tell is to ask
what makes one data record unique from the other records. If the answer is the time data field, then
this is a time series data set candidate. If determining a unique record requires a time data field and
an additional identifier which is unrelated to time (student ID, stock symbol, country code), then it
is panel data candidate. If the differentiation lies on the non-time identifier, then the data set is a
cross-sectional data set candidate.

Analysis
There are several types of motivation and data analysis available for time series which are

appropriate for different purposes and etc.

Motivation
In the context of statistics, econometrics, quantitative finance, seismology, meteorology, and

geophysics  the  primary  goal  of  time  series  analysis  is  forecasting.  In  the  context  of  signal
processing, control engineering and communication engineering it is used for signal detection and
estimation, while in the context of data mining, pattern recognition and machine learning time series
analysis can be used for clustering, classification, query by content, anomaly detection as well as
forecasting.

Exploratory analysis
The clearest way to examine a regular time series manually is with a line chart such as the

one shown for tuberculosis in the United States, made with a spreadsheet program. The number of
cases was standardized to a rate per 100,000 and the percent  change per year  in  this  rate  was
calculated. The nearly steadily dropping line shows that the TB incidence was decreasing in most
years, but the percent change in this rate varied by as much as +/- 10%, with 'surges' in 1975 and
around the early 1990s. The use of both vertical axes allows the comparison of two time series in
one graphic.

Other techniques include:
Autocorrelation analysis to examine serial dependence

Spectral analysis to examine cyclic behavior which need not be related to seasonality. For
example, sun spot activity varies over 11 year cycles. Other common examples include celestial
phenomena, weather patterns, neural activity, commodity prices, and economic activity.

Separation  into  components  representing  trend,  seasonality,  slow and fast  variation,  and
cyclical irregularity: see trend estimation and decomposition of time series

Curve fitting
Curve fitting is the process of constructing a curve, or mathematical function, that has the

best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either
interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function



is constructed that approximately fits the data. A related topic is regression analysis, which focuses
more on questions of statistical inference such as how much uncertainty is present in a curve that is
fit to data observed with random errors. Fitted curves can be used as an aid for data visualization, to
infer values of a function where no data are available, and to summarize the relationships among
two or more variables. Extrapolation refers to the use of a fitted curve beyond the range of the
observed data, and is subject to a degree of uncertainty since it may reflect the method used to
construct the curve as much as it reflects the observed data.

The construction of economic time series involves the estimation of some components for
some dates by interpolation between values ("benchmarks") for earlier and later dates. Interpolation
is estimation of an unknown quantity between two known quantities (historical data), or drawing
conclusions  about  missing  information  from  the  available  information  ("reading  between  the
lines"). Interpolation is useful where the data surrounding the missing data is available and its trend,
seasonality, and longer-term cycles are known. This is often done by using a related series known
for all relevant dates. Alternatively polynomial interpolation or spline interpolation is used where
piecewise polynomial functions are fit into time intervals such that they fit smoothly together. A
different problem which is closely related to interpolation is the approximation of a complicated
function by a simple function (also called regression).The main difference between regression and
interpolation is that polynomial regression gives a single polynomial that models the entire data set.
Spline  interpolation,  however,  yield  a  piecewise  continuous  function  composed  of  many
polynomials to model the data set.

Extrapolation is the process of estimating, beyond the original observation range, the value
of a variable on the basis of its relationship with another variable. It is similar to interpolation,
which  produces  estimates  between  known observations,  but  extrapolation  is  subject  to  greater
uncertainty and a higher risk of producing meaningless results.

Function approximation
In general, a function approximation problem asks us to select a function among a well-

defined class that closely matches ("approximates") a target function in a task-specific way. One can
distinguish two major classes of function approximation problems: First, for known target functions
approximation  theory is  the  branch  of  numerical  analysis  that  investigates  how certain  known
functions (for example, special functions) can be approximated by a specific class of functions (for
example,  polynomials  or  rational  functions)  that  often  have  desirable  properties  (inexpensive
computation, continuity, integral and limit values, etc.).

