
Datastructures and Algorithms

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
Introduction to Algorithms (3rd edition)

MIT Press

1 / 289

Red thread (Dutch expression) of this course

Programming requires algorithmic design.

Computers are founded on a universal computation framework.

We will study basic data structures and algorithms.

Some (at first sight simple) problems are undecidable.

Some finite, NP-complete problems, like
the traveling salesman problem, can probably
not be solved efficiently on a computer (if P 6= NP).

2 / 289

What this course is (not) about

This isn’t a programming course (there are no computer labs).

It isn’t a theory course either (proofs are omitted or sketched).

Still, this course is crucial to become a good programmer
(algorithms, data structures).

We will delve into the foundations of computer science
(undecidability, P = NP).

And we will look at another model of computation
(quantum computing).

3 / 289

Example algorithm: baking a cake

ingredients input

recipe algorithm (software, computer program)

tools data structures

oven hardware

cake output

4 / 289

Example: Euclid’s greatest common divisor algorithm

Euclid (Alexandria, around 300 BC)

Compute the greatest common divisor of two non-negative numbers n ≥ m:

I if m = 0, then return n;

I else, compute the greatest common divisor of m and n mod m
(i.e., the remainder after dividing n by m).

The second line contains a recursive call.

5 / 289

Pseudocode of Euclid’s algorithm

Compute greatest common divisor of natural numbers m and n

Euclid(m : natural, n : natural)

if m = 0 then

return n

if n = 0 then

return m

if m ≤ n then

Euclid(m, n mod m)

else

Euclid(m mod n, n)

6 / 289

Algorithm

An algorithm is a list of instructions that captures the essence of
(part of) a computer program.

Important aspects:

I Termination: does the algorithm always produce output ?

I Correctness: does it meet its requirements ?

I Efficiency: how much time and memory space does it use ?

7 / 289

Our model

Computer: Random Access Machine (RAM)

Data structure: specification as an abstract data type

Algorithm: description in pseudocode

8 / 289

Random Access Machine (RAM)

Central Processing Unit (CPU) with memory:

CPU Memory

Assumptions:

I Unlimited number of memory cells, also called registers.

I Primitive operations, like reading or writing to a register,
take constant (little) time.

9 / 289

Data structure

A data structure is a particular way of storing and organizing data
in a computer so that it can be used efficiently.

Different data structures are suited to different applications;
some are highly specialized to specific tasks.

An abstract data type specifies a data structure by operations
performed on it, including exception handling:

anomalous/exceptional events requiring special processing.

Example: A stack is defined by two operations:

I push(d) inserts datum d on top of the stack.

I pop() extracts the top item from the stack, if it is non-empty.

10 / 289

Pseudocode

Pseudocode resembles a programming language, but is more abstract,
and independent of a specific syntax.

I Input and output

I Variable declarations, parameters

I Abstract data types

I Reads from and writes to registers

I Control flow: if ... then ... (else ...) while ... do ...
for ... to ... do ...

In a computer program this is usually closed, e.g. by fi or od, but
we use indenting instead, which is fine for humans (and Python)

I Recursive calls

11 / 289

Pseudocode constructs

var declares the types of the variables used in the pseudocode.

new declares a fresh variable inside the pseudocode.

x ← v assigns the value v to variable x .

while b do p performs procedure p as long as boolean b is true
(which is checked every time p terminates).

if b then p else q performs p if b is true, and q if b is false.

for i = 1 to n do p(i) sequentially performs p(1), p(2), . . . , p(n).

for i = n downto 1 do p(i) performs p(n), p(n − 1), . . . , p(1).

return (x) terminates the program (and returns the value of x).

throw SomeException throws some (unspecified) exception if the values
of some variables obstruct the computation.

12 / 289

Array

An array A[1..n] consists of n registers A[1], A[2], . . . ,A[n].

In the next procedure, n is a parameter of type natural that must
be instantiated with a concrete natural number when it is called.

13 / 289

Pseudocode example

Compute maximum among n natural numbers

FindMax(A[1..n] : array of naturals)

var currentMax ← A[1] : natural

for i = 2 to n do

if currentMax < A[i] then

currentMax ← A[i]

return currentMax

14 / 289

Stacks

LIFO: last in first out.

Examples: A stack of plates.

Memory of the undo button in an editor.

Operations: push an element onto the stack.

pop the top element from the stack.

Example:

2

1

5

2

1

2

1

5

3
push(3)pop()

returns 5

15 / 289

Stack as an abstract data type

Main operations:

I push(d)
pushes element d onto the top of the stack.

I pop()
removes the top element from the stack and returns it.

Some auxiliary operations:

I isEmpty()
returns a Boolean indicating whether the stack is empty.

I size()
returns the number of elements on the stack.

I top()
returns the top element of the stack without removing it.

Exceptions / errors:

I When pop() or top() is performed on an empty stack.

16 / 289

Implementing a bounded stack with an array

The maximum size n of the stack is fixed beforehand,
to determine the number of slots in the array.

Stack elements are added from left to right in the array.

The value of variable t points at the slot in the array
that holds the top element of the stack.

When the stack is empty, t = 0.

When the array overflows, an exception is thrown.

Example: n = 13 3 2 5 4 1 4

1 2 3 · · · t = 6

17 / 289

Bounded stack: pseudocode

Stack implementation with an array A[1..n]

var t ← 0 : natural

push(d : datum)

if t = n then
throw FullStackException

else
t ← t + 1
A[t]← d

pop()

if t = 0 then
throw EmptyStackException

else
t ← t − 1
return A[t + 1]

18 / 289

Factors for time consumption

Hardware: processor, clock rate, main memory, caches, . . .

Software: operating system, programming language, compiler, . . .

Algorithm: time complexity

Input size: larger input size tends to mean longer running time

19 / 289

Experimental performance analysis

We can perform experiments, using a real-time clock.

I An implementation is needed.

I For comparisons, we must use the same hardware and software

(And even then different workloads may induce differences.)

I Only for a finite number of inputs

(And we may miss inputs with a very bad performance.)

I We don’t obtain insight into exhibited performance.

20 / 289

Theoretical time complexity analysis

Worst-case time complexity analysis provides an upper bound,
as a function of the size of the input.

I No implementation is needed.

I Independent of hardware and software.

I For all possible inputs.

I Provides insight into performance.

But an algorithm with a poor worst-case time complexity may
in practice perform fine.

21 / 289

Counting primitive operations for FindMax

initialization:
read A[1] 1
assign value of A[1] to currentMax 1

bookkeeping for loop:
assign value 2 to i 1
check i ≤ n (n − 1 times true, 1 time false) n
compute i + 1 n − 1
assign value of i + 1 to i n − 1

body of loop for i = 2, . . . , n:
read currentMax and A[i] 2·(n − 1)
check whether currentMax < A[i] n − 1
possibly assign value of A[i] to currentMax worst-case n − 1

return:
return value of currentMax 1

22 / 289

Counting primitive operations

Count the number of operations in the worst or average case.

The last case requires a probability distribution over possible executions.

For FindMax:

Worst-case: 4 + n + 6·(n − 1) = 7·n − 2 operations

Best-case: 4 + n + 5·(n − 1) = 6·n − 1 operations

Question: Classify the arrays on which FindMax achieves its best and
worst performances.

23 / 289

Relating time complexity to input size

Precisely counting the number of operations is tedious.

We are actually most interested in:

I Running time as a function of the size of the input.

I Growth of running time when input size increases.

(For example, the running time of FindMax grows linearly in n.)

I Asymptotic approximation (so that e.g. a constant factor
difference between hardware platforms becomes irrelevant).

24 / 289

Big O for upper bounds on complexity

Let f , g : N→ R≥0.

f ∈ O(g) (i.e., f is in the set O(g)) if, for some C > 0

f (n) ≤ C ·g(n) for all n ∈ N.

Example: The (worst- and average-case) time complexity
of FindMax(A[1..n]) is in O(n).

Examples: na ∈ O(nb) for all 0 < a ≤ b

na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a, b > 0

25 / 289

Growth of some important functions

x

f (x)

f (x) = log x

f (x) = x

f (x) = x · log x

f (x) = x2

f (x) = ex

26 / 289

Divide-and-conquer algorithm

A divide-and-conquer algorithm

I splits the original problem P into smaller subproblems,

I solves the subproblems recursively, and

I combines solutions of subproblems into a solution of P.

Divide-and-conquer algorithms typically have a logarithm
in their time complexity.

Because dividing a problem of input size 2k into subproblems of
size 1 takes k steps.

And k = log2 2k .

27 / 289

Tight bounds

f ∈ Θ(g) if, and only if, f ∈ O(g) and g ∈ O(f).

Example: The time complexity of FindMax(A[1..n]) is in Θ(n).

Question: Relate n3, n2, n3 + n2 + 9, log2 n, 2n, 2log2 n, and
√

n.

28 / 289

Queues

FIFO: first in first out.

Examples: A bakery.

A printer queue.

Operations: enqueue an element at the tail of the queue.

dequeue the element at the head of the queue.

Example:

2

1

5

2

1

2

1

5

3

enqueue(3)dequeue()

returns 5

29 / 289

Queue as an abstract data type

Main operations:

I enqueue(d)
adds element d at the tail of the queue.

I dequeue()
removes the element at the head of the queue and returns it.

Some auxiliary operations:

I isEmpty()
returns a Boolean indicating whether the queue is empty.

I size()
returns the number of elements in the queue.

I head()
returns the head element of the queue without removing it.

Exceptions / errors:

I When dequeue() or head() is performed on an empty queue.

30 / 289

Queues: example

Operation Output (head← Q ← tail)

()
enqueue(5) – (5)
enqueue(3) – (5, 3)

head() 5 (5, 3)
size() 2 (5, 3)

dequeue() 5 (3)
isEmpty() false (3)
dequeue() 3 ()
isEmpty() true ()
dequeue() EmptyQueueException ()

31 / 289

Implementing a bounded queue with an array

The maximum size n of the queue is fixed beforehand,
to determine the number of slots in the array.

Queue elements are added from left to right in the array.

The value of variable h points at the slot in the array
that holds the head element of the queue.

The value of variable r points at the slot in the array
to the right of the tail element of the queue.

The values of h and r as array slots are interpreted
modulo n (with range 0, . . . , n − 1).

When the queue is empty (r = h) or full (r = h + n),
an exception is thrown for a dequeue or enqueue, respectively.

32 / 289

Bounded queue: example

h̄ = h mod n, r̄ = r mod n always h ≤ r ≤ h + n

3 2 5 4 1

0 1 2 . . . h̄ r̄ n−1

3 25 4 1

h̄r̄

3 25 4 1 4 6 2 3 6 4 7 1

h̄
r̄

full queue (r = h + n)

h̄
r̄

empty queue (r = h)

33 / 289

Bounded queue: pseudocode

Queue implementation with an array A[0..n − 1]

var h← 0, r ← 0 : natural

enqueue(d : datum)

if r = h + n then
throw FullQueueException

else
A[r mod n]← d
r ← r + 1

dequeue()

if r = h then
throw EmptyQueueException

else
h← h + 1
return A[(h − 1) mod n]

34 / 289

Stack/queue implementation using lists

Drawbacks of an array implementation of a stack or queue:

I Memory is wasted if the size of the stack/queue is less than n.

I The size of the stack/queue must be bounded.

An alternative is to store each element in a node in a list structure.

For example, in case of a stack:

I top points to the top of the stack.

I If the stack is empty, top is a null pointer.

I Each node carries a pointer to its predecessor on the stack

(or a null pointer, for the bottom element of the stack).

35 / 289

Singly-linked lists

A node v in a (singly-linked) list contains:

I a data element v .element, and

I a pointer v .next to the next node in the list.

In the last node of the list this pointer is null.

next

element

36 / 289

Singly-linked lists

Variables first and last point to the first and last node in the list.

Initially they have the value null.

null

first last

element 1 element 2 element 3 element 4

37 / 289

List as an abstract data type

first() isFirst(v)

last() isLast(v)

size() insert(d)

isEmpty() remove(v)

inList(v) replaceElement(v , d)

before(v) insertBefore(v , d)

after(v) insertAfter(v , d)

38 / 289

Question

What is the worst-case time complexity of (a naive implementation of)
inList(v) ?

Answer: O(n), with n the length of the list.

39 / 289

insertAfter(v , d): pseudocode

Insert a new node after a given node in a list

insertAfter(v : node, d : datum)

if inList(v) returns false then

throw NodeAbsentException

new w : node

w .element ← d

w .next ← v .next

v .next ← w

if last = v then

last ← w

40 / 289

insertAfter(v , d): example

null

A B C

null

A B C

d

v

v

w

last

last

first

first

41 / 289

Questions

Could w .element ← d be moved to the end of the program ?

Could w .next ← v .next be moved to the end of the program ?

What is the worst-case time complexity of insertAfter(v , d) ?

Answer: O(n), due to the application of inList(v).

42 / 289

Doubly-linked lists

A node v in a doubly-linked list contains:

I a data element v .element,

I a pointer v .next to the next node in the list, and

I a pointer v .prev to the previous node in the list.

prev next

element

43 / 289

Doubly-linked lists

Variables header and trailer point to sentinel nodes,
marking the start and end of the list.

