
www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 1 

 

UNIT I 

SOFTWARE PRODUCT AND PROCESS 

1.0 INTRODUCTION 

SOFTWARE: 

                

Software is a set of instruction used to perform a specific task. 

ENGINEERING: 

                    

 It comprises analysis,design,construction,verification and management of technical 

entities. 

SOFTWARE ENGINEERING: 

 

 IEEE: International Electrical and Electronic Engineer 

 It is a systematic,disciplined,quantifiable approach for the 

development,operation,maintenance of software. 

 

SOFTWARE ENGINEERING PARADIGM: 

 

 A combination of software engineering layers and generic view of software engineering 

is called Software Engineering Paradigm. 

SOFTWARE ENGINEERING LAYERS: 

 

 

 

 

Tools 

Methods 

Process 

Quality 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 2 

 

SOFTWARE VIEW OF SOFTWARE ENGINEERING: 

 

1.Analysis 

2.Design 

3.Implementation 

4.Testing 

5.Maintenance 

 

 

SOFTWARE PROCESS MODELS: 

 

 Waterfall life cycle model 

 RAD model 

 Prototype model 

 Spiral model 

 Incremental model 

 Object oriented model 

 Winwin spiral model 

 

 

 

1.1 S/W Engineering Paradigm 

 The term "software engineering" was coined in about 1969 to mean "the establishment 

and use of sound engineering principles in order to economically obtain software that is reliable 

and works efficiently on real machines".  

This view opposed uniqueness and "magic" of programming in an effort to move the 

development of software from "magic" (which only a select few can do) to "art" (which the 

talented can do) to "science" (which supposedly anyone can do!). There have been numerous 

definitions given for software engineering (including that above and below). 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 3 

 

Software Engineering is not a discipline; it is an aspiration, as yet unachieved. Many 

approaches have been proposed including reusable components, formal methods, structured 

methods and architectural studies. These approaches chiefly emphasize the engineering product; 

the solution rather than the problem it solves.   

Software Development current situation: 

 People developing systems were consistently wrong in their estimates of time, effort, and 

costs  

 Reliability and maintainability were difficult to achieve  

 Delivered systems frequently did not work  

 1979 study of a small number of government projects showed that:  

 2% worked  

 3% could work after some corrections  

 45% delivered but never successfully used  

 20% used but extensively reworked or abandoned  

 30% paid and undelivered  

 Fixing bugs in delivered software produced more bugs  

 Increase in size of software systems  

 NASA  

 StarWars Defense Initiative  

 Social Security Administration  

 financial transaction systems  

 Changes in the ratio of hardware to software costs 

 early 60's - 80% hardware costs  

 middle 60's - 40-50% software costs  

 today - less than 20% hardware costs  

 Increasingly important role of maintenance  

 Fixing errors, modification, adding options  

 Cost is often twice that of developing the software  

 Advances in hardware (lower costs)  

 Advances in software techniques (e.g., users interaction)  

 Increased demands for software  

 Medicine, Manufacturing, Entertainment, Publishing  

 Demand for larger and more complex software systems  

 Airplanes (crashes), NASA (aborted space shuttle launches),  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 4 

 

 "ghost" trains, runaway missiles,  

 ATM machines (have you had your card "swallowed"?), life-support systems, car 

systems, etc.  

 US National security and day-to-day operations are highly dependent on computerized 

systems.  

Manufacturing software can be characterized by a series of steps ranging from concept 

exploration to final retirement; this series of steps is generally referred to as a software lifecycle.  

Steps or phases in a software lifecycle fall generally into these categories:  

 Requirements (Relative Cost 2%) 

 Specification (analysis) (Relative Cost 5%) 

 Design (Relative Cost 6%) 

 Implementation (Relative Cost 5%) 

 Testing (Relative Cost 7%) 

 Integration (Relative Cost 8%) 

 Maintenance (Relative Cost 67%) 

 Retirement 

Software engineering employs a variety of methods, tools, and paradigms.  

Paradigms refer to particular approaches or philosophies for designing, building and maintaining 

software. Different paradigms each have their own advantages and disadvantages which make 

one more appropriate in a given situation than perhaps another (!). 

A method (also referred to as a technique) is heavily depended on a selected paradigm and may 

be seen as a procedure for producing some result. Methods generally involve some formal 

notation and process(es).  

Tools are automated systems implementing a particular method.  

Thus, the following phases are heavily affected by selected software paradigms 

 Design  

 Implementation  

 Integration  

 Maintenance 

The software development cycle involves the activities in the production of a software system. 

Generally the software development cycle can be divided into the following phases:  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 5 

 

 Requirements analysis and specification  

 Design  

 Preliminary design  

 Detailed design  

 Implementation  

 Component Implementation 

 Component Integration 

 System Documenting  

 Testing  

 Unit testing  

 Integration testing  

 System testing  

 Installation and Acceptance Testing 

 Maintenance 

 Bug Reporting and Fixing 

 Change requirements and software upgrading 

 

Software lifecycles that will be briefly reviewed include:  

 Build and Fix model  

 Waterfall and Modified Waterfall models  

 Rapid Prototyping  

 Boehm's spiral model  

 

 

1.2 VERIFICATION VS VALIDATION 

 Verification:  

 "Are we building the product right" 

 The software should conform to its specification 

 Validation: 

  "Are we building the right product" 

 The software should do what the user really requires 

The V & V process 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 6 

 

 Is a whole life-cycle process - V & V must be  

applied at each stage in the software process. 

 Has two principal objectives 

o The discovery of defects in a system 

o The assessment of whether or not the system is usable in  

an operational situation. 

Static and dynamic verification 

 Software inspections  Concerned with analysis of  

the static system representation to discover problems  (static verification) 

o May be supplement by tool-based document and code analysis  

 Software testing  Concerned with exercising and  

observing product behaviour (dynamic verification) 

o The system is executed with test data and its operational behaviour is observed 

V& V goals 

 Verification and validation should establish confidence that the software is fit for purpose 

 This does NOT mean completely free of defects 

 Rather, it must be good enough for its intended use and the type of use will determine the 

degree of confidence that is needed 

V & V planning 

 Careful planning is required to get the most out of testing and inspection processes 

 Planning should start early in the development process 

 The plan should identify the balance between static verification and testing 

 Test planning is about defining standards for the testing process rather than describing 

product tests 

The V-model of development 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 7 

 

 

 

Software validation 

o Verification and validation (V & V) is intended to show that a system conforms to 

its specification and meets the requirements of the system customer. 

o Involves checking and review processes and system testing. 

o System testing involves executing the system with test cases that are derived from 

the specification of the real data to be processed by the system. 

 

1.3 Life Cycle models 

o The waterfall model 

 Separate and distinct phases of specification and development. 

o Evolutionary development 

 Specification, development and validation are interleaved. 

o Component-based software engineering 

 The system is assembled from existing components. 

o There are many variants of these models e.g. formal development where a 

waterfall-like process is used but the specification is a formal specification that is 

refined through several stages to an implementable design. 

Waterfall model phases 

 Requirements analysis and definition 

 System and software design 

 Implementation and unit testing 

 Integration and system testing 

 Operation and maintenance 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 8 

 

 The main drawback of the waterfall model is the difficulty of accommodating 

change after the process is underway. One phase has to be complete before 

moving onto the next phase. 