Second, the target function, call it g, may be unknown; instead of an explicit formula, only a
set of points (a time series) of the form (x, g(x)) is provided. Depending on the structure of the
domain and codomain of g, several techniques for approximating g may be applicable. For example,
if  g  is  an  operation  on  the  real  numbers,  techniques  of  interpolation,  extrapolation,  regression
analysis, and curve fitting can be used. If the codomain (range or target set) of g is a finite set, one
is  dealing  with  a  classification  problem  instead.  A  related  problem  of  online  time  series
approximation is to summarize the data in one-pass and construct an approximate representation
that can support a variety of time series queries with bounds on worst-case error.

To some extent  the  different  problems  (regression,  classification,  fitness  approximation)
have received a unified treatment in statistical learning theory, where they are viewed as supervised
learning problems.

Prediction and forecasting
In statistics,  prediction is a part  of statistical  inference.  One particular approach to such

inference is known as predictive inference, but the prediction can be undertaken within any of the
several approaches to statistical inference. Indeed, one description of statistics is that it provides a
means of transferring knowledge about a sample of a population to the whole population, and to
other  related  populations,  which  is  not  necessarily  the  same  as  prediction  over  time.  When
information is transferred across time, often to specific points in time, the process is known as



forecasting.
Fully  formed  statistical  models  for  stochastic  simulation  purposes,  so  as  to  generate

alternative versions of the time series,  representing what  might  happen over  non-specific  time-
periods in the future

Simple or fully formed statistical models to describe the likely outcome of the time series in
the immediate future, given knowledge of the most recent outcomes (forecasting).

Forecasting on time series is usually done using automated statistical software packages and
programming languages, such as R, S, SAS, SPSS, Minitab, pandas (Python) and many others.

Classification
Assigning time series pattern to a specific category, for example identify a word based on

series of hand movements in sign language

Signal estimation
This approach is based on harmonic analysis and filtering of signals in the frequency domain

using  the  Fourier  transform,  and  spectral  density  estimation,  the  development  of  which  was
significantly  accelerated  during  World  War  II  by  mathematician  Norbert  Wiener,  electrical
engineers  Rudolf  E.  Kálmán,  Dennis  Gabor  and  others  for  filtering  signals  from  noise  and
predicting signal values at a certain point in time. See Kalman filter, Estimation theory, and Digital
signal processing

Segmentation
Splitting a time-series into a sequence of segments. It is often the case that a time-series can

be represented as a sequence of individual segments, each with its own characteristic properties. For
example, the audio signal from a conference call can be partitioned into pieces corresponding to the
times during which each person was speaking. In time-series segmentation, the goal is to identify
the  segment  boundary  points  in  the  time-series,  and  to  characterize  the  dynamical  properties
associated with each segment. One can approach this problem using change-point detection, or by
modeling the time-series as a more sophisticated system, such as a Markov jump linear system.

Models
Models  for  time  series  data  can  have  many  forms  and  represent  different  stochastic

processes.  When modeling variations in  the level  of a  process,  three broad classes  of  practical
importance are the autoregressive (AR) models, the integrated (I) models, and the moving average
(MA) models. These three classes depend linearly on previous data points.Combinations of these
ideas  produce  autoregressive  moving  average  (ARMA)  and  autoregressive  integrated  moving
average (ARIMA) models. The autoregressive fractionally integrated moving average (ARFIMA)
model generalizes the former three. Extensions of these classes to deal with vector-valued data are
available  under  the  heading  of  multivariate  time-series  models  and  sometimes  the  preceding
acronyms are extended by including an initial "V" for "vector", as in VAR for vector autoregression.
An additional set of extensions of these models is available for use where the observed time-series
is driven by some "forcing" time-series (which may not have a causal effect on the observed series):
the distinction from the multivariate case is that the forcing series may be deterministic or under the
experimenter's  control.  For  these  models,  the  acronyms  are  extended  with  a  final  "X"  for
"exogenous".

Non-linear dependence of the level of a series on previous data points is of interest, partly
because of the possibility of producing a chaotic time series. However, more importantly, empirical
investigations can indicate the advantage of using predictions derived from non-linear models, over
those from linear models, as for example in nonlinear autoregressive exogenous models. Further
references on nonlinear time series analysis.

Among other  types  of  non-linear  time  series  models,  there  are  models  to  represent  the
changes  of  variance  over  time  (heteroskedasticity).  These  models  represent  autoregressive



conditional  heteroskedasticity  (ARCH)  and  the  collection  comprises  a  wide  variety  of
representation  (GARCH,  TARCH,  EGARCH,  FIGARCH,  CGARCH,  etc.).  Here  changes  in
variability  are  related  to,  or  predicted  by,  recent  past  values  of  the  observed series.  This  is  in
contrast to other possible representations of locally varying variability, where the variability might
be modelled as being driven by a separate time-varying process, as in a doubly stochastic model.