These sentinel nodes initially have the value null.

header trailer

element 1 element 2 element 3 element 4

44 / 289

insertAfter(v , d) in a doubly-linked list

A B C

A B C

d

v x

v x

w

45 / 289

Sorting

Given a totally ordered set of elements.

Input: A list of elements.

Output: The ordered permutation of this list.

In many applications, elements are actually keys of some item,
and the aim is to find such items quickly.

Think of a phone book, where names are ordered alphabetically,
so that corresponding phone numbers can be found quickly.

46 / 289

Sorting

We discuss a wide range of sorting algorithms for several reasons.

I Sorting is a fundamental and important algorithmic challenge.

I Different algorithms have different (dis)advantages.

I Exemplify different algorithmic approaches.

I Show how the algorithmic design influences time complexity.

I Show the importance of tailor-made data structures.

47 / 289

Selection sort

While the unsorted part of the list contains more than one element:

I search for a smallest element in the unsorted part of the list,

I swap this element with the first element in the unsorted part
of the list, and

I exclude this element from the unsorted part of the list.

5 4 3 7 1

1 4 3 7 5

1 3 4 7 5

1 3 4 7 5

1 3 4 5 7

unsorted part

sorted part

48 / 289

Selection sort: pseudocode

Selection sort for an array A[1..n] of naturals

var min, x : natural

for j = 1 to n − 1 do

min← j

for k = j + 1 to n do

if A[k] < A[min] then

min← k

x ← A[min]

A[min]← A[j]

A[j]← x

49 / 289

Question

Why do we use a help variable x to swap the values of A[j] and A[min] ?

From now on we assume a function swap(,) to perform such swaps.

50 / 289

Selection sort: time complexity

The worst-case time complexity of sorting a list of length n is

O(n2).

Most time is spent on repeatedly finding a smallest element
in the unsorted part.

Each run of the outer for loop takes O(n − j) time.

And O((n − 1) + · · ·+ 1) = O(n2).

51 / 289

Questions

What is the best-case time complexity of selection sort ?

Answer: O(n2)

What is the average-case time complexity of selection sort ?

Answer: O(n2)

52 / 289

Bubble sort

Repeatedly traverse the list from left to right, compare each pair
of adjacent numbers, and swap them if they are in the wrong order.

After a traversal, the rightmost element is largest in
the traversed list, so is excluded from the next traversal.

53 / 289

Bubble sort: example

5 4 3 7 1

4 5 3 7 1

4 3 5 7 1

4 3 5 7 1

4 3 5 1 7

3 4 5 1 7

3 4 5 1 7

3 4 1 5 7

3 4 1 5 7

3 1 4 5 7

1 3 4 5 7

unsorted part

sorted part

54 / 289

Bubble sort: pseudocode

Bubble sort for an array A[1..n] of naturals

for i = n − 1 downto 1 do

for j = 1 to i do

if A[j] > A[j + 1] then

swap(A[j],A[j + 1])

55 / 289

Mergesort

While the list contains more than one element:

I split it into two halves of (almost) equal length,

I sort each of the two sublists using mergesort, and

I merge the two sorted sublists.

Merging two sorted lists is performed as follows.

As long as both lists are non-empty:

I compare the first element of both lists, and

I move the smallest of the two to the first empty slot
in the merged list.

When one of the lists becomes empty,
add (the remainder of) the other list at the tail of the merged list.

56 / 289

Mergesort: example

7 1 2 9 | 6 5 3 8 7→ 1 2 3 5 6 7 8 9

7 1 | 2 9 7→ 1 2 7 9

7 | 1 7→ 1 7

7 7→ 7 1 7→ 1

2 | 9 7→ 2 9

2 7→ 2 9 7→ 9

6 5 | 3 8 7→ 3 5 6 8

6 | 5 7→ 5 6

6 7→ 6 5 7→ 5

3 | 8 7→ 3 8

3 7→ 3 8 7→ 8

Each node represents a recursive call.

57 / 289

Divide and conquer

Mergesort is a divide-and-conquer algorithm:

I Divide: split the original problem into smaller subproblems.

I Solve the subproblems using recursion.

I Conquer: combine the solutions of the subproblems into
a solution of the original problem.

58 / 289

Logarithms

Divide-and-conquer algorithms typically have a logarithm
in their time complexity, as dividing a problem of input size 2k

into subproblems of size 1 takes k steps. And k = log2 2k .

operation inverse

m + n (m + n)− n = m
m + n (m + n)−m = n

m · n (m · n)/n = m
m · n (m · n)/m = n

mn n
√

mn = m
mn logm mn = n

59 / 289

Logarithms

loga n ∈ O(logb n) for all a, b > 0.

loga am = m ⇒ aloga a
m

= am ⇒ aloga n = n.

aloga b · logb n = (aloga b)logb n = blogb n = n = aloga n

Hence, loga b · logb n = loga n.

So we write O(log n) instead of O(loga n).

60 / 289

Mergesort: time complexity

Merging two sorted lists of length k and ` takes at most O(k + `) time.

Splits, so also merges, take place at dlog2 ne levels.

In total, this takes at most O(n) time per level.

So the worst-case time complexity is O(n · log n).

10 2m

21 2m−1

.

2mm 1

level nodes size

61 / 289

Dynamic programming

Dynamic programming: divide a problem into subproblems.

Use memoization, i.e., store solutions to subproblems, to look them up
when needed.

Question: The Fibonacci numbers are defined by F (0) = F (1) = 1 and
F (n + 2) = F (n) + F (n + 1).

Why is memoization is essential to efficiently compute these numbers ?

62 / 289

0 -1 knapsack problem: dynamic programming solution

Given n items i1, . . . , in; item ik has value vk ∈ R and weight wk ∈ N.

Find items of total weight ≤W that have a maximal total value.

m[k,w] represents a solution if only the first k items can be selected
and the total weight must be ≤ w .

m[0,w] = 0 for all w

m[k + 1,w] =

{
m[k ,w] if wk+1 > w

max{m[k ,w], m[k ,w − wk+1] + vk+1 } if wk+1 ≤ w

The solution to the 0 -1 knapsack problem is computed in m[n,W].

63 / 289

0 -1 knapsack problem: dynamic programming solution

for w = 0 to W do

m[0,w]← 0

for k = 0 to n − 1 do

for w = 0 to W do

if wk+1 > w then

m[k + 1,w]← m[k ,w]

else

m[k + 1,w]← max{m[k ,w], m[k ,w − wk+1] + vk+1 }

64 / 289

0 -1 knapsack problem: NP-completeness

Time complexity: O(n ·W)

This looks polynomial, but is exponential in the input size.

Because W is represented by log10 W decimals.

The 0 -1 knapsack problem reformulated as a decision problem:

Can a total value ≥ V (for some given V) be achieved ?

This problem is NP-complete.

It suggests that no efficient general solution exists.

65 / 289

Mergesort: drawback

Weak point is that merging two sorted sublists must take place
outside the original list.

This is going to be solved by the following sorting algorithm.

66 / 289

Quicksort

While the list contains more than one element:

I Pick a number p from the list, called the pivot.

I Concurrently walk through the list from the left and from the right,
until these walks meet.

If from the left a number ≥ p and from the right a number ≤ p
are encountered, then swap these numbers.

I Split the list into two parts, containing numbers ≤ p and ≥ p,
respectively.

Recursively apply quicksort to both sublists.

Often the pivot is simply taken to be the first element of the list.

67 / 289

Quicksort: pseudocode

Quicksort for an array A[k ..`] of naturals

QuickSort(A[k..`])

var m : natural

if k < ` then

m← Partition(A[k ..`])

QuickSort(A[k ..m])

QuickSort(A[m + 1..`])

68 / 289

Quicksort: pseudocode

Partition(A[k ..`])

var i ← k − 1, j ← `+ 1, pivot ← A[k] : natural

while i < j do

i ← i + 1

while A[i] < pivot do

i ← i + 1

j ← j − 1

while A[j] > pivot do

j ← j − 1

if i < j then

swap(A[i],A[j])

return j

69 / 289

Quicksort: example

3 6 0 9 4 2

2 0

0 2

6 9 4 3

3 4

3 4

9 6

6 9

Each node represents a recursive call.

70 / 289

Quicksort: time complexity

In the worst case, quicksort takes O(n2) time to sort a list of length n.

For example, apply quicksort to the list [1, 2, . . . , n].

(Let the pivot always be the first element of the list.)

First, the original list is split into [1] and [2, . . . , n].

Next, [2, . . . , n] is split into [2] and [3, . . . , n]. And so on.

The average-case time complexity of quicksort is O(n · log n) !

(In contrast to insertion, selection and bubble sort.)

Randomization of pivot selection can reduce average running time.

71 / 289

Questions

Why don’t we swap if from the left a number > p and from the right
a number < p are encountered ?

Answer: Else in Partition(A[k ..`]) an additional check would be needed
to ensure that indices i and j don’t go outside the range [k ..`].

Why is it convenient to pick an element in the list as pivot ?

Answer: Again, else i or j could go outside the range [k ..`].

72 / 289

Questions

Can QuickSort(L) lead to subcalls QuickSort(L) and QuickSort(∅) ?

Suppose we would take the last element in the array as pivot.

Could then QuickSort(L) lead to subcalls QuickSort(L) and QuickSort(∅) ?

73 / 289

Quicksort: correctness

Let k < `. Suppose Partition(A[k ..`]) returns m.

I k ≤ m < `.

I Partition yields a permutation of the original list,
where A[k..m] contains only numbers ≤ A[k]
and A[m + 1..`] contains only numbers ≥ A[k].

The second claim holds because i traversed A[k ..m − 1],
j halted at A[m], and j traversed A[m + 1..`].

By induction, QuickSort(A[k ..m]) and QuickSort(A[m + 1..`])
produce ordered versions of A[k ..m] and A[m + 1..`], respectively.

These facts together imply that QuickSort(A[k ..`]) produces
an ordered version of A[k..`].

74 / 289

Trees

A tree consists of nodes connected by an acyclic parent-child relation.

There is a unique root node.

Each non-root has a unique parent.

A leaf is a node without children.

Example:
root

left

ping

0 1

right

2 pong

3

4

75 / 289

Binary trees

In a binary tree, each node has at most two children.

The root carries index 1, and if a node has index i ,
then its children (if any) are indexed 2i and 2i + 1.

1

2

4 5

3

6 7

These indices correspond to slots in an array,
and shouldn’t be confused with the numbers stored in the nodes.

An array of length n gives rise to a binary tree of depth blog2 nc.

76 / 289

Heaps

A binary tree in which each node contains an element from
a totally ordered set S is a heap if:

I The binary tree is completely filled at all levels,
except possibly the lowest level, which is filled from left to right.

I On each path from the root to a leaf, numbers are non-increasing.

Example:

21 3 4 5 6 7

28 20 9 1 20 4 2

28

20

1 20

9

4 2

77 / 289

Strong points of a heap

Turning an array of length n into a heap takes Θ(n).

Finding the largest element in a heap takes Θ(1).

Replacing the element in the root of a heap, and restoring the heap,
takes at most O(log n).

Question: How can we use heaps for an efficient sorting algorithm ?

78 / 289

Constructing a heap

The binary tree representation of an array is turned into a heap in
a bottom-up fashion.

For i = bn2c down to 1, turn the binary tree rooted in node i into
a heap as follows:

I The binary trees rooted in its children 2i and 2i + 1 (if present)
have already been turned into heaps.

Let the roots of these heaps contain numbers k and `.

I Move the number m in node i downward, to its proper place
in the heap.

That is, if k or ` is larger than m, then swap m with max{k , `}
and repeat this process at the lower level.

79 / 289

Constructing a heap: example

We build a heap from the following array of 24 − 1 = 15 numbers:

18 21 20 3 23 17 1 12 13 24 16 22 19 5 8

3

12 13

23

24 16

17

22 19

1

5 8

80 / 289

Constructing a heap: example

We build a heap from the following array of 24 − 1 = 15 numbers:

18 21 20 3 23 17 1 12 13 24 16 22 19 5 8

21

13

12 3

24

23 16

20

22

17 19

8

5 1

81 / 289

Constructing a heap: example

We build a heap from the following array of 24 − 1 = 15 numbers:

18 21 20 3 23 17 1 12 13 24 16 22 19 5 8

18

24

13

12 13

23

21 16

22

20

17 19

8

5 1

82 / 289

Constructing a heap: pseudocode

Turning A[1..n] into a heap

Heapify(A[1..n])

var start : natural

start ← bn/2c
while start > 0 do

SiftDown(A[start..n])

start ← start − 1

SiftDown(A[k..`]) assumes A[k + 1..`] has the proper heap structure,
and (recursively) sifts A[k] down to a proper place in the heap.

83 / 289

Constructing a heap: pseudocode

SiftDown(A[k ..`])

var root, child , local-max : natural

root ← k

local-max ← k

while 2·root ≤ ` do

child ← 2·root

if A[local-max] < A[child] then

local-max ← child

if child + 1 ≤ ` and A[local-max] < A[child + 1] then

local-max ← child + 1

if local-max 6= root then

swap(A[root],A[local-max])

root ← local-max

else

return

84 / 289

Local comparisons: example

8

5

7 9 child + 1

root

local-max

child

85 / 289

Local comparisons: example

8

5

7 9 child + 1

root

child

local-max

86 / 289

Local comparisons: example

8

5

7 9 child + 1

root

local-max

child

87 / 289

Local comparisons: example

8

9

7 5 child + 1

root

local-max

child

88 / 289

Local comparisons: example

8

5 root

local-max

child

89 / 289

Constructing a heap: time complexity

Turning an array of n numbers into a heap takes

Θ(n).

