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6.1. Introduction 

Intelligent data analysis often requires one to extract meaningful conclusions 
about a complicated system using time-series data from a single sensor. If the 
system is linear, a wealth of well-established, powerful techniques is available to 
the analyst. If it is not, the problem is much harder and one must resort to non
linear dynamics theory in order to infer useful information from the data. Either 
way, the problem is often complicated by a simultaneous overabundance and 
lack of data: megabytes of time-series data about the voltage output of a power 
substation, for instance, but no information about other important quantities, 
such as the temperatures inside the transformers. Data-mining techniques [177] 
provide some useful ways to deal successfully with the sheer volume of informa
tion that constitutes one part of this problem. The second part of the problem 
is much harder. If the target system is highly complex—say, an electromechan
ical device whose dynamics is governed by three metal blocks, two springs, a 
pulley, several magnets, and a battery—but only one of its important properties 
(e.g., the position of one of the masses) is sensor-accessible, the data analysis 
procedure would appear to be fundamentally limited. 

Fig. 6.1 shows a simple example of the kind of problem that this chapter ad
dresses: a mechanical spring/mass system and two time-series data sets gathered 
by sensors that measure the position and velocity of the mass. This system is 
linear: it responds in proportion to changes. Pulling the mass twice as far down, 
for instance, wiU elicit an oscillation that is twice as large, not one that is 2 '̂̂  
as large or log 2 times as large. A pendulum, in contrast, reacts nonlinearly: if 
it is hanging straight down, a small change in its angle will have little effect, 
but if it is balanced at the inverted point, small changes have large effects. This 
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Fig. 6.1. A simple example: A spring/mass system and a time series of the vertical 
position and velocity of the mass, measured by two sensors 

distinction is extremely important to science in general and data analysis in par
ticular. If the system under examination is linear, data analysis is comparatively 
straightforward and the tools—the topic of section 6.2 of this chapter—are well 
developed. One can characterize the data using statistics (mean, standard devia
tion, etc.), fit curves to them (functional approximation), and plot various kinds 
of graphs to aid one's understanding of the behavior. If a more-detailed analysis 
is required, one typically represents the system in an "input -I- transfer function 
—>• output" manner using any of a wide variety of time- or frequency-domain 
models. This kind of formalism admits a large collection of powerful reasoning 
techniques, such as superposition and the notion of transforming back and forth 
between the time and frequency domains. The latter is particularly powerful, 
as many signal processing operations are much easier in one domain than the 
other. 

Nonlinear systems pose an important challenge to intelligent data analysis. 
Not only are they ubiquitous in science and engineering, but their mathematics 
is also vastly harder, and many standard time-series analysis techniques sim
ply do not apply to nonlinear problems. Chaotic systems, for instance, exhibit 
broad-band behavior, which makes many traditional signal processing opera
tions useless. One cannot decompose chaotic problems in the standard "input 
-I- transfer function -^ output" manner, nor can one simply low-pass filter the 
data to remove noise, as the high-frequency components are essential elements 
of the signal. The concept of a discrete set of spectral components does not make 
sense in many nonlinear problems, so using transforms to move between time 
and frequency domains—a standard technique that lets one transform differen
tial equations into algebraic ones and vice versa, making the former much easier 
to work with—does not work. For these and related reasons, nonlinear dynam-
icists eschew most forms of spectral analysis. Because they are soundly based 
in nonlinear dynamics theory and rest firmly on the formal definition of invari
ants, however, the analysis methods described in section 6.3 of this chapter do 
not suffer from the kinds of limitations that apply to traditional linear analysis 
methods. 