In  recent  work  on  model-free  analyses,  wavelet  transform based  methods  (for  example
locally stationary wavelets and wavelet decomposed neural networks) have gained favor. Multiscale
(often  referred  to  as  multiresolution)  techniques  decompose  a  given  time  series,  attempting  to
illustrate  time dependence  at  multiple  scales.  See  also  Markov switching  multifractal  (MSMF)
techniques for modeling volatility evolution.

A Hidden Markov model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can be
considered as the simplest dynamic Bayesian network. HMM models are widely used in speech
recognition, for translating a time series of spoken words into text.
Notation

A number of different  notations are  in  use for time-series  analysis.  A common notation
specifying a time series X that is indexed by the natural numbers is written
X = {X1, X2, ...}.
Another common notation is
Y = {Yt: t  T},∈
where T is the index set.

Conditions
There are two sets of conditions under which much of the theory is built:

Stationary process
Ergodic process

However,  ideas of stationarity must  be expanded to consider  two important ideas:  strict
stationarity and second-order stationarity. Both models and applications can be developed under
each of these conditions, although the models in the latter case might be considered as only partly
specified.

In addition, time-series analysis can be applied where the series are seasonally stationary or
non-stationary. Situations where the amplitudes of frequency components change with time can be
dealt with in time-frequency analysis  which makes use of a time–frequency representation of a
time-series or signal.

4.6. REAL TIME ANALYTICS PLATFORM (RTAP) APPLICATIONS 
Real time Analytics Platform (RTAP) Applications 

Real Time Analytics Platform (RTAP) analyzes data, correlates and predicts outcomes on a
real time basis. The platform enables enterprises to track things in real time on a worldwide basis
and helps in timely decision making. This platform provides us to build a range of powerful analytic
applications. The platform has two key functions: they manage stored data and execute analytics
program against it. 

Why we need RTAP? 
RTAP addresses the following issues in the traditional or existing RDBMS system 
 Server based licensing is too expensive to use large DB servers 

 Slow processing speed 

 Little support tools for data extraction outside data warehouse 

 Copying large datasets into system is too slow 

 Workload differences among jobs 



 Data kept in files and folder, managing them are difficult 

Analytic platform combines tools for creating analyses with an engine to execute them, a
DBMS to keep and manage them for ongoing use and mechanism for acquiring and preparing data
that are not already stored. The components of the platform are depicted in the figure. 

The data can be collected from multiple data sources and feed through the data integration
process. The data can be captured and transformed and loaded into analytic database management
system (ADBMS). This ADBMS has separate data store to mange data. It also has the provision for
creating functions and procedures to operate on the data. Models can be created for analysis in the
ADBMS itself.  Analytic  applications  can  make  use  of  the  data  in  the  ADBMS and  apply the
algorithms on it. 
The application has the following facilities 
 Ad-hoc reporting 

 Model building 

 Statistical Analysis 

 Predictive Analysis 

 Data visualization 

ADBMS has the following desirable features for data analytics 
 Use of proprietary hardware 

 Hardware sharing model for processing and data through MPP (Massive Parallel Processing) 

 Storage format (row and column manner) and smart data management 

 SQL support and NoSQL support 

 Programming extensibility and more cores, threads which yield more processing power 

 Deployment model 

 Infiniband -speed network 

Applications 
Social Media Analytics 

Social Media is the modern way of communication and networking. It is a growing and
widely accepted way of interaction these days and connects billions of people on a real time basis. 
 Fan page analysis – face book and twitter 

 Tweeter analysis on followers, locations, time to tweet, interest to influence 

 Measure customer service metrics on twitter 

 Social media impacts on website performance 

Business Analytics 
Business  analytics  focuses  on  developing  new  insights  and  understanding  of  business

performance based on data and statistical methods. It gives critical information about supply and



demand of business/product's viability in the marketplace. 
 Goal tracking and returning customers 

 trendlines 

 Brand influence and reputation 

 Combines online marketing and e-commerce data 

Customer analytics 
 Customer profiling 

 Customer segmentation based on behaviour 

 Customer retention by increasing lifetime value 

Applications: Google, IBM, SAS, WEKA analytic tools 

Web Analytics 
It  is  the  process  of  collecting,  analyzing  and reporting  of  web data  for  the  purpose  of

understanding and optimizing web usage. 
 On-site analytics (No. of users visited, no. of current users and actions, user locations etc…) 
 Logfile analysis 
 Click analytics 
 Customer life cycle analytics 
 Tracking web traffic 

Applications: clicky, shinystat, statcounter, site meters etc.. 

