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4.1. Introduct ion 

Classical statistics provides methods to analyze data, from simple descriptive 
measures to complex and sophisticated models. The available data are processed 
and then conclusions about a hypothetical population — of which the data 
available are supposed to be a representative sample — are drawn. 

It is not hard to imagine situations, however, in which data are not the only 
available source of information about the population. 

Suppose, for example, we need to guess the outcome of an experiment that 
consists of tossing a coin. How many biased coins have we ever seen? Probably not 
many, and hence we are ready to believe that the coin is fair and that the outcome 
of the experiment can be either head or tail with the same probability. On the 
other hand, imagine that someone would tell us that the coin is forged so that 
it is more likely to land head. How can we take into account this information in 
the analysis of our data? This question becomes critical when we are considering 
data in domains of application for which knowledge corpora have been developed. 
Scientific and medical data are both examples of this situation. 

Bayesian methods provide a principled way to incorporate this external in­
formation into the data analysis process. To do so, however, Bayesian methods 
have to change entirely the vision of the data analysis process with respect to 
the classical approach. In a Bayesian approach, the data analysis process starts 
already with a given probability distribution. As this distribution is given before 
any data is considered, it is called prior distribution. In our previous example, 
we would represent the fairness of the coin as a uniform prior probability dis­
tribution, assigning probability 0.5 of landing to both sides of the coin. On the 
other hand, if we learn, from some external source of information, that the coin 
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is biased then we can model a prior probability distribution that assigns a higher 
probability to the event that the coin lands head. 

The Bayesian data analysis process consists of using the sample data to 
update this prior distribution into a posterior distribution. The basic tool for this 
updating is a theorem, proved by Thomas Bayes, an Eighteen century clergyman. 
The fundamental role of Bayes' theorem in this approach is testified by the fact 
that the whole approach is named after it. 

The next section introduces the basic concepts and the terminology of the 
Bayesian approach to data analysis. The result of the Bayesian data analysis 
process is the posterior distribution that represents a revision of the prior dis­
tribution on the light of the evidence provided by the data. The fact that we 
use the posterior distribution to draw conclusions about the phenomenon at 
hand changes the interpretation of the typical statistical measures that we have 
seen in the previous chapters. Section 4.3 describes the foundations of Bayesian 
methods and their applications to estimation, model selection, and reliability 
assessment, using some simple examples. More complex models are considered 
in Section 4.4, in which Bayesian methods are applied to the statistical analysis 
of multiple linear regression models and Generahzed Linear Models. Section 4.5 
will describe a powerful formalism known as Bayesian Belief Networks (BBN) 
and its applications to prediction, classification and modeling tasks. 

4.2. The Bayesian Paradigm 

Chapters 2 and 3 have shown that classical statistical methods are usuaUy fo­
cused on the distribution p{y\0) of data y, where p{-\0) denotes either the 
probability mass function or the density function of the sample of n cases 
y = (yi,... ,yn) and is known up to a vector of parameters 0 = {0i,... ,6k)- The 
information conveyed by the sample is used to refine this probabilistic model by 
estimating 6, by testing hypotheses on 6 and, in general, by performing statisti­
cal inference. However, classical statistical methods do not aUow the possibility 
of incorporating external information about the problem at hand. Consider an 
experiment that consists of tossing a coin n times. If the results can be regarded 
as values of independent binary random variables Yi taking values 1 and 0 — 
where 9 = p{Yi = 1) and Yi = 1 corresponds to the event "head in trial «" — 
the likehhood function L{9) = p{y\9) (see Chapter 2) is 

and the ML estimate of 9 is 

g _ l^i Hi 

which is the relative frequency of heads in the sample. This estimate of the 
probability of head is only a function of the sample information. 

Bayesian methods, on the other hand, are characterized by the assumption 
that it is also meaningful to talk about the conditional distribution of 6, given 