Waterfall model 

 

 

 

 

Waterfall model problems 

o Inflexible partitioning of the project into distinct stages makes it difficult to 

respond to changing customer requirements. 

o Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.  

o Few business systems have stable requirements. 

o The waterfall model is mostly used for large systems engineering projects where a 

system is developed at several sites.  

Evolutionary development 

o Exploratory development  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 9 

 

 Objective is to work with customers and to evolve a final system from an 

initial outline specification. Should start with well-understood 

requirements and add new features as proposed by the customer. 

o Throw-away prototyping 

 Objective is to understand the system requirements. Should start with 

poorly understood requirements to clarify what is really needed. 

 

Evolutionary development 

 

 

 

 

Evolutionary development 

o Problems 

 Lack of process visibility; 

 Systems are often poorly structured; 

 Special skills (e.g. in languages for rapid prototyping) may be required. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 10 

 

o Applicability 

 For small or medium-size interactive systems; 

 For parts of large systems (e.g. the user interface); 

 For short-lifetime systems. 

Incremental development 

 

 

Incremental development advantages 

 Customer value can be delivered with each increment so system functionality is 

available earlier. 

 Early increments act as a prototype to help elicit requirements for later 

increments. 

 Lower risk of overall project failure. 

 The highest priority system services tend to receive the most testing. 

 

Spiral development 

 Process is represented as a spiral rather than as a sequence of activities with 

backtracking. 

 Each loop in the spiral represents a phase in the process.  

 No fixed phases such as specification or design - loops in the spiral are chosen 

depending on what is required. 

 Risks are explicitly assessed and resolved throughout the process. 

 

 

Spiral model of the software process 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 11 

 

 

RAD MODEL: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 12 

 

 

60 – 90 Days 

 

PROTOTYPE MODEL: 

 

     It has 6 steps, They are as follows: 

 

 Requirement collection 
 Quick Design 
 Prototype creation(or)modification 
 Assessment 
 Prototype refinement 

 

 

 

 

Business 

Modeling 

Data 

Modeling 

Process 

Modeling 

Application 

Generation 

Testing & 

Turnover 

Business 

Modeling 

Data 

Modeling 

Process 

Modeling 

Application 

Generation 

Testing & 

Turnover 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 BUSINESS PROCESS ENGINEERING 

o Concerned with re-designing business processes to make them more responsive 

and more efficient 

o Often reliant on the introduction of new computer systems to support the revised 

processes 

o May force software re-engineering as the legacy systems are designed to support 

existing processes 

 

 

 

 

 

 

LISTEN                         

TOWARDS THE 

CUSTOMER 

REUSE / REBUILD 

MOCK-UP 

CUSTOMER TEST 

DRIVES MOCK - UP 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 14 

 

 

 

The re-engineering process 

 

 

Re-engineering approaches 

 

 

1.5 SYSTEM ENGINEERING 

What is a system? 

o A purposeful collection of inter-related components working together towards 

some common objective.  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 15 

 

o A system may include software, mechanical, electrical and electronic hardware 

and be operated by people. 

o System components are dependent on other  

system components 

o The properties and behaviour of system components are inextricably inter-

mingled 

Problems of systems engineering 

o Large systems are usually designed to solve 'wicked' problems Systems 

engineering requires a great deal of  co-ordination across disciplines 

o Almost infinite possibilities for design trade-offs across components  

o Mutual distrust and lack of understanding across engineering disciplines 

o Systems must be designed to last many years in a changing environment 

Software and systems engineering 

 The proportion of software in systems is increasing. Software-driven general 

purpose electronics is replacing special-purpose systems 

 Problems of systems engineering are similar to problems of software engineering 

 Software is (unfortunately) seen as a problem in systems engineering. Many large 

system projects have been delayed because of software problems 

The system engineering process 

o Usually follows a ‘waterfall’ model because of the need for parallel development 

of different parts of the system 

 Little scope for iteration between phases because hardware changes are 

very expensive. Software may have to compensate for hardware problems 

o Inevitably involves engineers from different disciplines who must work together 

 Much scope for misunderstanding here. Different disciplines use a 

different vocabulary and much negotiation is required. Engineers may 

have personal agendas to fulfil 

 

 

 

 

 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 16 

 

 

 

 

 

The systems engineering process 

 

 

1.6 COMPUTER-BASED SYSTEMS 

Definition 

 A set or arrangement of elements that are organized to accomplish some predefined goal 

by processing information. 

 

The goal may be to support some business function or to develop a product that can be 

sold to generate business revenue. To accomplish the goal, a computer-based system 

makes use of a variety of system elements: 

 

Software. Computer programs, data structures, and related documentation that  serve to 

effect the logical method, procedure, or control that is    required. 

 

Hardware. Electronic devices that provide computing capability, the interconnectivity 

devices (e.g., network switches, telecommunications devices) that enable the flow of 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 17 

 

data, and electromechanical devices (e.g., sensors, motors, pumps) that provide external 

world function. 

 

People. Users and operators of hardware and software. 

 

Database. A large, organized collection of information that is accessed via software. 

Documentation. Descriptive information (e.g., hardcopy manuals, on-line help files, Web 

sites) that portrays the use and/or operation of the system. 

 

Procedures. The steps that define the specific use of each system element 

or the procedural context in which the system resides. 

 

The elements combine in a variety of ways to transform information. For example, a 

marketing department transforms raw sales data into a profile of the typical purchaser of a 

product; a robot transforms a command file containing specific instructions into a set of control 

signals that cause some specific physical action. Creating an information system to assist the 

marketing department and control software to support the robot both require system engineering. 

 

1.7  Product Engineering Overview 

Product Engineering 

Product engineering is a crucial term in the sphere of software development. It is through product 

engineering that the future of a product is decided. The purpose of software Product Engineering 

is to consistently and innovatively perform a well-defined engineering process that integrates all 

software engineering activities to effectively and efficiently develop correct, consistent software 

products. Software Engineering tasks include analyzing the system requirements allocated to 

software, developing software architecture, designing the software, implementing the software in 

the code, integrating software components, and testing the software to verify whether it specifies 

specific requirements.  

Product Conceptualization Engineering  

o Write product marketing/business requirements specifications (MRS, BRS, PRD), 

system requirements specifications and functional specifications (SRS, FS)  

o Identify and design key features  

o Select architecture and design  

o Provide UI prototypes  

Product Architecture Consulting 

o Construct the technology foundations needed to build robust products  

o Consult on Enterprise Application Integration, Distributed Computing, 

Transaction Management  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 18 

 

o Select architectural styles and patterns  

Product Design and Implementation  

 Draw a development strategy  

 Integrate and customize products to meet requirements  

 Train the end-user on product skills   

 Reinforcing product best practices   

 Testing for any technical issue  

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 1 

 

UNIT II 

SOFTWARE REQUIREMENTS 

2.1Requirement Engineering Process 

 Software Requirements Specification(SRS): 

  The s/w requirement and specification focuses on what the system 

will do, not how the system will be implemented. It is produced as the culmination of the s/w 

requirements analysis task in the lifecycle model. You must analyze the information domain, the 

function, performance and behavior and interface requirement of the system. Software 

requirements can be specified in the following ways. 

 representation format and content should be relevant to the problem 

 information contain within the specification should be nested. 