The total number of moves to sift down numbers is smaller than
the number of edges in the binary tree (i.e., n − 1).

This can be seen by depicting a binary graph:

Even if each move is over a different edge, there is always an edge
on which no move is performed.

90 / 289

Reconstructing a heap

If the number in the root (the maximum) is replaced by another number,
SiftDown can be used to reconstruct the heap.

Example:
17

23

13

12 3

23

18 16

22

20

17 19

8

5 1

91 / 289

Reconstructing a heap: time complexity

Reconstructing a heap of n nodes after the number in the root
has been changed takes at most

O(log n).

In the worst case, the edges on a path from the root to a leaf
are taken into account.

And a heap of depth k can contain up to 2k+1 − 1 nodes.

92 / 289

Heapsort

First structure the array of numbers into a heap.

While the heap contains more than one node:

I swap the number in the root and the number in the last node
of the heap;

I exclude the last node from the heap; and

I reconstruct the heap.

93 / 289

Heapsort: pseudocode

Heapsort for an array A[1..n]

var end : natural

Heapify(A[1..n])

end ← n

while end > 1 do

swap(A[1],A[end])

end ← end − 1

SiftDown(A[1..end])

94 / 289

Heapsort: time complexity

Building the heap takes Θ(n) time.

Reconstructing the heap takes at most O(log n) time.

This is done at most n − 2 times.

So the overall worst-case time complexity is O(n · log n).

95 / 289

Sorting based on pairwise comparisons

Theorem: Sorting algorithm based on pairwise comparison of numbers
in the list have worst-case time complexity at best O(n · log n).

Proof: Draw a binary tree of all possible steps a sorting algorithm
based on pairwise comparison can make.

Each node in the tree is an intermediate state of the algorithm
while being applied to an (unsorted) list of n distinct numbers.

The root of the tree represents an input list; each leaf represents
that the algorithm terminates with a sorted list.

From each non-leaf, if the next comparison yields true we go left in
the tree, and if the next comparison yields false we go right.

There are n! ways to put the n numbers in a list, and each of these
lists takes a different path in the tree. So there are n! leaves.

This implies the tree has depth at least log2 n! = n · log n.

So in the worst case the algorithm takes at least O(n · log n).

96 / 289

Counting sort

Assumption: The set of elements has size m.

Counting sort counts how many times each element occurs in the list.

The time complexity is Θ(m + n):

Θ(n) for counting and Θ(m) for turning the counts into a sorted list.

Drawback: Requires an additional array of length m.

m can be very large (for instance in case of a phone book).

97 / 289

Radix sort

Assumption: Numbers in the list contain at most k digits.

Radix sort sorts the list on each of the k digits consecutively,
starting with the least significant digit.

Bit-wise sorting is performed using so-called bucket sort,
where numbers are placed in 10 “buckets”.

1. Sort numbers in the list based on the least significant digit,
but otherwise keep the original order of numbers.

Numbers with the same least significant digit are stored
in the same bucket.

2. Repeat this process with each more significant digit.

The time complexity is Θ(k ·n).

98 / 289

Question

Sort the list below using radix sort:

170 45 75 90 802 24 2 66

99 / 289

Searching

Input: An ordered array of distinct keys, and a given key.

Output: The position in the array where the key can be found,
or a negative reply that the key isn’t present in the array.

Example: A phone book, where names are ordered alphabetically,
so that phone numbers can be found quickly.

100 / 289

Binary search

The binary search algorithm compares the searched key value with
the key value in the middle of the array (while it is non-empty).

If the keys match, then return the corresponding index of the array.

If the searched key is smaller than the middle element’s key, then
the search is repeated on the sub-array to the left of the middle element.

If the searched key is greater than the middle element’s key, then
the search is repeated on the sub-array to the right of the middle element.

If the array to be searched is empty, then the searched key isn’t present
in the original array.

101 / 289

Binary search

Search for a key k in a sorted array A[`..m] as follows.

If ` ≤ m, then compare A[n] and k , with n = b `+m
2 c.

I If A[n] = k , then return that k is at slot n in the array.

If A[n] > k , then continue the binary search with the array
A[`..n − 1].

If A[n] < k , then continue the binary search with the array
A[n + 1..m].

If ` > m, then return that k isn’t present in the array.

102 / 289

Binary search: time complexity

To determine whether (and where) a key can be found in a sorted array
of length n takes at most

O(log n).

Because each comparison takes O(1), and at the subsequent recursive call,
the length of the sub-array to be searched is halved.

Sorted arrays are however not suited to dynamic sets of keys.

I Adding or deleting an element may take O(n).

I The maximal size of the set must be predetermined.

103 / 289

Binary search trees

A binary search tree is a binary tree in which nodes contain a key,
such that for every node ν:

I the left subtree of ν contains only nodes with keys smaller
than ν’s key; and

I the right subtree of ν contains only nodes with keys greater
than ν’s key.

Searching for a key can be performed in O(d), with d the depth of
the tree.

104 / 289

Binary search trees

We search for key k in a binary search tree.

If the binary search tree is non-empty,
then compare k with the key ` in the root of the tree.

I k = `: report that the key has been found.

I k < `: (recursively) search for k in the left subtree of the root.

I k > `: (recursively) search for k in the right subtree of the root.

If the tree is empty, then report that k isn’t present (in the original tree).

105 / 289

Adding a key to a binary search tree

We add a key k to a binary search tree.

If the binary search tree is non-empty,
then compare k with the key ` in the root of the tree.

I k = `: report that k is already present in the tree.

I k < `: (recursively) add k in the left subtree of the root.

I k > `: (recursively) add k in the right subtree of the root.

If the tree is empty, then create a (root) node containing k .

106 / 289

Adding a key to a binary search tree: example

We add key 5 to the binary search tree below.

6

2

1 3

9

8

<

>

>

6

2

1 3

5

9

8

(The boxes represent null pointers.)

Question: Add key 4 to the binary search tree at the right.

Question: Which binary search tree results if first 4 and then 5 is
added to the binary search tree at the left ?

107 / 289

Removing a key from a binary search tree

A key k is removed from a binary search tree as follows.

Search for k in the tree.

I If k is not present in the tree, we are done.

I If k is in a leaf, then remove this leaf from the tree.

I If k is in a node ν with one child, then replace ν by its child.

I If k is in a node ν with two children, then:

I search for the node ν′ holding the smallest key `
in the right subtree of ν,

I replace k by ` in ν, and

I (recursively) remove ν′ from the tree.

108 / 289

Removing a key from a binary search tree: example 1

We remove the node with key 9 from the binary search tree below.

Note that this node has one child.

6

2

1 4

9

8

7

remove

6

2

1 4

8

7

109 / 289

Removing a key from a binary search tree: example 2

We remove the node with key 6 from the binary search tree below.

Note that this node has two children.

6

2

1 4

9

8

7

remove

7

2

1 4

9

8

110 / 289

Questions

Question: Remove 6 from the following binary search tree.

6

2

1 4

3

9

7

8

Question: When removing a node ν with two children, we search
for the node holding the smallest key in the right subtree of ν.

Could we alternatively search for the node holding the largest key
in the left subtree of ν ?

111 / 289

Adapting a binary search tree: time complexity

Adding or removing a key from a binary search tree both take
at most O(d), with d the depth of the tree.

Because in the worst case one path from the root to a leaf is traversed.

Question: In which type of binary search trees may a search take
relatively long ?

112 / 289

AVL trees

Binary search trees are efficient if their depth is relatively small.

A binary search tree is an AVL tree if for any node, the depths of
the two subtrees differ at most one.

An AVL tree of n nodes has depth O(log n).

113 / 289

AVL trees: example

3

0

2

8

6

4 7

9

3

1

0

0 0

01

2

At each node, the depth of the subtree rooted at this node is given.

114 / 289

AVL trees: balance factor

The balance factor of a node in a binary tree is
the depth of its right subtree minus the depth of its left subtree.

In an AVL tree, the balance factor of any node is −1, 0, or 1.

Example:
3

0

2

8

6

4 7

9

1

1

0

0 0

00

-1

Challenge: After adding or removing a node, rebalance the tree
(if needed) to preserve the defining property of AVL trees.

115 / 289

Adding a key to an AVL tree

A key is added to an AVL tree in the same way as in a binary search tree.

As a result, the balance factor of nodes on the path from the root to
the added node may change.

From the added node upward, check if a node has balance factor −2 or 2.

If such a node is found, perform a (single or double) rotation.

After this local operation, the tree is guaranteed to be an AVL tree again.

116 / 289

Adding a key to an AVL tree

Four cases for the lowest node with balance factor −2 or 2.

Left Left -2

-1

A

h + 1

inserted

B

h

C

h

Left Right -2

1

A

h

B

h + 1

inserted

C

h

Right Right 2

1
A

h B

h

C

h + 1

inserted

Right Left 2

-1
A

h B

h + 1

inserted

C

h

117 / 289

Adding a key to an AVL tree: Left Left

In the Left Left case, the depth of tree A increases from h to h + 1.

Since this increases the depth of tree A-B, tree B has a depth ≤ h.

Since tree A-B is still balanced after addition, tree B has depth h.

Since tree A-B-C was balanced before addition, tree C has depth ≥ h.

Since tree A-B-C is imbalanced after addition, tree C has depth h.

118 / 289

Adding a key to an AVL tree: single rotation

In the Left Left case, a single rotation is applied:

b

a

A

h + 1

inserted

B

h

C

h

a

b
A

h + 1

inserted

B

h

C

h

The result is still a binary search tree, in which all nodes are balanced.

The single rotation restores the depth h + 1 of the original subtree.

Therefore, after this single rotation, the entire tree is an AVL tree again.

Likewise, in the Right Right case, a single rotation is applied.

119 / 289

Question

Add a node with key 0 to the AVL tree below, and restructure
the resulting tree.

8

5

3

2

1

4

6

7

10

9 12

11

120 / 289

Adding a key to an AVL tree: double rotation

In the Left Right case, a double rotation is applied:

c

a

b
A

h B1

h

inserted

C

h

B2

h − 1

b

a c

A

h

B1

h
inserted

B2

h − 1

C

h

The result is still a binary search tree, in which all nodes are balanced.

The double rotation restores the depth h + 1 of the original subtree.

Therefore, after this double rotation, the entire tree is an AVL tree again.

Likewise, if the added node is in B2 or is b, a double rotation is applied.

Also in the Right Left case, a double rotation is applied.
121 / 289

Questions

How is 3 added to the AVL tree below ?

6

2

1 4

9

And how is 5 added to the AVL tree above ?

122 / 289

Adding a key to an AVL tree: correctness

Only nodes on the path from the root to the added node may
become imbalanced.

The rotation performed at the lowest imbalanced node, say ν,
makes sure the subtree rooted in ν becomes an AVL tree again.

After rotation, the subtree rooted in ν has the same depth as
before addition.

These two facts imply that after rotation, the entire tree is AVL.

123 / 289

Removing a key from an AVL tree

A key is removed from an AVL tree in the same way as from
a binary search tree.

As a result, the balance factor of nodes on the path from the root
to the removed node may change.

From the removed node upto the root, we need to possibly check
for every node on this path if it has balance factor −2 or 2.

Every time such a node is found, perform a (single or double) rotation.

The resulting tree is guaranteed to be an AVL tree again.

124 / 289

Removing a key from an AVL tree

Six cases for a node with balance factor −2 or 2.

Left Left -2

-1

A

h + 1

B

h

C

h
deleted

Left Right -2

1

A

h

B

h + 1

C

h
deleted

Left -2

0

A

h + 1

B

h + 1

C

h
deleted

Right Right 2

1
A

h
deleted

B

h

C

h + 1

Right Left 2

-1
A

h
deleted

B

h + 1

C

h

Right 2

0
A

h
deleted

B

h + 1

C

h + 1

125 / 289

Removing a key from an AVL tree

The Left Left, Right Right, Left Right, and Right Left case
are treated as before.

Question: Show that in the Left Left (and Right Right) case,
the single rotation affects the depth of the original subtree.

Likewise, in the Left Right (and Right Left) case,
the double rotation affects the depth of the original subtree.

126 / 289

Removing a key from an AVL tree

The Left case is similar to the Left Left case.

A single rotation is applied:

b

a

A

h + 1

B

h + 1

C

h
deleted

a

b
A

h + 1 B

h + 1

C

h
deleted

Likewise, in the Right case, a single rotation is applied.

In the Left and Right case, the depth of the original subtree is kept.

127 / 289

Question

Remove the node with key 9 from the AVL tree below.

8

5

3

2

1

4

6

7

10

9 12

11

Note that after the double rotation for this Right Left case (with h = 0)
at node 10, the root 8 becomes imbalanced.

128 / 289

Adapting an AVL tree: time complexity

Adding a node to or removing a node from an AVL tree with n nodes
takes at most

O(log n).

