
IS703:
Decision Support and Optimization

Week 3: Dynamic Programming & 
Greedy Method

Lau Hoong Chuin
School of Information Systems                    



• Richard Bellman coined the term dynamic programming
in 1957 

• Solves problems by combining the solutions to sub-
problems that contain common sub-sub-problems. 

• Difference between DP and Divide-and-Conquer:
– Using Divide and Conquer to solve these problems is inefficient 

as the same common sub-sub-problems have to be solved many 
times.

– DP will solve each of them once and their answers are stored in 
a table for future reference.

Dynamic Programming



Intuitive Explanation

• Optimization Problem
– Many solutions, each solution has a (objective) value
– The goal is to find a solution with the optimal value
– Minimization problems: e.g. Shortest path
– Maximization problems: e.g. Tour planning

• Given a problem P, obtain a sequence of problems 
Q0, Q1, …., Qm, where:
– You have a solution to Q0

– The solution to a problem Qj, j > 0, can be obtained 
from solutions to problems Qk, k < j, that appear earlier 
in the “sequence”.



Intuitive Explanation

P

You know how to compute solution to Q0

Find a way to compute the
solution to Qj from 
the solutions to Qk (k<j)

Qm

Q0



Elements of Dynamic Programming

• Optimal sub-structure (Principle of Optimality)
– an optimal solution to the problem contains within it optimal 

solutions to sub-problems.
• Overlapping subproblems

– there exist some places where we solve the same subproblem
more than once

DP is used to solve problems with the following 
characteristics:



Optimal Sub-structure

Bellman’s optimality principle

Qi Qj

Pick optimal
Discard others

Qm

The discarded solutions for
the smaller problem remain
discarded because the optimal
solution dominates them.



1. Characterize optimal sub-structure

2. Recursively define the value of an optimal solution

3. Compute the value bottom up

4. (if needed) Construct an optimal solution

Steps to Designing a
Dynamic Programming Algorithm



Matrix-Multiply(A,B):
1 if columns[A] != rows[B] then
2 error "incompatible dimensions"
3 else for i = 1 to rows[A] do
4 for j = 1 to columns[B] do
5 C[i,j] = 0
6 for k = 1 to columns[A] do
7 C[i,j] = C[i,j]+A[i,k]*B[k,j]
8 return C

Time complexity = O(pqr), where |A|=pxq and |B|=qxr

Review: Matrix Multiplication

A: p x q

B: q x r



Matrix Chain Multiplication (MCM) Problem
Input: Matrices A1, A2, …, An, each Ai of size pi-1xpi , 

Output: Fully parenthesised product A1A2…An that 
minimizes the number of scalar multiplications.

A product of matrices is fully parenthesised if it is either
a) a single matrix, or 

b) the product of 2 fully parenthesised matrix products surrounded by 
parentheses.

Example: A1 A2 A3 A4 can be fully parenthesised as:

1. (A1 (A2 (A3 A4 )))       4. ((A1 (A2 A3 ))A4 )

2. (A1 ((A2 A3 )A4 ))       5. (((A1 A2 )A3 )A4 )

3. ((A1 A2 )(A3 A4 )) Note: Matrix multiplication is associative



Matrix Chain Multiplication Problem
Example: 3 matrices:

A1 : 10x100

A2 : 100x5

A3 : 5x50

Q: What is the cost of multiplying matrices of these sizes?

For ((A1A2)A3) , 

number of multiplications = 10x100x5 + 10x5x50 = 7500

For (A1(A2A3)) , it is 75000



Let the number of different parenthesizations be P(n). 
Then 

⎪⎩

⎪
⎨
⎧

≥−

=
= ∑

−

=

2)()(

11
)( 1

1
nifknPkP

nif
nP n

k
 

 
 Using generating function, we have 
 
P(n)=C(n-1), the n-1th Catalan number where
 

)/4()1/(1)( 2/32 nCnnC nn
n Ω=+=

 

Exhaustively checking all possible parenthesizations take 
exponential time!

Matrix Chain Multiplication Problem



Parenthesization

1 X N

N X N N X N
N
X
1

If we multiply these matrices first the cost is 2N3 

(N3 multiplications and N3 additions).

N X NResulting matrix



Parenthesization

1 X N
N
X
1

N X N

Cost of multiplication is N2.

Thus, total cost is proportional to N3 + N2 + N 
if we parenthesize the expression in this way.



Different Ordering

1 X N

N X N N X N
N
X
1

Cost is proportional to N2



The Ordering Matters!

One ordering costs O(N3)

The other ordering costs O(N2)

1 X N

N X N N X N
N
X
1

1 X N
N X N N X N

N
X
1

Cost depends on parameters of the operands.

How to parenthesize to minimize total cost?