 Representations should be revisable. 

 s/w requirements specification produced at the culmination of the analysis task. 

This also states the goal and objectives of the s/w. 

 information description provides a detailed description of the problem that the 

s/w must solve. 

 Functional description is a description of each function required to the solve the 

problem. 

 Behavioral description section  of the specification examines the operation of the 

s/w as a consequence of external events and internally generated control 

characteristics. 

 Validation criteria is the most important and ironically the most often neglected 

section of requirements specification. 

 Functional vs. non functional requirements 

(i) functional requirements:  statements of services the systems should provide, 

how the system should react to particular inputs and how the systems should 

behave in particular situations. 

(ii) Non functional requirements:  constraints on the services or functions offered 

by the system such as timing constraints, constrains on the development 

process, standards etc., 

2.1.1Requirement engineering process: 

Requirement engineering provides the appropriate mechanism for understanding what the 

customer wants, analyzing need accessing feasibility, negotiating a reasonable solution, 

specifying the solution unambiguously, validating the specification and managing the 

requirements as they are transformed into an operational system. The requirement engineering 

process can be described in five distinct steps. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 2 

 

 requirement elicitation  

 requirement analysis and negotiation 

 requirement specification 

 system modeling 

 requirement validation 

 requirement management 

 

2.2 software prototyping:  

         A model of s/w to be built is called a prototype. A prototype is constructed for customer 

and developer assessment.  

(i) selecting a prototyping approach:   

   * the prototyping paradigm can be either close ended or open ended  

* the close ended approach also called throw away prototyping. Using this a prototype serves as 

a rough demonstration of requirements. 

* an open ended approach, called evolution of the prototyping uses the prototype as the first part 

of an analysis activity that will be continued into design and construction. 

* Before a close ended or open ended approach can be chosen, it is necessary to determine 

whether the system to be built is amenable to prototyping. 

* Prototyping factors are application area, application complexity, customer characteristics and 

project characteristics. 

 

(ii) prototyping s/w process: 

* in common with other types of s/w development, the prototyping process follows a define s/w 

process model. 

* This model indicated the processes and tasks, which have to be performed during development 

of the prototype. 

* Process model device for this particular approach comprise the following stages. 

1. analysis requirements:  This involved the developer understanding the content and nature of 

the customer’s initial requirements. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 3 

 

2. prototype design:  Here the developer should choose a suitable implementation approach for 

which to develop the prototype. Also a design is derived for the prototype based upon the results 

of analysis phase. 

3. Prototype construction:  This stage involves actual coding of the prototype 

 

 Rapid prototyping:  

  

* An evolutionary s/w prototyping process is produced based on a requirement analysis of the 

customer’s problem. This analysis is needed to ensure the initial version of the prototype is close 

enough to what the customer need to enable them to provide meaningful evaluations and 

criticism. 

* Each succeeding version of the prototype is produced based upon an analysis of the customer’s 

reaction to the demonstration of the previous version. 

* Delivered products are delivered from the prototypes that are accepted by the customers via an 

optimal optimization process.  

* maintenance activities are sparked by new customer’s requirements, which restart the 

prototyping process and extent the series of prototypes until a new stable point is reached. 

* The spiral model is well known because it combines the common knowledge of water fall 

model, incremental method and process model work into an attractive notation, even with less 

specific variation of the process. 

* Some advantage of this approach are that      prototype of different aspects of the system can be 

developed concurrently and independently, that each fragment is relatively small, simple and 

easy to change, and that different tools and environments can be used for different aspects. The 

last property can be important in the short term, if tools are available for solving different parts 

of the problem, but these tools have not been integrated together into a comprehensive 

prototyping environment. 

2.3 SOFTWARE REQUIREMENTS 

Descriptions and specifications of a system   

FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 4 

 

o Functional requirements 

• Statements of services the system should provide, how the system should 

react to particular inputs and how the system should behave in particular 

situations. 

o Non-functional requirements 

• constraints on the services or functions offered by the system such as timing 

constraints, constraints on the development process, standards, etc. 

o Domain requirements 

• Requirements that come from the application domain of the system and that 

reflect characteristics of that domain 

Functional requirements 

 Describe functionality or system services 

 Depend on the type of software, expected users and the type of system where 

the software is used 

 Functional user requirements may be high-level statements of what the 

system should do but functional system requirements should describe the 

system services in detail 

 

Examples of functional requirements 

 The user shall be able to search either all of the initial set of databases or select a 

subset from it. 

 The system shall provide appropriate viewers for the user to read documents in the 

document store.  

 Every order shall be allocated a unique identifier (ORDER_ID) which the user shall 

be able to copy to the account’s permanent storage area. 

 

Non-functional requirements 

 Define system properties and constraints e.g. reliability, response time and storage 

requirements. Constraints are I/O device capability, system representations, etc. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 5 

 

 Process requirements may also be specified mandating a particular CASE system, 

programming language or development method 

 Non-functional requirements may be more critical than functional requirements. If 

these are not met, the system is useless 

Non-functional classifications 

 Product requirements 

• Requirements which specify that the delivered product must behave in a 

particular way e.g. execution speed, reliability, etc. 

 Organisational requirements 

• Requirements which are a consequence of organisational policies and 

procedures e.g. process standards used, implementation requirements, etc. 

 External requirements 

• Requirements which arise from factors which are external to the system and 

its development process e.g. interoperability requirements, legislative 

requirements, etc. 

Non-functional requirement types 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 6 

 

 

Non-functional requirements examples 

 Product requirement 

• 4.C.8 It shall be possible for all necessary communication between the APSE 

and the user to be expressed in the standard Ada character set 

 Organisational requirement 

• 9.3.2  The system development process and deliverable documents shall 

conform to the process and deliverables defined in XYZCo-SP-STAN-95 

 External requirement 

• 7.6.5  The system shall not disclose any personal information about 

customers apart from their name and reference number to the operators of 

the system 

2.4 THE REQUIREMENTS DOCUMENT 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 7 

 

 The requirements document is the official statement of what is required of the 

system developers 

 Should include both a definition and a specification of requirements 

 It is NOT a design document. As far as possible, it should set of WHAT the system 

should do rather than HOW it should do it 

Document requirements 

 Specify external system behaviour 

 Specify implementation constraints 

 Easy to change 

 Serve as reference tool for maintenance 

 Record forethought about the life cycle of the system i.e. predict changes 

 Characterise responses to unexpected events 

Document structure 

 Introduction 

 Glossary 

 User requirements definition 

 System architecture 

 System requirements specification 

 System models 

 System evolution 

 Appendices 

 Index 

 

2.5 FEASIBILITY STUDY 

 A feasibility study is an evaluation of a proposal designed to determine the difficulty in 

carrying out a designated task. Generally, a feasibility study precedes technical development 

and project implementation. In other words, a feasibility study is an evaluation or analysis of the 

potential impact of a proposed project 

Common Factors  

Technology and system feasibility 

The assessment is based on an outline design of system requirements in terms of Input, 

Processes, Output, Fields, Programs, and Procedures. This can be quantified in terms of volumes 

of data, trends, frequency of updating, etc. in order to estimate whether the new system will 

perform adequately or not. Technological feasibility is carried out to determine whether the 

http://en.wikipedia.org/wiki/Evaluation
http://en.wikipedia.org/wiki/Project


www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 8 

 

company has the capability, in terms of software, hardware, personnel and expertise, to handle 

the completion of the project 

Economic feasibility 

Economic analysis is the most frequently used method for evaluating the effectiveness of 

a new system. More commonly known ascost/benefit analysis, the procedure is to determine the 

benefits and savings that are expected from a candidate system and compare them with costs. If 

benefits outweigh costs, then the decision is made to design and implement the system. An 

entrepreneur must accurately weigh the cost versus benefits before taking an action. 

