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Kernel Methods (KM) are a relatively new family of algorithms that presents 
a series of useful features for pattern analysis in datasets. In recent years, their 
simplicity, versatility and efficiency have made them a standard tool for practi­
tioners, and a fundamental topic in many data analysis courses. We will outline 
some of their important features in this Chapter, referring the interested reader 
to more detailed articles and books for a deeper discussion (see for example [135] 
and references therein). 

KMs combine the simplicity and computational efficiency of linear algo­
rithms, such as the perceptron algorithm or ridge regression, with the flexibility 
of non-linear systems, such as for example neural networks, and the rigour of 
statistical approaches such as regularization methods in multivariate statistics. 
As a result of the special way they represent functions, these algorithms typi­
cally reduce the learning step to a convex optimization problem, that can always 
be solved in polynomial time, avoiding the problem of local minima typical of 
neural networks, decision trees and other non-linear approaches. 

Their foundation in the principles of Statistical Learning Theory make them 
remarkably resistant to overfitting especially in regimes where other methods 
are affected by the 'curse of dimensionality'. It is for this reason that they have 
become popular in bioinformatics and text analysis. Another important feature 
for applications is that they can naturally accept input data that are not in the 
form of vectors, such as for example strings, trees and images. 

Their characteristically modular design makes them amenable to theoreti­
cal analysis but also well suited to a software engineering approach: a general 
purpose learning module is combined with a data specific 'kernel function' that 
provides the interface with the data and incorporates domain knowledge. Many 
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learning modules can be used depending on whether the task is one of classifi­
cation, regression, clustering, novelty detection, ranking, etc. At the same time 
many kernel functions have been designed: for protein sequences, for text and 
hypertext documents, for images, time series, etc. The result is that this method 
can be used for deahng with rather exotic tasks, such as ranking strings, or clus­
tering graphs, in addition to such classical tasks as classifying vectors. We wiU 
delay the definition of a kernel till the next section even though kernels form the 
core of this contribution. 

In this Chapter, we will introduce the main concepts behind this approach 
to data analysis by discussing some simple examples. We wiU start with the 
simplest algorithm and the simplest kernel function, so as to iUustrate the basic 
concepts. Then we will discuss the issue of overfitting, the role of generahzation 
bounds and how they suggest more effective strategies, leading to the Support 
Vector Machine (SVM) algorithm. In the conclusion, we wiU briefly discuss other 
pattern recognition algorithms that exploit the same ideas, for example Princi­
pal Components Analysis (PCA), Canonical Correlation Analysis (CCA), and 
extensions of the SVM algorithm to regression and novelty detection. In this 
short chapter we err in favour of giving a detailed description of a few standard 
methods, rather than a superficial survey of the majority. 

The problem we will use as an example throughout the chapter is the one 
of learning a binary classification function using a real-valued function f : X C 
M" —>• IR in the foUowing way: the input x = (xi,... ,a;„)' is assigned to the 
positive class, if / (x) > 0, and otherwise to the negative class. We are interested 
in the case where / (x) is a non-linear function of x £ X, though we will solve 
the non-linear problem by using linear / (x) in a space that is the image of a 
non-linear mapping. 

We will use X to denote the input space and Y to denote the output domain. 
Usually we wiU have X C M", while for binary classification Y = { — 1,1} and 
for regression F C M. The training set is a collection of training examples, which 
are also called training data. It is denoted by 

5 = ( ( x i , 2 / i ) , . . . , ( x „ , 2 / „ ) ) C ( X x r ) ™ , 

where m is the number of examples. We refer to the Xj as examples or instances 
and the t/i as their labels. Note that if AT is a vector space, the input vectors are 
column vectors as are the weight vectors. If we wish to form a row vector from 
Xj we can take the transpose x^. We denote by (x,w) = x'w = ^ ^ XjWj the 
inner product between the vectors x and w. 

5.1. Example: Kernel Perceptron 

The main idea of Kernel Methods is to first embed the data into a suitable 
vector space, and then use simple linear methods to detect relevant patterns in 
the resulting set of points. If the embedding map is non-linear, this enables us to 
discover non-linear relations using linear algorithms. Hence, we consider a map 