Step 1: Characterize Optimal Sub-structure

Let Ai..j (i<j) denote the result of multiplying AiAi+1…Aj. 

Ai..j can be obtained by splitting it into Ai..k and Ak+1..j and 
then multiplying the sub-products.

There are j-i possible splits (i.e. k=i,…, j-1)

1 X N

N X N N X N
N
X
1

Ai
Ai



Step 1: Characterize Optimal Sub-structure

Let Ai..j (i<j) denote the result of multiplying AiAi+1…Aj. 

Ai..j can be obtained by splitting it into Ai..k and Ak+1..j and then 
multiplying the sub-products.

There are j-i possible splits (i.e. k=i,…, j-1)

1 X N

N X N N X N
N
X
1

Ai
Ai



Step 1: Characterize Optimal Sub-structure

Let Ai..j (i<j) denote the result of multiplying AiAi+1…Aj. 

Ai..j can be obtained by splitting it into Ai..k and Ak+1..j and then 
multiplying the sub-products.

There are j-i possible splits (i.e. k=i,…, j-1)

1 X N

N X N N X N
N
X
1

Ai
Ai



Step 1: Characterize Optimal Sub-structure

Within the optimal parenthesization of Ai..j,

(a) the parenthesization of Ai..k must be optimal

(b) the parenthesization of Ak+1..j must be optimal

Why?

1 X N

N X N N X N
N
X
1

Ai
Ai



Step 2: Recursive (Recurrence) Formulation

Need to find A1..n

Let m[i,j] = min # of scalar multiplications needed to compute Ai..j

Since Ai..j can be obtained by breaking it into Ai..k Ak+1..j, we have

⎪⎩

⎪
⎨
⎧

<+++
=

=
−

<≤
jiifpppjkmkim

jiif
jim

jki
jki

}],1[],[{
0

],[
1min

Let s[i,j] be the value k where the optimal split occurs

Note: The sizes of Ai..k is pi-1 pk, Ak+1..j is pk pj , and

Ai..k Ak+1..j is pi-1 pj after pi-1 pk pj scalar multiplications.



Step 3: Computing the Optimal Costs

A1,1 A2,2 A3,3 A4,4

A1,2 A2,3 A3,4

A1,3 A2,4

A1,4

depends 
on

Q0

Qm



Step 3: Computing the Optimal Costs

Matrix-Chain-Order(p)

1 n = length[p]-1 //p is the array of matrix sizes
2 for i = 1 to n do
3 m[i,i] = 0 // no multiplication for 1 matrix
4 for len = 2 to n do // len is length of sub-chain
5   for i = 1 to n-len+1 do // i: start of sub-chain
6 j = i+len-1 // j: end of sub-chain
7 m[i,j] = ∞
8 for k = i to j-1 do
9 q = m[i,k]+m[k+1,j]+pi-1pkpj
10 if q < m[i,j] then
11 m[i,j] = q
12 s[i,j] = k
13 return m and s

Time complexity = O(n3 )



Solve the following MCM instance:

Matrix Dimension

A1 30x35

A2 35x15

A3 15x5

A4 5x10

A5 10x20

A6 20x25

p=[30,35,15,5,10,20,25]

See CLRS Figure 15.3

Example





Step 4: Constructing an Optimal Solution

To get the optimal solution A1..6 , s[ ] is used as follows:

A1..6

= (A1..3 A4..6 ) since s[1,6] = 3

= ((A1..1 A2..3 )(A4..5 A6..6 )) since s[1,3] =1 and s[4,6]=5

=((A1 (A2 A3 ))((A4 A5 )A6 ))

MCM can be solved in O(n3 ) time 



Recap: Elements of Dynamic Programming

• Optimal substructure (Principle of Optimality)
– Example. In MCM, A1..6 = A1..3 A4..6

• Overlapping subproblems
– there exist some places where we solve the same 

subproblem more than once
– Example. In MCM, A2..3 is common to the sub-

problems A1..3 and A2..4

– Effort wasted in solving common sub-problems 
repeatedly

DP is used to solve problems with the following characteristics:



Recursive-Matrix-Chain(p,i,j)
 
1 if i = j  
2  then return 0 
3 m[i,j] = ∞ 
4 for k = i to j-1 do 
5  q = Recursive-Matrix-Chain(p,i,k)+  
         Recursive-Matrix-Chain(p,k,j)+pi-1pkpj
6  if q < m[i,j]  
7   then m[i,j] = q 
8 return m[i,j] 
 

Overlapping Subproblems

See CLRS Figure 15.5





 
For n > 1, we have 

T(n)= 1 + ∑
−

=

1

1

n

k (T(k) + T(n-k) + 1) 

a) 1 is used to cover the cost of lines 1-3, and 8

b) 1 is used to cover the cost of lines 6-7

Using substitution, we can show that T(n) ≥ 2n-1

Hence T(n) = Ω(2n)