Cost Based Study: It is important to identify cost and benefit factors, which can be 

categorized as follows: 1. Development costs; and 2. Operating costs. This is an analysis of the 

costs to be incurred in the system and the benefits derivable out of the system. 

Time Based Study: This is an analysis of the time required to achieve a return on 

investments. the benefits derived from the system. The future value of a project is also a factor. 

Legal feasibility 

Determines whether the proposed system conflicts with legal requirements, e.g. a data 

processing system must comply with the local Data Protection Acts. 

Operational feasibility 

Is a measure of how well a proposed system solves the problems, and takes advantage of 

the opportunities identified during scope definition and how it satisfies the requirements 

identified in the requirements analysis phase of system development.
[1]

 

Schedule feasibility 

A project will fail if it takes too long to be completed before it is useful. Typically this 

means estimating how long the system will take to develop, and if it can be completed in a given 

time period using some methods like payback period. Schedule feasibility is a measure of how 

reasonable the project timetable is. Given our technical expertise, are the project deadlines 

reasonable? Some projects are initiated with specific deadlines. You need to determine whether 

the deadlines are mandatory or desirable... 

 

2.6 Prototyping in the software process 

http://en.wikipedia.org/wiki/Cost-benefit_analysis
http://en.wikipedia.org/wiki/Feasibility_study#cite_note-SAD-Global_Enterprise-0


www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 9 

 

 Evolutionary prototyping 

• An approach to system development where an initial prototype is produced 

and refined through a number of stages to the final system 

 Throw-away prototyping 

• A prototype which is usually a practical implementation of the system is 

produced to help discover requirements problems and then discarded. The 

system is then developed using some other development process 

Approaches to prototyping 

 

Evolutionary prototyping 

 Must be used for systems where the specification cannot be developed in 

advance e.g. AI systems and user interface systems 

 Based on techniques which allow rapid system iterations 

 Verification is impossible as there is no specification. Validation means 

demonstrating the adequacy of the system 

 

Evolutionary prototyping 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 10 

 

 

 

Evolutionary prototyping advantages 

 Accelerated delivery of the system 

• Rapid delivery and deployment are sometimes more important than 

functionality or long-term software maintainability 

 User engagement with the system 

• Not only is the system more likely to meet user requirements, they are more 

likely to commit to the use of the system 

Evolutionary prototyping 

 Specification, design and implementation are inter-twined 

 The system is developed as a series of increments that are delivered to the customer 

 Techniques for rapid system development are used such as CASE tools and 4GLs 

 User interfaces are usually developed using a GUI development toolkit 

Throw-away prototyping 

 Used to reduce requirements risk 

 The prototype is developed from an initial specification, delivered for experiment 

then discarded 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 11 

 

 The throw-away prototype should NOT be considered as a final system 

• Some system characteristics may have been left out 

• There is no specification for long-term maintenance 

• The system will be poorly structured and difficult to maintain 

Rapid prototyping techniques 

 Various techniques may be used for rapid development 

• Dynamic high-level language development 

• Database programming 

• Component and application assembly 

 These are not exclusive techniques - they are often used together 

 Visual programming is an inherent part of most prototype development systems 

 

 

2.7 DATA-PROCESSING MODELS 

DATA MODEL 

 Data flow diagrams are used to model the system’s data processing 

 These show the processing steps as data flows through a system 

 Intrinsic part of many analysis methods 

 Simple and intuitive notation that customers can understand 

 Show end-to-end processing of data 

Data flow diagrams 

 DFDs model the system from a functional perspective 

 Tracking and documenting how the data associated with a process is helpful to 

develop an overall understanding of the system 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 12 

 

 Data flow diagrams may also be used in showing the data exchange between a 

system and other systems in its environment 

 

 

FUNCTIONAL MODEL 

Functional modeling methods 

The functional approach is extended in multiple diagrammic techniques and modeling notations. 

This section gives an overview of the important techniques in chronological order. 

Functional Flow Block 

The Functional flow block diagram (FFBD) is a multi-tier, time-sequenced, step-by-step flow 

diagram of the system’s functional flow.The diagram is developed in the 1950s and widely used 

in classical systems engineering. The Functional Flow Block Diagram is also referred to as 

Functional Flow Diagram, functional block diagram, and functional flow. 

Functional Flow Block Diagrams (FFBD) usually define the detailed, step-by-step operational 

and support sequences for systems, but they are also used effectively to define processes in 

developing and producing systems. The software development processes also use FFBDs 

extensively. In the system context, the functional flow steps may include combinations of 

Enq, DT 
Scheduler 

STUDENT1 

Pal 
Daily 

lister 

Stud 

Vss Loan balance Enquir

y reply 

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/System
http://en.wiktionary.org/wiki/process
http://en.wikipedia.org/wiki/Software_development_process


www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 13 

 

hardware, software, personnel, facilities, and/or procedures. In the FFBD method, the functions 

are organized and depicted by their logical order of execution. Each function is shown with 

respect to its logical relationship to the execution and completion of other functions. A node 

labeled with the function name depicts each function. Arrows from left to right show the order of 

execution of the functions. Logic symbols represent sequential or parallel execution of functions. 

 

 

2.8 Structured Analysis and Design Technique 

Structured Analysis and Design Technique (SADT) is a software engineering methodology for 

describing systems as a hierarchy of functions, a diagrammatic notation for constructing a sketch 

for a software application. It offers building blocks to represent entities and activities, and a 

variety of arrows to relate boxes. These boxes and arrows have an associated informal 

semantics.
[19]

 SADT can be used as a functional analysis tool of a given process, using 

successive levels of details. The SADT method allows to define user needs for IT developments, 

which is used in industrial Information Systems, but also to explain and to present an activity’s 

manufacturing processes, procedures. 

http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Personnel
http://en.wikipedia.org/wiki/Structured_Analysis_and_Design_Technique
http://en.wikipedia.org/wiki/Software_engineering_methodology
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Function_model#cite_note-JM04-18


www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 14 

 

  

DATA DICTIONARIES 

 Data dictionaries are lists of all of the names used in the system models. 

Descriptions of the entities, relationships and attributes are also included 

 Advantages 

 Support name management and avoid duplication 

 Store of organisational knowledge linking analysis, design and 

implementation 

 Many CASE workbenches support data dictionaries 

 

Data dictionary entries 

 

Name Description Type 

 

has-labels 

1:N relation between entities of type 

Node or Link and entities of type 

Label. 

 

Relation 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 15 

 

 

Label 

Holds structured or unstructured 

information about nodes or links. 