Because in the worst case, a path from a leaf to the root is traversed.

And a (single or double) rotation takes O(1).

129 / 289

Direct-address table

Let there be m possible keys.

A direct-address table uses an array of size m: one slot per key.

Slot k points to the element with key k (if present).

Advantages: Inserting and deleting an element takes O(1), and
searching for a key is straightforward.

Drawback: Ineffective if only few keys are actually used.

130 / 289

Hash function

A hash function h maps keys to slots {0, . . . ,m − 1} in a hash table.

The number of keys is considerably larger than m.

Hashing

I casts data from a large (sparsely used) domain to
a fixed-size table, and

I allows to perform fast lookups.

Collisions occur: different keys are hashed to the same value.

131 / 289

Hashing: applications in cryptography

Hashing is also used in cryptography, such as:

I digital signatures of messages, or

I storing passwords safely.

For a cryptographic hash function:

I hash values are easy to compute, but

I it is hard find a key that produces a given hash value.

In general, the last property is very hard to check.

For example, it took several years to discover that hash functions
MD5 and SHA-1 aren’t collision resistant.

132 / 289

Hashing: example

We only consider simplistic hash functions, like modulo,
to exemplify the underlying idea.

Let a hash function map names to numbers from 0 to 4.

Elements are phone numbers.

0

1

2

3

4

(Alice, 020598555)

(Sue, 060011223)

(John, 020123456)

Alice

John

Sue

133 / 289

Collisions

A collision for a hash function h occurs if elements for different keys k, k ′

are stored in the hash table and h(k) = h(k ′).

There are two ways to deal with collisions:

I Chaining: Put keys that hash to the same value j in a linked list.

Slot j in the hash table points to the head of this list.

I Open addressing: If a key isn’t found in the designated slot in
the hash table, a probe function tells which next slot to try.

Each non-empty slot contains an element; there are no pointers.

134 / 289

Chaining: example

The hash function is the month of birth modulo 5.

0

1

2

3

4

(01.06.1958, Prince) ∅

(28.03.1986, Lady Gaga) (16.08.1958, Madonna) ∅

Disadvantage: Pointer structures are expensive to maintain and
traverse.

135 / 289

Open addressing: linear probing

A simple approach to open addressing is linear probing.

If a wrong key is found in a slot, then try the next slot (modulo m).

If an element is removed from a table, a marker is placed in its slot,
to signify that linear probing should continue onward.

If a slot is found to be empty and unmarked, give up the search.

Disadvantage: Long sequences of occupied/marked slots tend to
build up, increasing the average search time.

136 / 289

Open addressing: double hashing

Introduce an auxiliary hash function h′ (that never hashes to 0).

Searching for a key k is performed as follows:

If a wrong key is found in slot j , then try slot j + h′(k), modulo m.

Example: m = 13, h(k) = k mod 13, and h′(k) = 8− (k mod 7).

k h(k) h′(k) try

18 5 4 5

44 5 6 5, 11

59 7 5 7

32 6 4 6

72 7 6 7, 0

71 6 7 6, 0, 7, 1

137 / 289

Hash functions: division method

Ideally, roughly the same number of keys is hashed to any of the m slots.

The division method hashes a key k to k mod m.

Advantage: Easy to compute.

Disadvantage: Doesn’t work well for all values of m.

For example, when hashing a bit string, values m = 2` should be avoided.

Because then the hash value of k consists of the ` lowest-order bits of k.

Preferably the hash value of k depends on all its bits.

138 / 289

Hash functions: multiplication method

Choose a constant c with 0 < c < 1.

The multiplication method hashes a key k as follows:

I compute c ·k ,

I keep the fractional part of this number, c ·k − bc ·kc,

I multiply the result with m, and

I return the floor of this product.

In short,
h(k) = bm·(c·k − bc ·kc)c.

139 / 289

Hash functions: multiplication method

Example: c = 0.1 and m = 17.

We compute the hash value of k = 137.

I c ·k − bc ·kc = 13.7− 13 = 0.7

I m·(c ·k − bc·kc) = 11.9

I bm·(c·k − bc ·kc)c = 11

140 / 289

Hash functions: multiplication method

Advantage: The value of m isn’t critical.

It works with practically any value of c (if it isn’t very close to 0 or 1),
but some values are better than others.

An optimal value for c depends on the data being hashed.

Donald Knuth recommends as value for c the fractional part of
the golden ratio √

5− 1

2
= 0.6180...

The golden ratio e.g. governs the placement of petals in plants. Repeated rotation
over this distance creates gaps that are at most twice as big as the other gaps.

141 / 289

Graphs

A graph consists of nodes, and edges between a pair of nodes.

In a directed graph, edges are directed, meaning that they can
only be traversed in one direction.

In an undirected graph, edges can be traversed in either direction.

Each node maintains an adjacency list of neighbor nodes.

Examples: hardware circuits, computer networks, TomTom, ...

142 / 289

Graph traversal

We consider two ways to traverse a (directed) graph.

I Breadth-first search starts from a distinguished node called
the root.

It places discovered unvisited nodes in a queue, so that nodes
close to the root are visited first.

I Depth-first search places discovered unvisited nodes in a stack,
so that recently discovered nodes are visited first.

Time complexity: Θ(m), with m the number of edges.

143 / 289

Breadth-first search: pseudocode

Breadth-first search through a directed graph

var q ← {root} : queue of nodes

v ,w : node

black[w : node]← false : bool

black[root]← true

while q 6= ∅ do

v ← dequeue(q)

for all edges vw do

if black[w] = false then

enqueue(w , q)

black[w]← true

144 / 289

Breadth-first search: example

Breadth-first search is applied on the following undirected graph,
with root node A.

A

B

D

H I

C

E F

J

G

1

2

4

8 9

3

5 6

10

7

Question: Add an edge from node A to node J, and perform
a breadth-first search.

145 / 289

Breadth-first search: application

Question: How can breadth-first search be used to find a shortest
chess game ending in checkmate (4 moves) or stalemate (19 moves) ?

146 / 289

Depth-first search:pseudocode

Depth-first search through a directed graph

var v ,w : node

black[w : node]← false : bool

for all nodes v do

if black[v] = false then

DFS(v)

DFS(v : node)

black[v]← true

for all edges vw do

if black[w] = false then

DFS(w)

147 / 289

Depth-first search: example

A

B

D

H I

C

E F

J

G

1

2

3

4 5

6

7 8

9

10

Question: Add an edge from node E to node J, and perform
a depth-first search.

148 / 289

Strongly connected components

Two nodes u and v in a directed graph are strongly connected
if there are paths from u to v and from v to u.

Being strongly connected is an equivalence relation.

The equivalence classes are strongly connected components (SCCs).

The SCCs form a partition of the nodes in the graph.

149 / 289

Strongly connected components

SCC detection has many applications, e.g., finding cyclic garbage
in memory (to support reference-counting garbage collection).

Question: What are the SCCs in the following graph ?

150 / 289

Depth-first search with time stamps

Let depth-first search provide “time stamps” d [v] and f [v]
when it reaches and deserts a node v , respectively.

Depth-first search through a directed graph

var black[w : node]← false : bool

d [w : node], f [w : node], time ← 1 : int

for all nodes v do

if black[v] = false then

DFS(v)

151 / 289

Depth-first search with time stamps

DFS(v : node)

black[v]← true

d [v]← time

time ← time + 1

for all edges vw do

if black[w] = false then

DFS(w)

f [v]← time

time ← time + 1

152 / 289

Depth-first search: example

1/8 2/7

5/6 3/4

or

3/8 1/2

5/64/7

153 / 289

Kosaraju’s algorithm

Kosaraju’s algorithm for detecting SCCs in a directed graph G :

1. Apply depth-first search to G .

2. Reverse all edges in G , to obtain a directed graph GR .

Apply depth-first search to GR ; each new exploration starts
at the unvisited node with the highest f -value.

Each exploration in GR determines an SCC in G .

154 / 289

Kosaraju’s algorithm: example

1

2

3

7

8 7

6 4

or

3

1

2

7

7 6

8 2

f - and d-values of the first and second depth-first search are given,
respectively.

155 / 289

Kosaraju’s algorithm: correctness

Correctness: Clearly, nodes in the same SCC are discovered during
the same subcall of depth-first search on GR .

Let node v be discovered during the subcall of depth-first search on GR

started at node u.

Then f [u] ≥ f [v], and there is a path from v to u in G .

Suppose, toward a contradiction, there is no path from u to v in G .

- If depth-first search on G visited v before u, then f [v] > f [u]
(because there is a path from v to u).

- If depth-first search on G visited u before v , then f [v] > f [u]
(because there is no path from u to v).

Both cases contradict the fact that f [u] ≥ f [v].

Hence v is in the same SCC as u.

156 / 289

Weighted graphs

In a weighted graph, each edge carries a real value.

ω(uv) denotes the weight of the edge from node u to node v .

Example: v

u x z

w

y

5

1

2

3

6

3

1

2

157 / 289

Shortest paths in a weighted graph

In a shortest path between two nodes in a weighted graph,
the sum of the weights of the edges in the path is minimal.

Applications:

I network routing on the Internet, or for telecommunication

I TomTom

I plant layouts

I transportation

158 / 289

Shortest paths in a weighted graph: example

A shortest path from z to u, of weight 8.

v

u x z

w

y

5

1

2

3

6

3

1

2

159 / 289

Max- versus min-heaps

A min-heap is a binary tree in which on all paths from the root to
a leaf, numbers are non-decreasing.

By contrast, in a max-heap, which we used in heapsort, on all paths
from the root to a leaf, numbers are non-increasing.

Min-heaps can be constructed and maintained in the same way as
max-heaps.

160 / 289

Dijkstra’s shortest path algorithm

Dijkstra’s algorithm computes the shortest paths from all nodes
to a node u, in a directed weighted graph.

It requires that all weights are non-negative.

It uses relaxation: start with an overapproximation of distance values,
and consider all edges in turn to try to improve distance values.

Initially,

I δ(u) = 0;

δ(v) =∞ for all nodes v 6= u;

I ν(v) =⊥ for all nodes v ;

I the min-heap H contains all nodes, ordered by their δ-values.

161 / 289

Dijkstra’s algorithm

While H is non-empty:

I For each neighbor w ∈ H of the root node v , check whether

δ(v) + ω(wv) < δ(w).

If so, δ(w)← δ(v) + ω(wv) and ν(w)← v , and
w is pushed upward in the heap to its proper place.

I Swap v with the last element of H, and exclude v from H.

I Restructure H into a min-heap again.

When H becomes empty, the ν-values constitute shortest paths,
and δ-values the distances of shortest paths.

162 / 289

Question

Apply Dijkstra’s algorithm to the weighted graph below,
to compute shortest paths to node u.

v

u

w

y

x

14

9

8

2

11

1

163 / 289

Dijkstra’s algorithm: correctness

When a node v is removed from H, δ(v) has the correct value.

We apply induction on the order in which nodes are removed from H.

The base case, v = u, is trivial, because initially δ(u) = 0.

In the inductive case, let v 6= u be the root of H.

Consider a shortest path v →∗ y → z →∗ u, where y is the last node
on this path that is still in H.

Since z /∈ H, by induction, δ(z) and so δ(y) has the correct value.

Since v is the root of H, δ(v) ≤ δ(y).

Since weights are nonnegative, δ(v) = δ(y), which implies that δ(v)
has the correct value (and v →∗ y has distance 0).

164 / 289

Dijkstra’s algorithm: time complexity

Performing Dijkstra’s algorithm on a weighted graph with n nodes
and m edges takes at most

O(m · log n).

For each edge, the heap may be restructured once, taking at most
O(log n).

All other operations take less time:

initialize δ/ν O(n), build heap O(n), update δ/ν O(m),
restructure heap after removing a node O(n · log n).

(Each node w carries a bit that is set when w is removed from H,
so that the check w ∈ H takes O(1).)

165 / 289

Dijkstra’s algorithm: inventor

Dijkstra’s algorithm was invented by Edsger Dijkstra in 1956.

Dijkstra’s original implementation had a worst-case time complexity
of O(n2), because he didn’t employ a heap.

By using a so-called Fibonacci-heap, the worst-case time complexity
can actually be brought down to O(m + n · log n).

166 / 289

Negative weights

In practice, edges in graphs may carry negative weights.

Example: Distance-vector routing protocols include negative costs.

Question: Give an example of a graph with one negative-weight edge
on which Dijkstra’s algorithm produces an incorrect result.

In case of a negative-weight cycle, there are no shortest paths.

167 / 289

Bellman-Ford algorithm

The Bellman-Ford algorithm computes the shortest paths from all nodes
to a node u, in a directed weighted graph.

It allows weights to be negative.

Again it uses relaxation, but now all edges are considered n times.

Initially,

I δ(u) = 0;

δ(v) =∞ for all nodes v 6= u;

I ν(v) =⊥ for all nodes v .

168 / 289

Bellman-Ford algorithm: pseudocode

We use that each shortest path contains at most n − 1 edges.

Except when there is a negative-weight cycle !

