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9.1. Introduction 

In the previous chapters a number of different methodologies for the analysis of 
datasets have been discussed. Most of the approaches presented, however, assume 
precise data. That is, they assume that we deal with exact measurements. But in 
most, if not all real-world scenarios, we will never have a precise measurement. 
There is always going to be a degree of uncertainty. Even if we are able to measure 
a temperature of 32.42 degrees with two significant numbers, we will never know 
the exact temperature. The only thing we can really say is that a measurement 
is somewhere in a certain range, in this case (32.41,32.43) degrees. In effect, aU 
recorded data are really intervals, with a width depending on the accuracy of 
the measurement. It is important to stress that this is different from probability, 
where we deal with the likelihood that a certain crisp measurement is being 
obtained [558]. In the context of uncertainty we are interested in the range into 
which our measurement falls. Several approaches to handle information about 
uncertainty have already been proposed, for example interval arithmetic allows 
us to deal and compute with intervals rather than crisp numbers [388], and 
also numerical analysis offers ways to propagate errors along with the normal 
computation [34]. 

This chapter will concentrate on presenting an approach to deal with im­
precise concepts based on fuzzy logic. This type of logic enables us to handle 
uncertainty in a very intuitive and natural manner. In addition to making it 
possible to formalize imprecise numbers, it also enables us to do arithmetic us­
ing such fuzzy numbers. Classical set theory can be extended to handle partial 
memberships, thus making it possible to express vague human concepts using 
fuzzy sets and also describe the corresponding inference systems based on fuzzy 
rules. 
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Another intriguing feature of using fuzzy systems is the ability to granulate 
information. Using fuzzy clusters of similarity we can hide unwanted or useless 
information, ultimately leading to systems where the granulation can be used to 
focus the analysis on aspects of interest to the user. 

The chapter will start out by explaining the basic ideas behind fuzzy logic 
and fuzzy sets, followed by a brief discussion of fuzzy numbers. We will then 
concentrate on fuzzy rules and how we can generate sets of fuzzy rules from 
data. We will close with a discussion of Fuzzy Information Theory, linking this 
chapter to Appendix B by showing how Fuzzy Decision Trees can be constructed. 

9.2. Basics of Fuzzy Sets and Fuzzy Logic 

Before introducing the concept of fuzzy sets it is beneficial to recall classical sets 
using a slightly different point of view. Consider for example the set of "young 
people", assuming that our perception of a young person is someone with an age 
of no more than 20 years: 

young = {x G P \ age(a;) < 20} 

over some domain P of all people and using a function age that returns the age 
of some person a; £ P in years. We can also define a characteristic function: 

/ N _ / 1 '• age(a;) < 20 
myoungia;)- | Q . age(x) > 20 

which assigns to elements of P a value of 1 whenever this element belongs to the 
set of young people, and 0 otherwise. This characteristic function can be seen as 
a membership function for our set young, defining the set young on P. 

Someone could then argue with us that he, being just barely over 20 years old, 
still considers himself young to a very high degree. Defining our set young using 
such a sharp boundary seems therefore not very appropriate. The fundamental 
idea behind fuzzy set theory is now a variable notion of membership; that is, 
elements can belong to sets to a certain degree. For our example we could then 
specify that a person with an age of, let's say, 21 years, still belongs to the set of 
j/own^ people, but only to a degree of less than one, maybe 0.9. The corresponding 
membership function would look slightly different: 

0 

age(a;) < 20 
20 < age(a;) < 30 
30 < age(a;) 

Now our set young contains people with ages between 20 and 30 with a linearly 
decreasing degree of membership, that is, the closer someone's age approaches 
30, the closer his degree of membership to the set of young people approaches 
zero (see Figure 9.1). 