Labels are represented by an icon 

(which can be a transparent box) and 

associated text. 

 

Entity 

 

Link 

A 1:1 relation between design 

entities represented as nodes. Links 

are typed and may be named. 

 

Relation 

 

name 

(label) 

Each label has a name which 

identifies the type of label. The 

name must be unique within the set 

of label types used in a design. 

 

Attribute 

 

name 

(node) 

Each node has a name which must 

be unique within a design. The name 

may be up to 64 characters long. 

 

Attribute 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 1 

 

UNIT III  

ANALYSIS, DESIGN CONCEPTS AND PRINCIPLES 

 

3.1Software Design process and concepts: 

A Software design is a meaningful engineering representation of some software product is to be 

built. A design can be traced to the customer’s requirements and can be assessed for quality 

against predefined criteria. During the design process the software requirements model is 

transformed into design models describe the details of the data structures, system architecture, 

interface, and components. Each design product is reviewed for quality before moving to the 

next phase of software development. 

Design Specification Models: 

Data design –created by transforming the analysis information model (data dictionary and ERD) 

into data structures required to implement the software. 

Architectural design-defines the relationships among the major structural elements of the 

software, it is derived from the system specification, the analysis model, the subsystem 

interactions defined in the analysis model (dfd). 

Interface design-describes how the software elements communicate with each other, with other 

systems, and with human users, the data flow and control flow diagrams provide much the 

necessary information. 

Component –Level design-created by transforming the structural elements defined by the 

software architecture in to procedural descriptions of software components using information 

obtained from the PSPEC, CSPEC, and STD  

Design Guidelines: 

A design should: 

 Exhibit good architectural structure. 

 Be modular 

 Contain distinct representatives of data architecture, interfaces, and components 

(modules) 

 Lead to data structures  are appropriate for the objects to be implemented that exhibit 

independent functional characteristics 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 2 

 

 Lead to interfaces  reduce the complexity of connections between modules and with the 

external environment 

 Be derived using a reputable method  is driven by information obtained during software 

requirements 

Design Principles: 

The design 

 Process should not suffer from tunnel vision. 

 Should be traceable to the analysis model 

 Should not reinvent the wheel, 

 Should minimize intellectual distance between software 

 And the problem as it exits in the real world 

 Should exhibit uniformly and integration 

 Should be structured to accommodate change. 

 Should be structured to degrade gently, even with bad data, events, or operating 

conditions are encountered 

 Should be assessed for quality as it is being created 

 Should be reviewed to minimize conceptual (semantic) errors. 

Fundamental Software Design Concepts: 

 Abstraction-allows designers to focus on solving a problem without being concerned 

about irrelevant lower level details(procedural abstraction –named sequence of events, 

data abstraction-named collection of data objects) 

 Refinement –process of elaboration where the designer provides successively more detail 

for each design component. 

 Modularity – the degree to which software can be understood by examining its 

components independently of one another. 

 Software architecture – overall structure of the software components and the ways in 

which structure provides conceptual integrity for a system. 

 Control hierarchy or program structure-represents the module organization and implies a 

control hierarchy, but does not represent the procedural aspects of the software (e,g,event 

sequences) 

 Structural portioning – horizontal partitioning defines three partitions(input, data 

transformations, and output); vertical partitioning (factoring) distributes control in a top 

down manner(control decisions in top level modules and processing work in the lower 

level modules) 

 Data structure –representation of the logical relationship among individual data elements 

(requires at least as much attention as algorithm design) 

 Software procedure –precise specification of processing (event sequences, decision 

points, repetitive operations, data organization/structure) 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 3 

 

Information hiding –information (data and Procedure) contained within a module is inaccessible 

to modules have no need for such information. 

 

 

 

 Abstraction 

  Abstraction is the theory that allows one to deal with concepts apart from the particular 

instances of those concepts. 

 Abstraction reduces complexity to a larger extent during design 

 Abstraction is an important tool I software engineering in many aspects. 

 There are three types of abstractions used in software design 

a) Functional abstraction.                                                        

b) Data abstraction 

                          c)   Control abstraction  

Functional abstraction: 

-This involves the usage of parameterized routines. 

-The number and type of parameters to a routine can be made dynamic and this ability to use 

the apt parameter during the apt invocation of the sub-program is functional abstraction 

       Data Abstraction: 

This involves specifying or creating a new data type or a date object by specifying                                                       

valid operations on the object. 

       -Other details such as representative and manipulations of the data are not specified. 

       - Many languages is an important feature of OOP. 

       - Data abstraction is an important as ADA, C++, provide abstract data type. 

       -Example: Implementation of stacks, queues. 

          Control Abstraction: 

        -Control abstraction is used to specify the effect of a statement or a function without 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 4 

 

Stating the actual mechanism of control. 

 MODULARITY 

Modularity derives from the architecture. Modularity is a logical partitioning of the software 

design that allows complex software to be manageable for purpose of implementation and 

maintenance. The logic of partitioning may be based on related functions, implementations 

considerations, data links, or other criteria. Modularity does imply interface overhead related to 

information exchange between modules and execution of modules. 

 

 Modularity – the degree to which software can be understood by examining its 

components independently of in another   

 

COHESION: 

 Cohesion is an interaction within a single object of software component. 

It reflects the single-purposeless of an object. 

Coincidentally cohesive is cohesive that performs a set of tasks, that relate to each other object. 

Logically cohesive is a cohesive process that performs tasks that are related logically each other 

objects. 

Method cohesion, like the function cohesion, means that a method should carry only function. 

Inheritance cohesion concerned with interrelation of classes, specialization of classes with 

attributes. 

Coupling: 

 Coupling is a measure of interconnection among modules in a software structure. It 

depends on the interface complexity between modules, the point at which entry or 

reference is made to a module, and what data pass across the interface. 

 It is a measure of the strength of association established by a connection from one object 

or s/w component to another. 

  It is binary relationship: A is coupled with B. 

 

Types of coupling: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 5 

 

Common Coupling:        

          It is high coupling occurs when a number of modules (object) 

Reference a global data area. 

The objects will access a global data space for both to read and write operations of attributes. 

Content Coupling: 

          It is the degree of coupling. It occurs when one object or module makes use of data control 

information maintained within the boundary of another object or module. 

It refers to attributes or methods of another object. 

 

Control coupling: 

         It is characterized by passage of control between modules or objects. 

It is very common in most software designs. 

It involves explicit control of the processing logic of one object by another. 

Stamp Coupling: 

      The connection involves passing an aggregate data structure to another object, which uses 

only a portion of the components of the data structure. 

It is found when a portion of a data structure is passed via a module or object interface. 

Data Coupling: 

 

 It is low degree of coupling. 

 The connection involves either simple data items or aggregate structures all of whose 

elements are used by the receiving object. 

 This should be the goal of an architectural design. 

 It is exhibited in the portion of structure. 

Types of coupling: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 6 

 

            

 

DESIGN CONCEPTS AND NOTATIONS: 

 Information Hiding; 

 Information hiding is an OOP concept. 

 Each module in a software system hides its processing details activities and 

communicates with the other modules only through well-defined interfaces. 

 Data abstraction is also example of information hiding. 

 Information hiding can be used as a whole in the architecture design of the software 

system or in conjunction with other design techniques. 