Bellman-Ford shortest path algorithm on a weighted graph G

for i = 1 to n − 1 do

for each edge wv do

if δ(v) + ω(wv) < δ(w) then

δ(w)← δ(v) + ω(wv)

ν(w)← v

for each edge wv do

if δ(v) + ω(wv) < δ(w) then

return “The graph contains a negative-weight cycle”

169 / 289

Bellman-Ford algorithm: correctness

We argue by induction: if a shortest path from v to u contains ≤ i edges,
then after i runs of the first for loop, δ(v) has the correct value.

The base case, i = 0, is trivial, as δ(u) = 0 at the start.

In the inductive case, suppose we proved the result for all i ≤ j .

Consider a shortest path v → w →∗ u of j + 1 edges.

By induction, δ(w) is correct after j runs of the for loop.

So in run j + 1, δ(v) attains the correct value δ(w) + ω(vw).

170 / 289

Bellman-Ford algorithm: time complexity

The time complexity of the Bellman-Ford algorithm is

Θ(m·n).

This is due to the two nested for loops, of n and m iterations.

171 / 289

Minimum spanning trees

Consider an undirected, weighted graph.

A spanning tree is an acyclic connected subgraph containing all nodes.

In a minimum spanning tree, the sum of the weights of the edges
in the spanning tree is minimal.

Applications: Design of networks for e.g. computers,
telecommunication, transportation, water supply, and electricity.

Example: 10

2

1

9

3

8

172 / 289

Fragments

Lemma: Let F be a fragment
(i.e., a connected subgraph of a minimum spanning tree M).

Let e be a lowest-weight outgoing edge of F
(i.e., e has exactly one endpoint in F).

Then F ∪ {e} (i.e., F extended with e) is a fragment.

Proof: Suppose not.

M ∪ {e} has a cycle, containing e and another outgoing edge f of F .

Replacing f by e in M yields a minimum spanning tree.

173 / 289

Prim’s and Kruskal’s algorithm

Prim’s algorithm is centralized:

I Initially, F is a single node.

I As long as F isn’t a spanning tree,
add a lowest-weight outgoing edge of F to F .

Kruskal’s algorithm is decentralized:

I Initially, each node forms a separate fragment.

I Each step, a lowest-weight edge joining two different
fragments is added to the spanning tree.

174 / 289

Prim’s algorithm

Prim’s algorithm employs relaxation. Initially,

I one node is selected, and provided with value 0,

I all other nodes carry value ∞, and

I the nodes are placed in a min-heap H, ordered by their value.

While H is non-empty:

I For each neighbor w ∈ H of the root node v , check if
ω(wv) < value(w).

If so, value(w)← ω(wv) and ν(w)← v , and
w is pushed upward in the heap to its proper place.

I Swap v with the last element of H, and exclude v from H.

I Restructure H into a min-heap again.

Ultimately, the ν-values define a minimum spanning tree.

175 / 289

Prim’s algorithm: time complexity

Similar to Dijkstra’s algorithm, Prim’s algorithm on a weighted graph
with n nodes and m edges takes at most

O(m · log n).

For each edge, the heap may be restructured once, taking at most
O(log n).

Prim’s (and Dijkstra’s) algorithm is greedy.

Greedy: make locally optimal choices, to find a global optimum.

176 / 289

NP-complete 0 -1 knapsack problem: greedy approach

Given n items i1, . . . , in; item ik has value vk ∈ R and weight wk ∈ N.

Find items of total weight ≤W that have a maximal total value.

Greedy: Let vk
wk

denote the “attractiveness” of item ik .

Repeatedly select a most attactive item that still fits in the knapsack.

This takes polynomial time, but may yield a non-optimal solution.

Example: Given items (3, 1) and (5, 2) and (6, 3) (the 1st and 2nd index
index are the value and weight). The total weight mustn’t exceed 5.

The greedy approach selects (3, 1) and (5, 2), while selecting (5, 2) and
(6, 3) is a better solution.

177 / 289

Kruskal’s algorithm

Initially,

I each node is in a single-element set (representing a fragment),

I and the edges are placed in a list, ordered by weight.

While the list of edges is non-empty, the first edge e is removed.

If e is between two nodes in different fragments, then:

I e becomes part of the minimum spanning tree, and

I these fragments are joined.

Fragments are managed using the disjoint-set data structure.

178 / 289

Disjoint-set data structure

Elements are partitioned into disjoint sets.

A union-find algorithm performs two operations:

I Find: determine which set a certain element is in.

I Union: join two different sets.

Each element links to the head of its list, so that Find takes O(1).

The head of the list carries a pointer to the size of the list.

When to sets are joined, the larger set L subsumes the smaller set S :

I the tail of L is made to point to the head of S ;

I elements in S link to the head of L; and

I the size of the joint list is updated.

179 / 289

Kruskal’s algorithm: time complexity

Let the graph contain n nodes and m edges.

Sorting the list of edges takes O(m · log m) = O(m · log n).

Determining for each edge whether it is between different fragments
in total takes O(m).

When two fragments are joined, only nodes in the smaller fragment
update their link to the head.

So each node updates its link at most O(log n) times.

Therefore joining fragments in total takes at most O(n · log n).

So the overall worst-case time complexity is O(m · log n).

180 / 289

Undecidability and NP-completeness

Some (at first sight simple) problems with an infinite possible
solutions space are undecidable.

No algorithm exists to always solve such problems in finite time.

Some problems with a finite possible solutions space (such as
traveling salesman and 0 -1 knapsack) are NP-complete.

No efficient algorithms seem to exist to solve such problems.

First we need to dive into the foundations of computing.

181 / 289

Strings

A computer program takes an input string and produces an output string.

A computer program consists of a string of characters.

Some computer programs have themself as meaningful input.

For example, a C program to parse C programs (i.e., to check if they are
syntactically correct).

182 / 289

Strings

A string, denoted by u, v ,w , is

I a finite sequence of symbols, denoted by a, b, c ,

I from a (non-empty) finite input alphabet Σ.

λ is the empty string.

Σ∗ denotes the set of strings, and Σ+ the set of non-empty strings.

183 / 289

Formal language

A (formal) language is a set of strings.

Examples:

The set of pairs of input and resulting output string for
a given computer program.

The set of parsable C programs.

184 / 289

Turing machine

A Turing machine mechanically operates on a tape.

The machine reads and writes symbols on the tape, one at a time,
and steps to the left or the right.

machine

tape head

tape· · · · · ·

The input string is in the language accepted by the Turing machine
if, starting from the initial state, a final state is reached.

185 / 289

Turing machine

The tape is a string over a tape alphabet.

The initial input string is over a more restrictive input alphabet.

The tape serves as unbounded memory capacity.

The input string is surrounded at both sides by infinitely many 2’s.

The tape is inspected by a tape head that repeatedly:

I reads a symbol of the tape;

I overwrites this symbol; and

I moves one place to the left or right.

186 / 289

Turing machine

Q is a finite collection of states.

The transition function δ has the form

δ : Q × Γ→ Q × Γ× {L,R}

δ is a partial function: δ(q, a) needn’t always be defined.

δ(q, a) = (r , b, L) means: if the machine is in state q, and the head
reads a on the tape, then

I the machine goes to state r ,

I the a is replaced by b, and

I the head moves one position to the left.

With δ(q, a) = (r , b,R), the head moves one position to the right.

187 / 289

Halt state

We abbreviate “Turing machine” to TM.

If a TM in state q reads a on the tape and δ(q, a) is undefined,
then it has reached a halt state.

An execution of a TM, on a certain input string, may never reach
a halt state.

Question: Suppose each final state qf is turned into a halt state,
meaning that all transitions δ(qf ,) are discarded.

Can this have an impact on the accepted language ?

188 / 289

Turing machine: example

We construct a TM M with L(M) = {anbncn | n ≥ 1}
(i.e., each string consists of n a’s followed by n b’s followed by n c ’s).

Idea: Repeatedly replace an a by 0, a b by 1 and a c by 2.

With an input string anbncn, all a’s, b’s and c ’s will vanish.

I q0: Read a, replace it by 0, move to the right, go to q1.

I q1: Walk to the right until b is read, replace it by 1,
move to the right, go to q2.

I q2: Walk to the right until c is read, replace it by 2, go to q3.

I q3: Walk to the left until 0 is read, move to the right,
go back to q0.

I If in q0 1 is read, go to q4.

I q4: Walk to the right to check if any a’s, b’s or c ’s are left.
If a 2 is encountered, go to the final state q5.

189 / 289

Turing machine: example

q0

q1 q5

q4

q3

q2

a/a R

b/b R

1/1 R

2/2 R

0/0 R

a/a L 1/1 L

b/b L

1/1 R
1/1 R

a/0 R

b/1 R

c/2 L

2/2 L

2/2 R

2/2 L

q0aabbcc
`+ 0q0a1b2c
`+ 00q01122
`+ 00112q52

q0aabbbcc
`+ 0q0a1bb2c
`+ 00q011b22
`+ 0011q4b22

190 / 289

Questions

Why do we replace a and b by different values ?

Answer: Else we don’t know when to go from q3 to q0.

Could we replace b and c by the same value ?

Answer: No, for else e.g. aabcbc would be accepted.

191 / 289

Question

Specify a TM that only accepts sequences of a’s of odd length.

Answer: Let F = {q2}.

δ(q0, a) = (q1, a,R)

δ(q1, a) = (q0, a,R)

δ(q1,2) = (q2,2, L)

192 / 289

Turing machine

A deterministic Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0,2,F).

I Q a finite set of states

I Σ⊆ Γ \ {2} (i.e., Γ minus 2) the input alphabet

I Γ the tape alphabet

I δ : Q × Γ→ Q × Γ× {L,R} the partial transition function

I q0 the start state

I 2∈ Γ

I F ⊆ Q the set of final states

193 / 289

Turing machine

A configuration of a TM is a string vqw (q ∈ Q, v ,w ∈ Γ∗), where:

I the machine is in state q;

I the tape consists of vw (flanked by infinitely many 2’s); and

I the head is on the first symbol of w .

vqaw ` vbq′w if δ(q, a) = (q′, b,R)

vq ` vbq′ if δ(q,2) = (q′, b,R)

vcqaw ` vq′cbw if δ(q, a) = (q′, b, L)

vcq ` vq′cb if δ(q,2) = (q′, b, L)

194 / 289

Turing machine

`∗ denotes the transitive-reflexive closure of `.

The language L(M) accepted by TM M = (Q,Σ, Γ, δ, q0,2,F) is

{w ∈ Σ+ | ∃q ∈ F , u, v ∈ Γ∗ : q0w `∗ uqv}

Note: λ 6∈ L(M)

195 / 289

Recursively enumerable languages

A language L is recursively enumerable if L \ {λ}
(i.e., L minus the empty string) is accepted by a TM.

Extensions of TMs, such as

I multiple tapes

I nondeterminism

I · · ·
give no additional expressive power.

Church-Turing thesis: every computation by a computer
can be simulated by a (deterministic) TM.

196 / 289

TMs with two tapes

Theorem: A TM with two tapes can be simulated by a TM with one tape.

Example: δ(q, a, d) = (q′, g , h, L,R)

q

a cb d fe

q′

g cb h fe

With a single tape, this transition is simulated by 9 transitions:

q

cab
010
e d f
0 1 0

q̂

cgb
001
e h f
0 0 1

q′

cgb
001
e h f
0 0 1

· · · · · ·

The difference in time complexity between a TM with one tape
and with multiple tapes is a polynomial factor.

197 / 289

Nondeterministic TMs

A nondeterministic TM has as transition function

δ : Q × Γ→ 2Q×Γ×{L,R}

with δ(q, a) a finite subset of Q × Γ× {L,R} for all q, a.

198 / 289

Nondeterministic TMs

Theorem: A nondeterministic TM N can be simulated by
a deterministic TM M.

Proof: By a breadth-first search, the nondeterministic executions
of N can be performed in parallel in a deterministic fashion.

M keeps this breadth-first search on its tape in the form of a queue.

The difference in time complexity between N and M is
(as far as known) an exponential factor.

199 / 289

Universal TM

A computer can execute every (valid) program on every input.

Likewise a universal TM exists, that takes as input a TM M and
an input string w , and executes M on w .

The universal TM uses three tapes, on which initially are encoded:
(1) the δ-function of M, (2) the string w with the tape head on
the first symbol, and (3) the start state q0.

The universal TM repeatedly performs the following steps:

I read on the 3rd tape the state, and
on the 2nd tape the symbol under the tape head;

I search the 1st tape for the corresponding transition (if present);

I overwrite the state on the 3rd tape;

I overwrite the symbol on the 2nd tape, and move the tape head
to the left or right.

200 / 289

Set operations

union L1 ∪ L2 {x | x ∈ L1 ∨ x ∈ L2}

intersection L1 ∩ L2 {x | x ∈ L1 ∧ x ∈ L2}

difference L1 \ L2 {x | x ∈ L1 ∧ x /∈ L2}

complement L {x | x /∈ L}

201 / 289

Recursive languages

Recursively enumerable languages are closed under ∪ and ∩.

But the complement L of a recursively enumerable language L
isn’t always recursively enumerable.

The proof uses a recursive enumeration M1,M2,M3, . . . of all TMs:

I Each TM can be represented as an input string.

I A parsing algorithm checks for each possible input string
whether it represents a TM.