4.7. CASE STUDIES - REAL TIME SENTIMENT ANALYSIS, STOCK MARKET 
PREDICTIONS. 
Introduction

Historically, stock market movements have been highly unpredictable. With the advent of
technological  advances  over  the  past  two  decades,  nancial  institutions  and  researchers  have
developed computerized mathematical  models to  maximize their  returns while minimizing their
risk.  One  recent  model  by  Johan  Bollen  involves  analyzing  the  public's  emotional  states,
represented by Twitter feeds, in order to predict the market. The state of the art in sentiment analysis
suggests there are 6 important mood states that enable the prediction of mood in the general public.
The prediction of mood uses the sentiment word lists obtained in various sources where general
state of mood can be found using such word list or emotion tokens. With the number of tweets
posted  on  Twitter,  it  is  believed  that  the  general  state  of  mood  can  be  predicted  with  certain
statistical signicance.

According to Bollen's paper, Twitter sentiment is correlated with the market, preceding it by
a few days. Specically, the Google Prole of Mood States' (GPOMS) `calm' state proved to be a
reliable predictor of the market. Due to the proprietary nature of the GPOMS algorithm, we wish to
see if a simpler method could provide similar results, while still being able to make accurate enough
predictions to be protable.

Sentiment Analysis
We begin our sentiment analysis by applying Alex Davies'  word list in order to see if a

simple  approach  is  sucient  enough  to  correlate  to  market  movement.  For  this,  we  use  a  pre-



generated word list of roughly ve thousand common words along with log probabilities of `happy'
or `sad' associated with the respective words. The process works as follows. First, each tweet is
tokenized  into  a  word  list.  The  parsing  algorithm  separates  the  tweets  using  whitespace  and
punctuation, while accounting for common syntax found in tweets, such as URLs and emoticons.
Next, we look up each token's log-probability in the word list; as the word list is not comprehensive,
we choose to ignore words that do not appear in the list. The log probabilities of each token was
simply added to determine the probability of `happy' and `sad' for the entire tweet. These were then
averaged per day to obtain a daily sentiment value.

As expected, this method resulted in highly uncorrelated data (with correlation coecients of
almost zero). We tried to improve this by using a more comprehensive and accurate dictionary for
positive and negative sentiments.  Specically,  we swapped our initial  word list  with a sentiment
score list we generated using SentiWordNet, which consisted of over 400 thousand words. Since
this list considers relationships between each word and includes multi-word expressions, it provided
better results. We also tried representing the daily sentiment value in a dierent way - instead of
averaging the probabilities of each tweet, we counted the frequency of `happy' tweets (such as using
a threshold probability of above 0.5 for happy) and represented this as a percentage of all tweets for
that day. While this did not improve the output's correlation with stock market data, it did provide
us with more insight into our Twitter data. For example, we see a spike in the percentage `happy'
tweets toward the end of each month (Figure 1). 

We did not news events which could have caused these spikes; however, upon investigating
the source of Twitter data, we found that it had been pre-ltered for a previous research project (i.e.
there may be some bias in what we assumed to be raw Twitter data). Due to a lack of access to
better Twitter data, we conclude that using the frequency of happy tweets is not a reliable indicator
of sentiment for our application and revert to our averaging method.

Constructing the Model
In this  section,  we discuss the construction of our model,  from choosing an appropriate

algorithm to finding a suitable set of features, and provide justication for these decisions.

The Algorithm
We chose to  model  the  data  using  a  linear  regression.  This  decision  was  motivated  by

several factors:
Speed - A fast, ecient algorithm was one of our original specications. This is a must when working
with massive amounts of data in real time, as is the case in the stock market.
Regression - We sought to be able to make investment decisions not only on direction of market
movement, but also to quantify this movement. A simple classier was insucient for this; we required
a regressor.
Accurate - Naturally, we needed an algorithm that would model the data as accurately as possible.
Since our data is, by its nature, very noisy, we chose a simple model to avoid high variance.