Concurrency: 

 Concurrency systems are those systems n which there are multiple independent 

processes, which can be activated simultaneously. 

 On a multi-processor system sharing them across the processors can do such a task. 

 On a single processor system, concurrency can be achieved by process of 

interleaving. 

 The problems encountered in a concurrent system are Deadlock, Mutual Exclusion 

and Process Synchronization. 

Verification: 

 Verification is basic concept of software design. 

    A 

      D 

     B       C 

      E 

     F 

Global 

data area 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 7 

 

 A design can be accepted by customer only if it is verified & satisfies customer’s 

requirements. 

 The design is the kick-start for the project and so its verification to meet the client’s 

needs is important. 

Aesthetics: 

 In any art and technology aesthetic points are to be considered. 

 In software design the aesthetic considerations is an important area to be fine turned by 

the designer to meet the end-user taste. 

 An aesthetically pleasing software product, though difficult to design, makes the overall 

look and feel better and hence the product is well appreciated. 

 This is an important factor in the current world of DOTCOMS with website designs and 

user interfaces. 

Structure: 

 A structure is a fundamental concept of software design. 

 As in modularity structure permits the breaking up or decompositions of a larger system 

into smaller units with well-defined relationships between the different units. 

 A network is a good example of a structure. 

 A network has nodes and arcs and represented as a directed graph. 

Design Steps: 

Step 1:  Review the fundamental system model. 

Step 2:  Review and refine data flow diagrams for the software. 

Step 3:  Determine whether the DFD has transform or transaction characteristics. 

Step 4:  Identify the transaction center and the flow characteristics along each of the action paths. 

Step 5:  Map the DFD in a program structure amenable to transaction processing. 

Step 6:  Factor and refine the transaction structure and the structure of each action path. 

Step 7:  Refine the first-iteration architecture using design heuristics for improved software 

quality. 

 

 Well suited to stepwise refinement. 

 Can be presented and reviewed at varying levels of detail. 

 Well suited to top-down implementations. 

 Results in programs that are well structured, easy to implement, modify, 

and test. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 8 

 

 Structures are easy to represent on a computer screen. 

 

3.2 Modular Design: 

Isolating the details of certain activities within procedures we obtain a program that is expressed 

clearer than if it had all activities included. Modularity in a software system is where modules 

take the form of objects or units each with an internal structure independent of other objects or 

units. The reason for the popularity of object oriented approach is its modularity as when 

modifying certain parts it can be done with less affect on the rest of the  program. 

SOFTWARE IS DIVIDED INTO SEPERATELY NAMED AND ADDRESSABLE 

COMPONENTS OTEN CALLED MODULES. 

Any good design requires the entire software product to be split onto several modules or smaller 

units. 

Examples of modules: functions, procedures, data abstraction groups. 

Modules contain instructions data structures 

They can be stored separately  

Modules can be compiled separately. 

Modules are used by invoking their name and associated arguments. 

They can all other modules also 

 

Advantages of modularization: 

- Hierarchy in the operations. 

- Data abstractions 

- Independent powerful subsystems. 

- Inheritance 

- Reusability 

- Ease in testing debugging 

- Ease in implementation. 

 

Meyer defines five criteria that enable us to evaluate a design method with respect to its ability to 

define an effective modular system: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 9 

 

Modular decomposability: If a design method provides a systematic mechanism for decomposing 

the problem into sub problems, it will reduce the complexity of the overall problem, thereby 

achieving an effective modular solution. 

Modular Composability: If a design method enables existing design components to be assembled 

into a new system, it will yield modular solution that does not reinvent the wheel. 

Modular Understandability: If a module can be understood as a stand-alone unit. It will be easier 

to build and easier to change. 

Modular Continuity: If small changes to the system requirements result in changes to individual 

modules, rather than system wide changes, the impact of change-induced side effects will be 

minimized. 

Modular Protection: If an aberrant condition occurs within a module and its effects are 

constrained within that module, the impact of error-induced side effects will be minimized. 

Modularity Design: 

 Module can be defined in many ways. Generally a module is a work allocation for a 

programmer. Fortran & ADA define module in a different manner. 

 However, modularity is the concept of breaking the entire system into well-defined 

manageable units with well-defined interfaces between these units. 

 A modular system follows the concept of abstraction also. 

 Modular programming enhances clarity in design, reduces complexity and hence enables 

ease of implementation, testing documenting and maintenance. 

 

 

 

Modular design Method Evaluation Criteria: 

 Modular decomposability-provides systematic means for breaking problem into sub 

problems. 

 Modular Composability – supports reuse of existing modules in new systems. 

 Modular understandability – module can be understood as a stand-alone unit 

 Modular continuity-side effects due to module changes minimized. 

 Modular protection- side effects due to module changes minimizes. 

Effective Modular Design: 

 Functional independence – modules have high cohesion and low coupling. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 10 

 

 Cohesion-qualitative indication of the degree to which a module focuses on just one 

thing. 

 Coupling – qualitative indication of the degree to which a module is connected to other 

modules and to the outside world. 

3.3 Design Heuristics for Effective Modularity: 

 Evaluate the first iteration of the program structure to reduce coupling and improve 

cohesion. 

 Attempt to minimize structures with high fan-out: strive for fan-in as structure depth 

increase. 

 Keep the scope of effect of a module within the scope of control for that module. 

 Evaluate module interfaces to reduce complexity, reduce redundancy, and improve 

consistency. 

 Define modules whose function is predictable and not overly restrictive (e.g. a module 

that only implements a single sub function). 

  Strive for controlled entry modules, avoid pathological connection (e.g. branches into the 

middle of another module) 

 

3.4  SORTWARE ARCHITECTURE  

Software Architecture: 

While refinement is about the level of detail, architecture is about structure. The architecture of 

the procedural and date elements of a design represents a software solution for the real-world 

problem defined by the requirements analysis. It is unlikely that there will be one obvious 

candidate architecture. 

 Software systems have had architectures, and programmers have been responsible for the 

interactions among the modules and the global properties of assemblage. 

 Effective software architecture and its explicit representation and design have become 

dominant themes in software engineering. 

  The software architecture of a program or computing system is the structure or structures 

of the system, which comprise software components, the externally visible properties of 

those components and the relationships among them. 

 The architecture is not the operational software. 

 Rather, it is a representation that enables a software engineer to (1) analyze the 

effectiveness of the design in meeting its stated requirements, (2) consider architectural 

alternatives at a stage with making design changes is till relatively easy, and 3) reducing 

the risks associated with the construction of the software. 

 Importance of Architecture.        



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 11 

 

 Representations of software architecture are an enabler for communications between all 

parties interested in the development of a computer-based system. 

 The architecture highlights early design decisions that will have a profound impact all 

software engineering work that follows and, as important, on the ultimate success of the 

system as an operational entity. 

Architecture “constitutes a relatively small, intellectually graspable model of how the system 

is structured and how its components work together” 

 The design process for identifying the sub-systems making up a system and the 

framework for sub-system control and communication is architectural design 

 The output of this design process is a description of the software architecture  

Architectural design 

 An early stage of the system design process 

 Represents the link between specification and design processes 

 Often carried out in parallel with some specification activities 

 It involves identifying major system components and their communications 

Architectural design process 

 System structuring 

o The system is decomposed into several principal sub-systems and 

communications between these sub-systems are identified 

 Control modelling 

o A model of the control relationships between the different parts of the system 

is established 

 Modular decomposition 

o The identified sub-systems are decomposed into modules 

Sub-systems and modules 

 A sub-system is a system in its own right whose operation is independent of the services 

provided by other sub-systems. 