I If so, add this TM to the enumeration.

202 / 289

Recursive languages

A language L is recursive if both L and L are recursively enumerable.

Theorem: Not every recursively enumerable language is recursive.

Proof: Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

We define L = {ai | ai ∈ L(Mi), i ≥ 1}.

L is recursively enumerable: given an i ≥ 1, look up Mi , run Mi on ai ,
and accept ai if a final state is reached.

Suppose toward a contradiction that L is recursively enumerable,
i.e., L = L(Mk) for a certain k ≥ 1.

Then ak ∈ L ⇔ ak ∈ L(Mk) ⇔ ak ∈ L ⇔ ak /∈ L.

Contradiction, so L isn’t recursively enumerable.

203 / 289

Diagonalization argument

The construction of L can be depicted as follows.

M1 M2 M3 M4 · · ·

a1 X

a2 X

a3 X

a4 X
...

This is similar to the argumentation (by Georg Cantor) that
the real numbers aren’t countable.

204 / 289

Halting problem (1936)

If a TM in state q reads a on the tape, while δ(q, a) is undefined,
then it has reached a halt state.

A final state q is supposed to be a halt state for all a.

(Removing such instructions δ(q, a) doesn’t change the language
accepted by the TM.)

Halting problem: Will (deterministic) TM M not reach a halt state
on input string w ?

The language corresponding to the halting problem contains string
(M,w) if and only if TM M doesn’t reach a halt state on input w .

205 / 289

Question

Suppose the halting problem is decidable, meaning that some TM can
determine for each TM M and string w whether M doesn’t halt on w .

Argue that then each recursively enumerable language would be recursive.

In other words, argue how we could then decide that w /∈ L(M).

206 / 289

Halting problem is undecidable

Theorem: The halting problem is undecidable.

Proof: Suppose a TM H exists that, given a TM and an input string,
determines whether no halt state will be reached.

Given a TM M and an input string w .

Execute in parallel M on w and H on (M,w).

One of the following three cases is guaranteed to occur:

I M with input w reaches a final state: w ∈ L(M).

I M with input w reaches a non-final halt state: w /∈ L(M).

I H with input (M,w) reaches a final state: w /∈ L(M).

So L(M) is recursively enumerable.

Contradiction, as not all recursively enumerable languages are recursive.

207 / 289

Halting problem is undecidable - alternative proof

Proof: Suppose a TM H exists that, given a TM and an input string,
determines whether no halt state will be reached.

Build a TM I that takes as input a TM M, and asks H whether
M doesn’t reach a halt state on input M.

I If a halt state is reached, then I starts an infinite loop.

I If no halt state is reached, then I halts immediately.

Contradiction: I reaches a halt state on input I
⇔ I doesn’t reach a halt state on input I.

208 / 289

Post correspondence problem (1946)

PCP: Given two sequences of n strings over Σ:

w1, . . . ,wn and v1, . . . , vn

Is there a non-empty sequence of indices j , . . . , k such that

wj · · ·wk = vj · · · vk ?

Emil Post (1897-1954)
Question: Give a solution for

w1 = 01 w2 = 1 w3 = 110

v1 = 100 v2 = 011 v3 = 1

209 / 289

Post correspondence problem is undecidable

We will prove that the PCP is undecidable.

If there is a solution, it can be found by trying all (infinitely many)
possible solutions.

The problem is if there isn’t a solution: when do we stop searching ?

210 / 289

Modified Post correspondence problem

We first prove that it is undecidable whether the Modified PCP
(MPCP) has no solution.

MPCP: Given two sequences of n strings over Σ:

w1, . . . ,wn en v1, . . . , vn

Is there a non-empty sequence of indices j , . . . , k such that

w1wj · · ·wk = v1vj · · · vk ?

211 / 289

MPCP: undecidability

Theorem: If it were decidable for any instance of the MPCP whether
it has no solution, then the question w 6∈ L(M) ? would be decidable.

Proof: We define the following sequences of strings:

λ #q0w
d d for any d ∈ Γ ∪ {#}
qa br if δ(q, a) = (r , b,R)
q# br# if δ(q,2) = (r , b,R)
eqa reb if δ(q, a) = (r , b, L), for any e ∈ Γ
#qa #r2b if δ(q, a) = (r , b, L)
qf e qf for any e ∈ Γ
eqf qf for any e ∈ Γ
#qf λ

There is a MPCP solution if and only if w ∈ L(M).

Conclusion: The MPCP is undecidable.

212 / 289

MPCP: example

Consider the following TM M, with Σ = {a, b, c}:

δ(q0, a) = (q0, a,R) δ(q0, c) = (q1, c , L)
δ(q0, b) = (q0, b,R) δ(q1, a) = (qf , a,R)

ac ∈ L(M) ? is associated to the following instance of the MPCP:

λ #q0ac
d d for any d ∈ {a, b, c ,2,#}

q0a aq0

q0b bq0

eq0c q1ec for any e ∈ {a, b, c ,2}
#q0c #q12c
q1a aqf

qf e qf for any e ∈ {a, b, c ,2}
eqf qf for any e ∈ {a, b, c ,2}
#qf λ

213 / 289

MPCP: example

This instance of the MPCP has a solution, mimicking the execution
of TM M on string ac toward final state qf .

q0 q0 q1 qf qf qf# # # # # #a a a ac c c c c

Question: Which instance of the MPCP is associated to c ∈ L(M) ?

Does this instance of the MPCP have a solution ?

214 / 289

Reductions

L1 ⊆ Σ∗1 is reducible to L2 ⊆ Σ∗2 if there is a computable function
f : Σ∗1 → Σ∗2 such that:

v ∈ L1 ⇔ f (v) ∈ L2

If “w ∈ L2 ?” can be decided, then so can “v ∈ L1 ?”.

Vice versa, if “v ∈ L1 ?” is undecidable, then so is “w ∈ L2 ?”.

We show that the MPCP is reducible to the PCP, which implies
that the PCP is undecidable.

215 / 289

PCP: undecidability

Theorem: It is undecidable if any instance of the PCP has no solution.

Proof: Given any instance of the MPCP: w1, . . . ,wn and v1, . . . , vn,
with wi = ai1 · · · aimi

and vi = bi1 · · · biri (and mi + ri > 0) for all i .

We define two new sequences y0, . . . , yn+1 and z0, . . . , zn+1:

y0 = $y1 yi = ai1$ai2$ · · · aimi
$ (1 ≤ i ≤ n) yn+1 = #

z0 = z1 zi = $bi1$bi2 · · · $biri (1 ≤ i ≤ n) zn+1 = $#

$ and # are fresh, so each PCP solution is of the form

y0yj · · · ykyn+1 = z0zj · · · zkzn+1

This is a PCP solution if and only if

w1wj · · ·wk = v1vj · · · vk
is a MPCP solution for the wi ’s and vi ’s.

Since the MPCP is undecidable, the PCP is undecidable too.

216 / 289

Reduction of MPCP tot PCP: example

Consider the following instance of the MPCP:

w1 = 11 w2 = 1

v1 = 1 v2 = 11

To which instance of the PCP does it reduce ?

y0 = $1$1$ y1 = 1$1$ y2 = 1$ y3 = #

z0 = $1 z1 = $1 z2 = $1$1 z3 = $#

The original MPCP instance has a solution if and only if
the resulting PCP instance has a solution.

217 / 289

Semi-decidability

The halting problem and the PCP are semi-decidable.

Namely, these problems are decidable if:

I the TM reaches a halt state on the given input, or

I the PCP instance has a solution.

218 / 289

More undecidable problems

In 1900, David Hilbert (1862-1941) formulated 23 mathematical problems.

Diophantine equations consist of polynomials with one or more variables,
and coefficients in Z. For example:

3X 2Y − 7Y 2Z 3 − 18 = 0
−7Y 2 + 8Z 3 = 0

Hilbert’s 10th problem: Give an algorithm to determine whether a system
of Diophantine equations has a solution in Z.

In 1970, Yuri Matiyasevich proved that this problem is undecidable.

219 / 289

Complexity classes P and NP

A nondeterministic TM M is polynomial-time-bounded
if there is a polynomial p(k) such that for each input w ,
M always reaches a halt state in at most p(|w |) steps.

I L(M) ∈ NP

I if M is deterministic, then L(M) ∈ P

P ⊆ NP, but unknown is whether P = NP.

Recall that simulating a nondeterministic TM by a deterministic TM
takes an exponential amount of time.

220 / 289

Problems in NP

The language that belongs to a decision problem, consists of strings
that represent an instance of the problem, and have the outcome yes.

Examples:

The question whether the traveling salesman problem
has a solution ≤ k (for a certain k) is in NP.

The question whether a number is not prime is in NP.

Surprisingly, this question turned out to be in P.

(Agrawal, Kayal, Saxena, 2002)

221 / 289

Problems in NP

Intuitively, a decision problem is in NP if:

I every instance has finitely many possible solutions, and

I it can be checked in polynomial time whether or not
a possible solution for an instance is correct.

Question: Given such a decision problem.

Build a polynomial-time-bounded nondeterministic TM
that accepts exactly all solvable problem instances.

222 / 289

The question if a number isn’t prime is in NP

Proof: We build a polynomial-time-bounded TM that accepts
exactly all non-primes n.

I Choose nondeterministically a number k ∈ {2, 3, . . . , bn2c}.

I Check whether k divides n. If so, accept.

223 / 289

NP-completeness

L1 ⊆ Σ∗1 is reducible to L2 ⊆ Σ∗2 if there is a computable function
f : Σ∗1 → Σ∗2 such that:

v ∈ L1 ⇔ f (v) ∈ L2

If “w ∈ L2 ?” can be decided, then so can “v ∈ L1 ?”.

L1 is polynomial-time reducible to L2 if the function f : Σ∗1 → Σ∗2
can be computed in polynomial time.

If “w ∈ L2 ?” can be decided in polynomial time, then so can “v ∈ L1 ?”.

A language L ∈ NP is NP-complete if each language in NP is
polynomial-time reducible to L.

224 / 289

Bounded tiling problem

Given a finite set of types of 1× 1 tiles, with a “color” at each side.

There are infinitely many tiles of each type.

Example:
b b b b b y

r

g

g g

rr

When tiling a surface, touching sides of neighboring tiles must have
the same color. (Tile types can’t be rotated.)

Bounded tiling problem: Given a value n and a first row of n tiles.

Can the n × n surface be tiled ?

Example: n = 2.

b
g

b

b b

gr

r

y
r

bb b

r g

b

b
g r

b

b

b

b

r g

r g

g r

225 / 289

Bounded tiling problem is NP-complete

Theorem: The bounded tiling problem is NP-complete.

Proof: The bounded tiling problem is in NP.

I For each instance there are finitely many possible solutions.

I It can be checked in polynomial time whether a possible solution
is correct.

Let the nondeterministic TM M be polynomial-time-bounded by
a polynomial p(k). (We assume that p(k) ≥ k .)

We give a polynomial-time reduction from w ∈ L(M) ? to
the bounded tiling problem.

226 / 289

To build the first row (for all a ∈ Σ):

q0, a a 2

Instructions of M (for all c ∈ Γ):

b r , c

r ,Rr ,R

q, a c

r , c b

r , Lr , L

c q, a

(r , b, L) ∈ δ(q, a)(r , b,R) ∈ δ(q, a)

Leave the tape unchanged (for all q ∈ F and c ∈ Γ):
q, c c

q, c c

227 / 289

For an input string w = a1 · · · ak we choose n = 2p(k) + 1,
and as first row of tiles: q0, a1 a2 ak

· · ·· · ·
2 2

· · ·
2 2

p(k) p(k)

The n × n surface can be tiled ⇔ w ∈ L(M).

Namely, each tiling simulates an execution of M on input w .

Such an execution consists of at most p(k) steps.

This produces a tiling of height ≤ p(k) + 1.

Since tiles q, c

q, c

exist only for q ∈ F , the tiling can only be completed to size n × n
if the corresponding execution of M on input w reaches a final state.

228 / 289

Bounded tiling problem: example

Consider TM M with Σ = {a, b}, Γ = Σ ∪ {2}, F = {q1} and

δ(q0, a) = (q0, b,R) δ(q0, b) = (q1, b, L)

L(M) consists of all strings containing a b.

At input w , M takes at most |w | steps. So we take p(k) = k.

Tile types are (for all c ∈ Γ):

q0, a 2aq0, b b cq1, c

q1, c c

q0, c q1, c

q1, Lq0,R

c c

b

q1, L

q0, b

q0,R

b

q0, a

229 / 289

Bounded tiling problem: example

q0, a 2aq0, b b cq1, c

q1, c c

q0, c q1, c

q1, Lq0,R

c c

b

q1, L

q0, b

q0,R

b

q0, a

Consider the input string aaa 6∈ L(M). Then n = 7.

2

2

2

b

b

b

b

b

a

aq0, a a

b

q0,R

q0,R
q0, a

q0, a
q0,R

2

2

2

2 2

2

2

2

2

2

2

2

q0,2

230 / 289

Bounded tiling problem: example

Consider the input string aab ∈ L(M). Then n = 7.