Overlapping Subproblems
Let T(n) be the time complexity of 
Recursive-Matrix-Chain(p,1,n)



Memoization

• Memoization is one way to deal with overlapping 
subproblems
– After computing the solution to a subproblem,             

store it in a table
– Subsequent calls just do a table lookup

• Can modify recursive algo to use memoziation



Memoized-Matrix-Chain(p)
1 n = length[p] - 1
2 for i = 1 to n do
3 for j = i to n do
4 m[i,j] = ∞
5 return Lookup-Chain(p,1,n)

Memoization

Lookup-Chain(p,i,j)
1 if m[i,j]< ∞  // m[i,j] has been computed 
2  then return m[i,j] 
3 if i = j    // only one matrix 
4  then m[i,j] = 0 
5  else for k = i to j - 1 do 
6   q = Lookup-Chain(p,i,k) +  
     Lookup-Chain(p,k+1,j) + pi-1pkpj  
7   if q < m[i,j]   
8    then m[i,j] = q 
9 return m[i,j] 
 
 

Time complexity: O(n3) Why?

// Compare with Matrix-Chain-Order



Example: Traveling Salesman Problem
Given: A set of n cities V={x1, x2, …, xn} and distance 
matrix c, containing cost to travel between cities, find a 
minimum-cost tour. 

• David Applegate, Robert Bixby, Vašek Chvátal, William 
Cook (http://www.math.princeton.edu/tsp/)

• Exhaustive search: 
– Find optimal tour by systematically examining all tours
– enumerate all permutations of the cities and evaluate tour (given by 

particular vertex order)
– Keep track of shortest tour
– (n-1)! permutations, each takes O(n) time to evaluate

• Don’t look at all n permutations, since we don’t care about starting 
point of tour: A,B,C,(A) is same tour as C,A,B,(C)

– Unacceptable for large n



TSP

• Let S ={x1, x2, …, xk} be a subset of the vertices in V
• A path P from v to w covers S if P=[v, x1, x2, … , xk, w], 

where xi may appear in any order but each must appear 
exactly once

• Example, path from a to a, covering {c, d, f, e, b}

a

c

b

d

e

f



Dynamic Programming

• Let d(v, w, S) be cost of shortest path from v to w covering S
• Need to find d(v, v, V-{v})
• Recurrence relation:

c(v, w)     if  S={}
d(v, w, S) =

min ∀x (c(v,x) + d(x, w, S-{x})) otherwise
• Solve all subproblems where |S|=0, |S|=1, etc.
• How many subproblems d(x, y, S) are there? (n-1)2n-1

– S could be any of the 2n-1 distinct subsets of n-1 vertices

• Takes O(n) time to compute each d(v, w, S)



Dynamic Programming  

• Total time O(n22n-1)
• Much faster than O(n!)
• Example:

– n=1, algorithm takes 1 micro sec.
– n=20, running time about 3 minutes (vs. 1 million 

years)



Summary

• DP is suitable for problems with: 
– Optimal substructure: optimal solution to problem 

consists of optimal solutions to subproblems
– Overlapping subproblems: few subproblems in total, 

many recurring instances of each

• Solve bottom-up, building a table of solved 
subproblems that are used to solve larger ones

• Dynamic Programming applications



Exercise (Knapsack Problem)

• You are the ops manager of an equipment which can be 
used to process one job at a time 

• There are a set of jobs, each incurs a processing cost   
(weight) and reaps an associated profit (value), all 
numbers are non-negative integers

• Jobs may be processed in any order
• Your equipment has a processing capacity
• Question: What jobs should you take to maximize the 

profit?



Exercise (Knapsack Problem)
Design a dynamic programming algorithm to solve the 
Knapsack Problem.

Your algorithm should run in O(nW) time, where n is the 
number of jobs and W is the processing capacity.



Reference:
• CLRS Chapters 16.1-16.3,  23

Objectives:
• To learn the Greedy algorithmic paradigm
• To apply Greedy methods to solve several 

optimization problems
• To analyse the correctness of Greedy algorithms

Greedy Algorithms



Greedy Algorithms

• Key idea: Makes the choice that looks best at the 
moment
– The hope: a locally optimal choice will lead to a 

globally optimal solution

• Everyday examples: 
– Driving 
– Shopping



Applications of Greedy Algorithms

• Scheduling
– Activity Selection (Chap 16.1)
– Scheduling of unit-time tasks with deadlines on 

single processor (Chap. 16.5)

• Graph Algorithms
– Minimum Spanning Trees (Chap 23)
– Dijkstra’s (shortest path) Algorithm (Chap 24)

• Other Combinatorial Optimization Problems
– Knapsack (Chap 16.2)
– Traveling Salesman (Chap 35.2) 
– Set-covering (Chap 35.3)