 A module is a system component that provides services to other components but would 

not normally be considered as a separate system 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 12 

 

Architectural models 

 Different architectural models may be produced during the design process 

 Each model presents different perspectives on the architecture 

 Static structural model that shows the major system components 

 Dynamic process model that shows the process structure of the system 

 Interface model that defines sub-system interfaces 

 Relationships model such as a data-flow model 

Architectural styles 

 The architectural model of a system may conform to a generic architectural model or 

style 

 An awareness of these styles can simplify the problem of defining system architectures 

 However, most large systems are heterogeneous and do not follow a single architectural 

style 

Architecture attributes 

 Performance 

o Localise operations to minimise sub-system communication 

 Security 

o Use a layered architecture with critical assets in inner layers 

 Safety 

o Isolate safety-critical components 

 Availability 

o Include redundant components in the architecture 

 Maintainability 

• Use fine-grain, self-contained components 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 13 

 

System structuring 

 Concerned with decomposing the system into interacting sub-systems 

 The architectural design is normally expressed as a block diagram presenting an overview 

of the system structure 

 More specific models showing how sub-systems share data, are distributed and interface 

with each other may also be developed 

The repository model 

 Sub-systems must exchange data. This may be done in two ways: 

o Shared data is held in a central database or repository and may be accessed by all 

sub-systems 

o Each sub-system maintains its own database and passes data explicitly to other 

sub-systems 

 When large amounts of data are to be shared, the repository model of sharing is most 

commonly used 

Repository model characteristics 

 Advantages 

o Efficient way to share large amounts of data 

o Sub-systems need not be concerned with how data is produced Centralised 

management e.g. backup, security, etc. 

o Sharing model is published as the repository schema 

 Disadvantages 

o Sub-systems must agree on a repository data model. Inevitably a compromise 

• Data evolution is difficult and expensive 

• No scope for specific management policies 

• Difficult to distribute efficiently 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 14 

 

 

 

Client-server architecture 

 Distributed system model which shows how data and processing is distributed across a 

range of components 

 Set of stand-alone servers which provide specific services such as printing, data 

management, etc. 

 Set of clients which call on these services 

 Network which allows clients to access servers 

Client-server characteristics 

 Advantages 

o Distribution of data is straightforward 

o Makes effective use of networked systems. May require cheaper hardware 

o Easy to add new servers or upgrade existing servers 

 Disadvantages 

o No shared data model so sub-systems use different data organisation. data 

interchange may be inefficient 

o Redundant management in each server 

o No central register of names and services - it may be hard to find out what servers 

and services are available 

3.5 REAL TIME AND DISTRIBUTED SYSTEM DESIGN: 

There are many popular methodologies such as top-down, structured design and son supporting 

concepts such as inheritance, data hiding, abstraction, and modularity. Real time systems require 

these concepts too but with a higher degree of precision and clarity. 

A distributed system consists of more processors operating in parallel with shared memory and 

also their own memory and communicates through a network. Real time systems and distributed 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 15 

 

systems are used in process-control and other mission critical applications. So they require a lot 

of other trade-offs and considerations than the normal software systems. 

In a real-time system, timing constraints must be met for the applications to be correct. A 

computing system is real-time to the degree that time constraints must be met for the applications 

to be correct. 

 

This is a consequence of the system interacting with its physical environment. The environment 

produces stimuli, which must be accepted by the real-time system within the time constraints. 

For instance, in air traffic control system the environment consists of aircraft that must be 

monitored. 

The environment stimuli are received by the system through sensors such as radars. The 

environment further requires control outputs, which must e produced within time constraint. In 

the air traffic control example, signals to the aircraft and displays to the human operators have 

time constraints that must be met. Time-constrained behaviour can obviously be critical to not 

just mission success, but even to the safety of property and human life. 

In a distribute real-time systems, many of these time constraints are end-end and often require 

the scheduling of different resources (e.g. processors on each node and the communication 

facilities between them) 

One of the things that make real-time resources management so much more difficult than non-

real-time resource management is that the real-time performances requirements of acceptable 

predictability of timeliness must be met along with other requirements such as synchronized and 

resource utilization. 

Other issues like scheduling, safe recovery due to loss of network link failure of a processing 

node have to be considered in the design of distributed systems. 

A fine of a real-time system requirements aiding tool is the SREM system. Features of SREM: 

Flow=oriented approach of stimulus-response. 

Associate performance characteristics with specific points in the processing sequence. 

Provision of a simulation package for evaluation of systems design and choosing design 

alternatives. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 16 

 

 

 

 

 

 

A real-time system model: 

 

System Elements: 

 

Sensors control processes: 

         Collect information from sensors. May buffer information collected in response to a sensor 

stimuli. 

 

Senso

r 

Senso

r 

Senso

r 

Senso

r 

Senso

r 

Senso

r 

Actuator Actuator Actuator Actuator 

Real time control 

system 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 17 

 

 Data processor: 

          Carries out processing of collected information and computes the system response. 

 

Actuator control: 

           Generates control signals for the actuator. 

 

System design: 

 Design both the hardware and the software associated with system. Partition 

functions to either hardware or software. 

 Design decisions should be made on the basis on non-functional system 

requirements. 

 Hardware delivers better performance but potentially longer development and 

less scope for change. 

Real time Executives: 

Components of real time executives: 

 A real=tome clock. This provides information to schedule process periodically. 

 An interrupt handler. This manages a periodically requests for service. 

 A scheduler. This component is responsible for examining the processes, which can be 

executed, and choosing one of these for execution. 

 A resource manager. Given a process, which is scheduled for execution, the resource 

manager allocates appropriate memory and processor resources. 

3.7 Monitoring and control systems: 

 Monitoring systems are system which takes action when some exceptional sensor value is 

detected. 

 Control systems are systems, which continuously control hardware actuators depending 

in the value of associated sensors. 

 These systems obviously have a great deal in common and differ only in the way in 

which system actuators are initiated. 

 Important class of real-time systems. 

 Control systems take sensor values and control hardware actuators. 

Example: 

Burglar alarm system: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 18 

 

A system is required to monitor sensors on doors and windows to detect the presence of intruders 

in a building. 

When a sensor indicates a break-in, the system switches on lights around that area and calls 

police automatically. 

The system should include provision for operation without mains power supply. 

 

Burglar alarm system: 

 

Sensors: 

 Movement detectors window sensors, door sensors. 

 50 window sensors, 30 door sensors and 200 movement detectors 

 Voltage drop sensor. 

Actions: 

 When a intruder is detected, police are called automatically. 

 Lights are switched on in rooms with active sensors. 

 The system switches automatically to backup power when a voltage drop is detected. 

 

 

A temperature control system 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 19 

 

 

 

 

3.6 WHAT IS A SYSTEM? 

 A purposeful collection of inter-related components working together towards some 

common objective.  

 A system may include software, mechanical, electrical and electronic hardware and be 

operated by people. 