2

2

2

2

b

b

b

b

b

b

bq0, a a

q0, a

q1, b

q0, b
q0,R

q1, L

q0,R

2

2

2

2

2

2 2

2

2 2

22

2 2 2 q1, b 2bb

2 2 2 b q1, b b 2

2 2 2 q1, bb b 2

231 / 289

Millennium Prize Problem

Question: Suppose a polynomial-time algorithm is discovered for
the bounded tiling problem.

How does this induce a polynomial-time algorithm for any problem
in NP ?

So far no polynomial-time algorithm for the bounded tiling problem
has been found.

It remains an open question whether such an algorithm exists.

P = NP ? is one of seven Millennium Prize Problems posed by
the Clay Mathematics Institute, with a reward of one million dollar.

232 / 289

Polynomial-time reductions are compositional

L1 ⊆ Σ∗1 is polynomial-time reducible to L2 ⊆ Σ∗2 if there is
an in polynomial time computable function f : Σ∗1 → Σ∗2 such that:

w ∈ L1 ⇔ f (w) ∈ L2

The composition g ◦ f : Σ∗1 → Σ∗3 of polynomial-time reductions
f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 is a polynomial-time reduction.

So if an NP-complete L1 is polynomial-time reducible to L2 ∈ NP,
then L2 is NP-complete.

233 / 289

NP-complete problems: examples

The question whether the traveling salesman problem has
a solution ≤ k (for a certain k) is NP-complete.

A Boolean formula consists of true, false, conjunction ∧,
disjunction ∨, negation ¬, and variables.

A Boolean formula Φ is satisfiable if there is a substitution
of values true and false for the variables in Φ such that
Φ evaluates to true.

The satisfiability problem of Boolean formulas is NP-complete.

234 / 289

Question

Is the following Boolean formula satisfiable ?

((x ∧ y) ∨ (¬x ∧ ¬y)) ∧ ((x ∧ ¬y) ∨ (¬x ∧ y))

How many different substitutions of truth values exist for
a Boolean formula with n different variables ?

235 / 289

Satisfiability problem is in NP

Theorem: The question whether a Boolean formula is satisfiable
is in NP.

Proof: We build a polynomial-time-bounded TM that accepts
exactly all satisfiable Boolean formulas:

I Verify whether the input is a well-defined Boolean formula.

I Choose nondeterministically one of the possible substitutions
of truth values for the variables in the formula.

I Perform this substitution on the formula.

I Check whether the resulting formula is true. If so, accept.

236 / 289

Satisfiability problem is NP-complete

Cook’s Theorem: The satisfiability problem is NP-complete.

Proof: There exists a polynomial-time reduction from
the bounded tiling problem to the satisfiability problem.

Given a finite set T of tile types, n, and a first row of tiles t1 · · · tn.

Boolean variable xk`t = true (for 1 ≤ k , ` ≤ n and t ∈ T) represents
that position (k , `) in the n × n tiling is occupied by a tile of type t.

There is an n × n tiling with first row of tiles t1 · · · tn if and only if
the conjunction of the following four Boolean formulas is satisfiable.

237 / 289

The first row consists of t1 · · · tn:

n∧
k=1

xk1tk

Each position holds at most one tile type:

n∧
k=1

n∧
`=1

∧
t 6=t′

¬(xk`t ∧ xk`t′)

Horizontally touching sides have the same color:

n−1∧
k=1

n∧
`=1

∨
tt′ legal

(xk`t ∧ x(k+1)`t′)

Vertically touching sides have the same color:

n∧
k=1

n−1∧
`=1

∨
t′
t legal

(xk`t ∧ xk(`+1)t′)

238 / 289

Satisfiability problem is NP-complete

The size of the resulting Boolean formula is polynomial in n.

Hence we have constructed a polynomial-time reduction from
the bounded tiling problem to the satisfiability problem.

We conclude that the satisfiability problem is NP-complete.

239 / 289

Question

Reduce the following instance of the bounded tiling problem
to the satisfiability problem.

Tile types: b b b b b y

r

g

g g

rr

First row: bb b

r g

g r

240 / 289

Other NP-complete problems

By means of polynomial-time reductions, a wide range of problems
have been shown to be NP-complete.

For example:

I 0 -1 knapsack problem

I traveling salesman problem

I Hamiltonian cycle problem

I integer programming

241 / 289

Branch and bound

Branch-and-bound algorithms are commonly used to solve
NP-complete optimization problems.

Consider a problem to maximize the value of some function f (x).

(E.g., the 0 -1 knapsack or traveling salesman problem.)

We build a binary tree, in which each node contains a subset of
possible solutions.

The root contains all possible (correct and incorrect) solutions.

(E.g., each possible subset of items in the knapsack, or
each possible subset of roads between cities.)

242 / 289

Branch and bound

branch: Split the set of possible solutions in a node in two parts,
which are stored in the two nodes below.

Pick one item, and consider solutions that include this item
separately from solutions that exclude this item.

(E.g., 1 item in/outside the knapsack, or 1 road in/outside the path.)

bound: Determine an (easily computable) upper bound of f (x),
for the possible solutions in a node.

prune: If a solution f (x) = a is found, all intermediate nodes with
an upper bound ≤ a are pruned away.

best-first search: branch on a node with the highest upper bound.

243 / 289

Branch-and-bound algorithm for the 0 -1 knapsack problem

Order items on the basis of v
w (with v their value and w their weight).

The root node contains all possible subsets of items.

That is, for each item it is undetermined whether it is selected.

branch: Pick the highest undetermined item i , and split solutions
that include i from solutions that exclude i from the knapsack.

bound: Determine an upper bound for each of the two subsets,
by (illegally) assuming a fraction of an item can be in the knapsack.

244 / 289

Branch-and-bound algorithm for the 0 -1 knapsack problem

Example: W = 100
item v w v

w

1 60 30 2

2 60 50 6
5

3 40 40 1

4 10 10 1

5 20 40 1
2

6 10 30 1
3

7 3 10 3
10

In each node we keep track of:

I The added value and weight of all items
that were determined to be in the knapsack.

I An upper bound on the possible solutions
corresponding to this node.

For instance, in the root node the overall value and weight are 0
and the upper bound is v1 + v2 + 1

2 ·v3 = 140.

245 / 289

Branch-and-bound algorithm for the 0 -1 knapsack problem

W = 100

item v w v
w

1 60 30 2

2 60 50 6
5

3 40 40 1

4 10 10 1

5 20 40 1
2

6 10 30 1
3

7 3 10 3
10

0 0 140

60 30 140
1

0 0 110
¬1

120 80 140
1 2

60 30 120
1 ¬2

160 120 –
1 2 3

120 80 135
1 2 ¬3

130 90 135
1 2 ¬3 4

120 80 130
1 2 ¬3 ¬4

150 130 –
1 2 ¬3 4 5

130 90 133 1
3

1 2 ¬3 4 ¬5

140 120 –
1 2 ¬3 4 ¬5 ¬6

130 90 133
1 2 ¬3 4 ¬5 ¬6

133 100 133
1 2 ¬3 4 ¬5 ¬6 7

v1 + v2 +
1
2
·v3 = 140

v2 + v3 + v4 = 110

v1 + v3 + v4 +
1
2
·v5 = 120

v1 + v2 + v4 +
1
4
·v5 = 135

v1 + v2 +
1
2
·v5 = 130

v1 + v2 + v4 +
1
3
·v6 = 133 1

3

v1 + v2 + v4 + v7 = 133
246 / 289

Branch-and-bound algorithm for the 0 -1 knapsack problem

No more nodes can be added below the bottom node, because
at this point the weight 100 has been exhausted.

Since all “pending” nodes have an upper bound smaller than 133,
they are pruned away, and the algorithm terminates with as outcome:

I v1 v2 v4 v7 in the knapsack

I total value 133

The best-first search approach of branch and bound often takes
linear time, but in the worst case takes exponential time.

247 / 289

Branch-and-bound algorithm for the 0 -1 knapsack problem

Let W = 2·n − 1.

There are n items of value 2 + 1
n and weight 2.

There is 1 item of value 2·n − 1 and weight 2·n − 1.

The n small items are ordered before the large item, because
2+ 1

n
2 > 1.

Therefore the branch-and-bound algorithm will first exhaustively
try to fit a subset of first n items into the knapsack, every time
yielding the total value (n − 1)·2 = 2·n − 2.

Only at the very end the optimal solution is found:

Put only the last element in the knapsack, with total value 2·n− 1.

248 / 289

Huygens’ principle

Each point on a wave front becomes a source of a spherical wave.

249 / 289

Double-slit experiment of Young

Christiaan Huygens predicted in 1678 that light behaves as a wave.

Thomas Young showed in 1805 that this is indeed the case.

But if light is measured at the slits, its particles (photons) travel
in a straight line.

250 / 289

Quantum mechanics

An elementary particle can behave as a wave or as a particle.

Superposition: A particle can simultaneously be in a range of states,
with some probability distribution.

Interaction with an observer causes a particle to assume a single state.

Superposition is represented using complex numbers.

251 / 289

Complex numbers

“ God made the natural numbers; all else is the work of man ”

(Leopold Kronecker, 1886)

x + 1 = 0 x = −1 Z

2x = 1 x = 1
2 Q

x2 = 2 x =
√

2 R

x2 = −1 x = i C

A complex number in C is of the form a + bi with a, b ∈ R.

Fundamental theorem of algebra: C is algebraically closed !

252 / 289

Qubits

A qubit (short for quantum bit) is in a superposition

α0 |0〉 + α1 |1〉

with α0, α1 ∈ C, where |α0|2 + |α1|2 = 1.

At interaction with an observer, the qubit takes on the value 0
with probability |α0|2, and the value 1 with probability |α1|2.

After such an interaction the qubit is no longer in superposition,
but in a single state 0 or 1.

For simplicity we assume that α0, α1 ∈ R. (They can be negative !)

253 / 289

2-qubits

A system of two qubits has four states:

α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉

where α2
00 + α2

01 + α2
10 + α2

11 = 1.

Two independent qubits α0 |0〉 + α1 |1〉 and β0 |0〉 + β1 |1〉
can be described by:

α0·β0 |00〉 + α0·β1 |01〉 + α1·β0 |10〉 + α1·β1 |11〉

254 / 289

Entanglement of qubits

Example: Consider the 2-qubit 1√
2
|00〉 + 1√

2
|11〉.

When one of the qubits is observed, both qubits assume the same state.

Such a relation between superpositions is called entanglement.

Entanglement can occur at the decay of an elementary particle into
multiple particles and is preserved when these particles are no longer
close to each other.

John Bell confirmed this phenomenon experimentally in 1964.

255 / 289

EPR paradox (1935)

Einstein, Podolsky and Rosen formulated the following paradox.

Let two entangled particles travel to different corners of the universe.

How can the superpositions of these particles be instantly related ?

According to relativity theory, nothing travels faster than light.

“ If someone tells you they understand quantum mechanics,
then all you’ve learned is that you’ve met a liar. ”

(Richard Feynman)

256 / 289

Measuring one qubit of a 2-qubit

Consider a 2-qubit

α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉

with α2
00 + α2

01 + α2
10 + α2

11 = 1.

If for instance the first of these qubits is measured with outcome 0,
then the resulting superposition of the second qubit is

1√
α2

00+α2
01

(α00 |0〉 + α01 |1〉)

Question: Suppose the second qubit is measured with outcome 1.

What is then the resulting superposition of the first qubit ?

257 / 289

Questions

Question: What does a 2× 2 matrix represent ? For example,(
1 3
−2 1

)

Answer: A linear mapping from R2 to R2.

Question: What do the columns of this matrix express ?

Answer: The images of the two base vectors.

The example matrix maps
(

1
0

)
to
(

1
−2

)
, and

(
0
1

)
to
(

3
1

)
.

258 / 289

Question

What is the image of
(
−4
1

)
under the matrix on the previous slide ?

259 / 289

Matrices

The 2× 2 matrix
(
β00 β10

β01 β11

)

maps base vector
(

1
0

)
to
(
β00

β01

)
, and base vector

(
0
1

)
to
(
β10

β11

)
.

A matrix is a linear mapping:

vector
(
α0

α1

)
is by the matrix mapped to α0

(
β00

β01

)
+ α1

(
β10

β11

)
.

In other words,(
β00 β10

β01 β11

)(
α0

α1

)
=

(
α0·β00 + α1·β10

α0·β01 + α1·β11

)

260 / 289

Qubit as a vector

A qubit can be interpreted as a vector of length 1:

sin Θ

|1〉

cos Θ

Θ
|0〉

sin2 Θ + cos2 Θ = 1

261 / 289

Quantum operations

Physically, on a qubit one can perform a quantum operation

(
β00 β10

β01 β11

)

which maps |0〉 to β00|0〉+ β01|1〉 and |1〉 to β10|0〉+ β11|1〉.

This operation maps a qubit α0 |0〉 + α1 |1〉 to

(α0·β00 + α1·β10) |0〉 + (α0·β01 + α1·β11) |1〉

Quantum operations are invertible and preserve probability mass 1.

262 / 289

Unitary matrices

A matrix is unitary if its columns are orthonormal:

they have length 1 and are orthogonal to each other.

(
β00 β10

β01 β11

)
is unitary if and only if: β2

00 + β2
01 = 1

β2
10 + β2

11 = 1

β00·β10 + β01·β11 = 0

Unitary matrices are invertible and preserve length and angle size.