Greedy vs Dynamic
• Dynamic Programming

– Bottom up (while Greedy is top-down)

• Dynamic programming can be overkill; greedy 
algorithms tend to be easier to code



Real-World Applications

• Get your $$ worth out of a carnival
– Buy a passport that lets you onto any ride
– Lots of rides, each starting and ending at different times
– Your goal: ride as many rides as possible

• Tour planning
• Customer satisfaction planning
• Room scheduling



Application: Activity-Selection Problem  

• Input: a list S of n activities = {a1,a2,…,an}
si = start time of activity i
fi = finish time of activity i
S is sorted by finish time, i.e. f1 ≤ f2 ≤ … ≤ fn

• Output: a subset A of compatible activities of 
maximum size
– Activities are compatible if                        is null

1
2

3
4

5

6

[ ) [ )jjii f,sf,s ∩

How many possible solutions are there?



Greedy Algorithm
Greedy-Activity-Selection(s,f)

1. n := length[s]

2. A := {a1}

3. j := 1

4. for k:=2 to n do

5. if sk >= fj // compatible activity

6. then A := A ∪ {ak}
7. j := k

8. Return A



Example Run

iteration



When does Greedy Work?
• Two key ingredients:

1.  Optimal sub-structure

An optimal solution to the entire problem contains within it 
optimal solutions to subproblems (this is also true of dynamic 
programming)

2.  Greedy choice property

• Greedy choice + Optimal sub-structure establish the 
correctness of the greedy algorithm



Optimal Sub-structure 
Let A be an optimal solution to problem with input S. Let ak be the 
activity in A with the earliest finish time.  Then A - {ak} is an 
optimal solution to the  subproblem with input S’ = {i ∈ S: si ≥ fk}
– In other words: the optimal solution S contains within it an 

optimal solution for the sub-problem on activities that are 
compatible with ak

Proof by Contradiction (Cut-and-Paste Argument):
Suppose A - {ak} is not optimal to S’. 
Then, ∃ optimal solution B to S’ with |B| > |A - {ak}|,
Clearly, B ∪ {ak} is a solution for S.
But, |B ∪ {ak}| > |A| (Contradiction)



Greedy Choice Property

• Locally optimal choice
– Make best choice available at a given moment

• Locally optimal choice ⇒ globally optimal solution
– In other words, the greedy choice is always safe
– How to prove? Use Exchange Argument usually.

• Contrast with dynamic programming
– Choice at a given step may depend on solutions to 

subproblems (bottom-up)



Greedy Choice Property

• Theorem: (paraphrased from CLRS Theorem 16.1) 
Let ak be a compatible activity with the earliest finish time. Then, 
there exists an optimal solution that contains ak.

• Proof by Exchange Argument:
For any optimal solution B that does not contain ak, 

we can always replace first activity in B with ak (Why?). Same 
number of activities, thus optimal.

k

B



Application: Knapsack Problem

• Recall 0-1 Knapsack problem:
– choose among n items, where the ith item worth vi dollars and 

weighs wi pounds
– knapsack carries at most W pounds
– maximize value

• Note: assume vi, wi, and W are all integers
• “0-1”, since each item must be taken or left in entirety

– solved by Dynamic Programming

• A variant - Fractional Knapsack problem:
– can take fractions of items
– can be solved by a Greedy algorithm



Knapsack Problem  

• The optimal solution to the fractional knapsack 
problem can be found with a greedy algorithm
– How?

• The optimal solution to the 0-1 problem cannot be 
found with the same greedy strategy
– Proof by a counter example
– Greedy strategy: take in order of dollars/kg
– Example: 3 items weighing 10, 20, and 30 kg, knapsack 

can hold 50 kg
• Suppose item 2 is worth $100.  Assign values to the other items 

so that the greedy strategy will fail 



Knapsack Problem: Greedy vs Dynamic

• The fractional problem can be solved greedily
• The 0-1 problem cannot be solved with a greedy 

approach
– It can, however, be solved with dynamic programming (recall 

previous lesson)



54

Summary 

• Greedy algorithms works under:
– Greedy choice property
– Optimal sub-structure property

• Design of Greedy algorithms to solve:
– Some scheduling problems
– Fractional knapsack problem



Exercise (Traveling Salesman Problem)

Design a greedy algorithm to solve TSP.

Demonstrate that greedy fails by giving a counter 
example. 



Exercise (Interval Coloring Problem)

Suppose that we have a set of activities to schedule 
among a large number of lecture halls. We wish to 
schedule all the activities using minimum number of 
lecture halls. 

Give an efficient greedy algorithm to determine which 
activity should use which lecture hall. 



Next Week

Read CLRS Chapters 22-26 (Graphs and Networks)

Do Assignment 2!