Features
The backbone of our algorithm was, of course, Twitter sentiment data. As such, we designed

several features that correspond to these sentiment values at various time-delays to the present.
Training in one-dimensional feature space using only this data, we found that the best results were
obtained when the Twitter data predated the market by 3 days. Using k-fold cross-validation to
quantify  our  accuracy,  we  observed  that  this  model  was  able  to  make  predictions  with
approximately 60% accuracy, a modest improvement over no information (50% accuracy), but we
wanted to see if we could do better. 

We designed 2 more classes of features to try:  one modeling the change in price of the
market each day at various time-delays, the other modeling the total change in price of the market
over  the past n days.  To help us choose a good set of features,  we applied a feature selection
algorithm using forward search to the problem. From this, we learned that the `change in price 3
days ago' feature improved our previous model to one with approximately 64% accuracy.

Further tests indicated that several of the other features are also relevant, however, due to
relatively small amount of training data (72 days or fewer), training in higher-dimensional feature
spaces yielded worse results in practice. Nonetheless, with the availability of more training data, a
more complex and diverse set of features could further improve accuracy. We were able to achieve,
using nearly all of our available data to train (infeasible for portfolio simulation, see next section),
classication accuracy as high as 70%. 

Testing the Model
We have built a model for predicting changes in the stock market price from day to day. We

have identify the accuracy-maximizing set of features and trained our model on these features. Now
we must put it to the test using real-world data to determine if it is protable. We develop 2 different
investment strategies based on predictions from our model,  apply them over some time period,
report on the results, and compare them to 2 benchmark investment strategies.

Our Investment Strategies
Classication  -  The simpler  of  our  2 strategies  considers  only the predicted  direction of  market
movement. That is, we look only at the sign of the anticipated change in price. If it is positive, we
buy as many shares as possible with our current funds. Otherwise, we buy no shares, and simply sit
on the money until the following day when we reevaluate the situation.
Regression - With this more complicated strategy, we seek to exploit knowledge of how much the
market will change, rather than simply the direction it will shift. This allows us to base how much
we invest on how certain we are of our prediction. There are countless such strategies that one could
propose, we chose the following based on observations of good performance:

Here, invest is the percent of our funds we use to buy stock and predicted % change q is computed
by dividing the predicted change in the market tomorrow by the price today.

The Benchmark Investment Strategies
Default - This strategy uses no information about the market, and will simply buy as many shares as
possible each day.

Maximal - This strategy assumes perfect knowledge about future stock prices. We will invest all



available funds when we know the market will go up the following day, and invest no funds when
we know the market will go down. This strategy is, of course, impossible to execute in reality, and
is only being used to quantify the prots from an ideal strategy.

Simulation
We start with exactly enough money to buy 50 shares of stock on the rst day. Note that since

we output results as percentages of starting money, they do not depend on this value, and as such it
is chosen arbitrarily. At the start of each day, we make a prediction and invest according to some
strategy. At the end of the day, we sell all shares at closing price and put the money in this bank.
This is done so that any gains or losses can future gains or losses by virtue of being able to purchase
more or less stock at every time step.

Results
We ran the simulation for each investment strategy, as described above, on 2 dierent time

intervals. The results are shown below:

In the gure on the left, we trained on about 3 4 of the data (72 days) and simulated on about 1
4 of the data (25 days). In the gure on the right, we trained on about 2 3 of the data (64 days) and
simulated on about 1 3 of the data (33 days). We immediately see that both of our strategies fare
better than the default strategy in both simulations.

Note, however, that the regression strategy is more protable in the rst simulation while the
classification strategy is more protable in the second simulation. We observe that on the simulation
in which the model was given less training data (figure on the right), on day 27, our regression
strategy opted to invest only 25% of funds that day because it perceived gains as being uncertain.
This did not happen on the corresponding day in the first simulation (with more training data).
Indeed, with less data to train on, imprecision in our model resulted in a poor investment decision
when using the more complex regression strategy. In general, the classification strategy tends to be
more consistent,  while the regression strategy,  though theoretically more protable,  is  also more
sensitive to noise in the model.