Typical examples are rotations and reflections.

The composition of unitary matrices is again a unitary matrix.

263 / 289

Quantum operations: example

A quantum operation can be applied to a single qubit of
an entangled pair of qubits.

Example: Consider the entangled 2-qubit 1√
2

(|00〉 + |11〉).

Apply to the first qubit a rotation of π
8 (22.5◦):(

cos π8 − sin π
8

sin π
8 cos π8

)

The superposition of the 2-qubit then becomes

1√
2

(cos π8 |00〉 − sin π
8 |01〉 + sin π

8 |10〉 + cos π8 |11〉)

264 / 289

Quantum operations: example

1√
2
(cos π

8
|00〉 − sin π

8
|01〉 + sin π

8
|10〉 + cos π

8
|11〉)

Apply to the second qubit a rotation of −π
8 :(

cos π8 sin π
8

− sin π
8 cos π8

)

The resulting superposition of the 2-qubit is
(independent from the order in which the rotations are applied):

1√
2

((cos2 π
8 − sin2 π

8) |00〉 − 2· sin π
8 · cos π8 |01〉

+ 2· sin π
8 · cos π8 |10〉 + (cos2 π

8 − sin2 π
8) |11〉)

265 / 289

Parity game

Alice and Bob each get a randomly chosen bit, x and y .

They answer, independent of each other, with a bit, a and b.

Alice and Bob win if
a⊕ b = x ∧ y

with ⊕ the XOR (i.e., addition modulo 2) and ∧ conjunction.

0⊕ 0 = 0 0 ∧ 0 = 0

0⊕ 1 = 1 0 ∧ 1 = 0

1⊕ 0 = 1 1 ∧ 0 = 0

1⊕ 1 = 0 1 ∧ 1 = 1

On a classical computer, an optimal strategy is that Alice and Bob
both always answer 0. They then win with probability 0.75.

266 / 289

Parity game: quantum solution

Alice and Bob each hold a qubit of the entangled 2-qubit

1√
2

(|00〉 + |11〉).

If Alice receives x = 1, she rotates her qubit with π
8 .

If Bob receives y = 1, he rotates his qubit with −π
8 .

Finally Alice and Bob each measure their own qubit,
and return the result as answer a and b, respectively.

With this strategy, Alice and Bob win with a probability > 0.8 !!

267 / 289

Parity game: quantum solution

x = y = 0: The superposition is 1√
2

(|00〉 + |11〉).

So a⊕ b = 0 with probability 1.

x = 1, y = 0: The superposition is

1√
2

(cos π8 |00〉 − sin π
8 |01〉 + sin π

8 |10〉 + cos π8 |11〉).

So a⊕ b = 0 with probability cos2 π
8 > 0.85.

x = 0, y = 1: Likewise a⊕ b = 0 with probability cos2 π
8 > 0.85.

268 / 289

Parity game: quantum solution

x = y = 1: The superposition is

1√
2

((cos2 π
8 − sin2 π

8) |00〉 − 2· sin π
8 · cos π8 |01〉

+ 2· sin π
8 · cos π8 |10〉 + (cos2 π

8 − sin2 π
8) |11〉)

So a⊕ b = 1 with probability (2· sin π
8 · cos π8)2 = sin2 π

4 = 0.5.

Conclusion: On average, Alice and Bob win with probability > 0.8.

269 / 289

Simon’s algorithm (1994)

Given an f : {0, 1}n → {0, 1}n, such that for some s ∈ {0, 1}n \ {0n}:

∀x , y ∈ {0, 1}n (x 6= y) : f (x) = f (y) ⇔ x ⊕ y = s

with ⊕ the bitwise XOR, i.e., addition modulo 2.

Example: n = 3 and s = 011.

f : {0, 1}3 → {0, 1}3 is defined as follows:

f (000) = f (011) = 010 f (100) = f (111) = 110

f (001) = f (010) = 101 f (101) = f (110) = 001

270 / 289

Simon’s algorithm

We are only given a black box (i.e., a classical circuit) that for
any input x produces f (x), in polynomial time (in n).

Problem: Determine s.

A brute force algorithm:

Search for a pair x 6= y with f (x) = f (y), and compute x ⊕ y .

On average, this takes an exponential amount of time (in n).

Simon’s algorithm on average determines s in polynomial time (in n).

271 / 289

Quantum gates: NOT

Since quantum operations are unitary, they are invertable and
quantum gates always have an equal number of inputs and outputs.

NOT:

(
0 1
1 0

)

This gate carries α0 |0〉 + α1 |1〉 over to α1 |0〉 + α0 |1〉.

272 / 289

Quantum operation on two qubits

Quantum-operations can be applied to two qubits simultaneously.

Then the quantum operation is a unitary 4× 4-matrix:

each string in {0, 1} × {0, 1} is a base vector.

A unitary matrix

β00 β10 β20 β30

β01 β11 β21 β31

β02 β12 β22 β32

β03 β13 β23 β33

gives rise to the following transformations:

|00〉 7→ β00|00〉+ β01|01〉+ β02|10〉+ β03|11〉

|01〉 7→ β10|00〉+ β11|01〉+ β12|10〉+ β13|11〉

|10〉 7→ β20|00〉+ β21|01〉+ β22|10〉+ β23|11〉

|11〉 7→ β30|00〉+ β31|01〉+ β32|10〉+ β33|11〉

273 / 289

Quantum gates: Controlled NOT

A quantum operation cannot copy a qubit, since this requires
two inputs and one output.

CNOT:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

CNOT can be represented by |xy〉 7→ |x(x ⊕ y)〉.

(⊕ denotes the XOR, i.e., addition modulo 2.)

With CNOT, x can be copied, if we make sure y initially is |0〉.
y is some kind of working memory.

274 / 289

Quantum gates: Hadamard

Hadamard: 1√
2

(
1 1
1 −1

)

This transformation transposes |0〉 as well as |1〉 into a superposition
in which the outcomes 0 and 1 are equally likely.

275 / 289

Simon’s algorithm

Cf transforms [xy〉 into [x(f (x)⊕ y)〉, for each x , y ∈ {0, 1}n.

H

H

H

H

|0n〉 ...

...
...|0n〉

...

Cf

(The circuit to compute f (x) is omitted.)

276 / 289

Simon’s algorithm

We start with [0n0n〉. (The last n bits are “working memory”.)

After Hadamards on the first n bits, the superposition is

1√
2n

∑
x∈{0,1}n |x 0n〉

Perform Cf on the 2n bits: 1√
2n

∑
x∈{0,1}n |x f (x)〉

Measure the last n bits: f (x0) for a certain x0 ∈ {0, 1}n.

Since f (x0) = f (x0 ⊕ s), the superposition of the first n bits is

1√
2

(|x0〉+ |x0 ⊕ s〉)

277 / 289

Simon’s algorithm: example

n = 3, and s = 011, and f : {0, 1}3 → {0, 1}3 is defined by:

f (000) = f (011) = 010 f (100) = f (111) = 110

f (001) = f (010) = 101 f (101) = f (110) = 001

We start with |000000〉, and perform Hadamards on the first three bits.

1√
8

(|000000〉+ |001000〉+ |010000〉+ |011000〉

+ |100000〉+ |101000〉+ |110000〉+ |111000〉)

Question: What is the resulting superposition if we now apply Cf ?

278 / 289

Simon’s algorithm: example

Performing Cf on the six bits yields:

1√
8

(|000010〉+ |001101〉+ |010101〉+ |011010〉

+ |100110〉+ |101001〉+ |110001〉+ |111110〉)

Read the last three bits. There are four possible answers:

010 101 110 001

Suppose we read 110. The superposition of the first three bits then is

1√
2

(|100〉+ |111〉)

Question: What is the resulting superposition if we read 101 ?

279 / 289

Simon’s algorithm

The probability that a Hadamard 1√
2

(
1 1
1 −1

)
transforms a b ∈ {0, 1}

into a b′ ∈ {0, 1} is −1√
2

if b = b′ = 1, and 1√
2

otherwise.

n Hadamards on a string x ∈ {0, 1}n produce each possible string
of length n with equal probability.

A string z is produced with a + or − depending on how many 1’s
the strings x and z have in common.

If x and z have an even number of 1’s in common, z is produced.

If x and z have an odd number of 1’s in common, −z is produced.

280 / 289

Simon’s algorithm

If s and z have an even number of 1’s in common, then
Hadamards on x0 and x0 ⊕ s produce z with the same sign.

If s and z have an odd number of 1’s in common, then Hadamards
on x0 and x0 ⊕ s produce z with the opposite sign.

Example: s = 011. Suppose x0 = 100, and so x0 ⊕ s = 111.

I Three Hadamards on x0 produce −101.

Three Hadamards on x0 ⊕ s produce 101.

I Three Hadamards on x0 produce −111.

Three Hadamards on x0 ⊕ s also produce −111.

Hence, the n Hadamards on 1√
2

(|x0〉+ |x0 ⊕ s〉) produce those z

with 〈s, z〉 = 0 mod 2 (i.e., s1z1 ⊕ · · · ⊕ snzn = 0).

281 / 289

Simon’s algorithm: example continued

Perform Hadamard on the first bit of 1√
2

(|100〉+ |111〉).

1
2 (|000〉 − |100〉+ |011〉 − |111〉)

Perform Hadamard on the second bit.

1√
8

(|000〉+ |010〉 − |100〉 − |110〉+ |001〉 − |011〉 − |101〉+ |111〉)

Perform Hadamard on the third bit.

1
4 (|000〉+ |001〉+ |010〉+ |011〉 − |100〉 − |101〉 − |110〉 − |111〉

+ |000〉 − |001〉 − |010〉+ |011〉 − |100〉+ |101〉+ |110〉 − |111〉)

= 1
2 (|000〉+ |011〉 − |100〉 − |111〉)

282 / 289

Simon’s algorithm: example

Read the three bits. There are four possible answers:

000 011 100 111

Let s = s1s2s3.

I 000 gives no information.

I 011 implies s2 ⊕ s3 = 0 mod 2.

I 100 implies s1 = 0 mod 2.

I 111 implies s1 ⊕ s2 ⊕ s3 = 0 mod 2.

Two of the last three equations suffice to determine that s = 011
(using that s 6= 000).

283 / 289

Simon’s algorithm

Measuring the n bits gives a z ∈ {0, 1}n with 〈s, z〉 = 0 mod 2,
with a uniform probability distribution over all possible solutions z .

n − 1 linearly independent z1, . . . , zn−1 ∈ {0, 1}n such that
〈s, zi 〉 = 0 for i = 1, . . . , n − 1 suffice to compute s.

The more vectors z ∈ {0, 1}n with 〈s, z〉 = 0 we determine,
the larger the probability that n − 1 of them are linearly independent.

On average, s is determined in polynomial time (in n).

284 / 289

Shor’s algorithm (1994)

Problem: Decompose a given n > 1 into its prime factors.

Shor’s algorithm on average yields a solution in O(log3 n) time.

(Note that n is represented using log2 n bits.)

Shor’s algorithm uses a quantum algorithm to efficiently determine
the “period” of a randomly chosen a in (Z/nZ)∗.

With Shor’s algorithm, the RSA cryptographic algorithm is broken !

Only, nobody has succeeded yet in building a quantum computer
on which Shor’s algorithm can be executed for large instances of n...

285 / 289

Quantum circuits versus probabilistic TMs

A probabilistic TM is a nondeterministic TM in which a choice
between available transitions can be made with respect to some
probability distribution.

Each probabilistic TM can be efficiently simulated by
a quantum circuit.

Vice versa, each quantum circuit can be simulated by
a probabilistic TM.

However, this simulation can take an exponential amount of time.

286 / 289

Quantum operations versus probabilistic algorithms

Simon’s and Shor’s algorithm are exponentially faster than
all known (classical) probabilistic algorithms for these problems.

Unitary operations on qubits seem to differ in a fundamental way
from probabilistic operations on TMs.

“ The only difference between a probabilistic classical world and
the equations of the quantum world is that somehow or other
it appears as if the probabilities would have to go negative. ”

(Richard Feynman, 1982)

Entanglement also plays a key role.

287 / 289

BQP and BPP

BQP (Bounded error, Quantum, Polynomial time):
Decision problems that can be solved by a quantum TM
in polynomial time, with an error probability < 1

3 .

BPP (Bounded error, Probabilistic, Polynomial time):
Decision problems that can be solved by a probabilistic TM
in polynomial time, with an error probability < 1

3 .

(The choice for 1
3 is arbitrary, each value in 〈0, 1〉 would do.)

P ⊆ BPP ⊆ BQP ⊆ PSpace

Unknown is whether these inclusions are strict.

The questions BPP,BQP ⊆ NP ? and NP ⊆ BPP,BQP ? are still open.

288 / 289

Quantum computer: dream or reality ?

Building quantum computers is still in its infancy.

A challenge is to avoid that qubits interact with the environment,
as else they fall back to a classical state 0 or 1.

Recent breakthroughs:

I At the University of New South Wales a quantum logic gate
was built in silicon for the first time, in October 2015.

I D-Wave Systems builds and sells quantum computers
which they claim use a 128 qubit processor chipset.

289 / 289