 System components are dependent on other system components 

 The properties and behaviour of system components are inextricably inter-mingled 

PROBLEMS OF SYSTEMS ENGINEERING 

 Large systems are usually designed to solve 'wicked' problems 

 Systems engineering requires a great deal of co-ordination across disciplines 

o Almost infinite possibilities for design trade-offs across  

components  

o Mutual distrust and lack of understanding across engineering disciplines 

 Systems must be designed to last many years in a changing environment 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 20 

 

SOFTWARE AND SYSTEMS ENGINEERING 

 The proportion of software in systems is increasing. Software-driven general purpose 

electronics is replacing special-purpose systems 

 Problems of systems engineering are similar to  problems of software engineering 

 Software is (unfortunately) seen as a problem in systems engineering. Many large system 

projects have been delayed because of software problems 

Emergent properties 

 Properties of the system as a whole rather than properties that can be derived from the 

properties of components of a system 

 Emergent properties are a consequence of the relationships between system components 

 They can therefore only be assessed and measured once the components have been 

integrated into a system 

Examples of emergent properties 

 The overall weight of the system  

o This is an example of an emergent property that can be computed from individual 

component properties. 

 The reliability of the system  

o This depends on the reliability of system components and the relationships 

between the components.  

 The usability of a system   

o This is a complex property which is not simply dependent on the system hardware 

and software but also depends on the system operators and the environment where 

it is used. 

Types of emergent property 

 Functional properties  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 21 

 

o These appear when all the parts of a system work together to achieve some 

objective. For example, a bicycle has the functional property of being a 

transportation device once it has been assembled from its components. 

 Non-functional emergent properties 

• Examples are reliability, performance, safety, and security. These relate to the 

behaviour of the system in its operational environment. They are often critical for 

computer-based systems as failure to achieve some minimal defined level in these 

properties may make the system unusable. 

THE SYSTEM ENGINEERING PROCESS 

 

The system design process 

 Partition requirements 

o Organise requirements into related groups   

 Identify sub-systems 

o Identify a set of sub-systems which collectively can meet the system requirements 

 Assign requirements to sub-systems 

o Causes particular problems when COTS are integrated 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 22 

 

 Specify sub-system functionality 

 Define sub-system interfaces 

o Critical activity for parallel sub-system development 

 

3.7 THE USER INTERFACE 

 System users often judge a system by its interface rather than its functionality 

 A poorly designed interface can cause a user to make catastrophic errors 

 Poor user interface design is the reason why so many software systems are never used 

Graphical user interfaces 

 Most users of business systems interact with these systems through graphical interfaces 

although, in some cases, legacy text-based interfaces are still used 

GUI advantages 

 They are easy to learn and use.  

o Users without experience can learn to use the system  

quickly. 

 The user may switch quickly from one task to  

another and can interact with several different applications. 

o Information remains visible in its own window when  

attention is switched. 

 Fast, full-screen interaction is possible with immediate access to anywhere on the screen 

User-centred design 

 The aim of this chapter is to sensitise software engineers to key issues underlying the 

design rather than the implementation of user interfaces 

 User-centred design is an approach to UI design where the needs of the user are 

paramount and where the user is involved in the design process 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 23 

 

 UI design always involves the development of prototype interfaces 

 

USER INTERFACE DESIGN PROCESS 

 

UI design principles 

 UI design must take account of the needs, experience and capabilities of the system users 

 Designers should be aware of people’s physical and mental limitations (e.g. limited short-

term memory) and should recognise that people make mistakes 

 UI design principles underlie interface designs although not all principles are applicable 

to all designs 

UI Design Principles 

Principle Description 

User familiarity The interface should use terms and concepts 

which are drawn from the experience of the 

people who will make most use of the system. 

Consistency The interface should be consistent in that, 

wherever possible, comparable operations should 

be activated in the same way. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 24 

 

Minimal surprise Users should never be surprised by the behaviour 

of a system. 

Recoverability The interface should include mechanisms to allow 

users to recover from errors. 

User guidance The interface should provide meaningful 

feedback when errors occur and provide context-

sensitive user help facilities. 

User diversity The interface should provide appropriate 

interaction facilities for different types of system 

user. 

 

Design principles 

 User familiarity 

o The interface should be based on user-oriented  

terms and concepts rather than computer concepts. For example, an office system 

should use concepts such as letters, documents, folders etc. rather than directories, 

file identifiers, etc. 

 Consistency 

o The system should display an appropriate level  

of consistency. Commands and menus should have the same format, command 

punctuation should be similar, etc. 

 Minimal surprise 

o If a command operates in a known way, the user should be  

able to predict the operation of comparable commands 

 Recoverability 

o The system should provide some resilience to  

user errors and allow the user to recover from errors. This might include an undo 

facility, confirmation of  destructive actions, 'soft' deletes, etc. 

 User guidance 

o Some user guidance such as help systems, on-line manuals, etc. should be 

supplied 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 25 

 

 User diversity 

o Interaction facilities for different types of user should be supported. For example, 

some users have seeing difficulties and so larger text should be available 

 

User-system interaction 

 Two problems must be addressed in interactive systems design 

o How should information from the user be provided to the computer system? 

o How should information from the computer system be presented to the user? 

 User interaction and information presentation may be integrated through a coherent 

framework such as a user interface metaphor 

Interaction styles 

 Direct manipulation 

 Menu selection 

 Form fill-in 

 Command language 

 Natural language 

Menu systems 

 Users make a selection from a list of possibilities presented to them by the system 

 The selection may be made by pointing and clicking with a mouse, using cursor keys or 

by typing the name of the selection 

 May make use of simple-to-use terminals such as touchscreens  

 

Advantages of menu systems 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 26 

 

 Users need not remember command names as they are always presented with a list of 

valid commands 

 Typing effort is minimal 

 User errors are trapped by the interface 

 Context-dependent help can be provided. The user’s context is indicated by the current 

menu selection 

 

Problems with menu systems 

 Actions which involve logical conjunction (and) or disjunction (or) are awkward to 

represent 

 Menu systems are best suited to presenting a small number of choices. If there are many 

choices, some menu structuring facility must be used 

 Experienced users find menus slower than command language 

Form-based interface 

Title

Author

Publisher

Edition

Classification

Date of
purchase

ISBN

Price

Publication
date

Number of
copies

Loan
status

Order
status

NEW BOOK

 

Command interfaces 

 User types commands to give instructions to the system e.g. UNIX 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 27 

 

 May be implemented using cheap terminals. 

 Easy to process using compiler techniques 

 Commands of arbitrary complexity can be created by command combination 

 Concise interfaces requiring minimal typing can be created 

Problems with command interfaces 

 Users have to learn and remember a command language. Command interfaces are 

therefore unsuitable for occasional users 

 Users make errors in command. An error detection and recovery system is required 

 System interaction is through a keyboard so typing ability is required 

Command languages 

 Often preferred by experienced users because they allow for faster interaction with the 

system 

 Not suitable for casual or inexperienced users 

 May be provided as an alternative to menu commands (keyboard shortcuts). In some 

cases, a command language interface and a menu-based interface are supported at the 

same time 

Natural language interfaces 

 The user types a command in a natural language. Generally, the vocabulary is limited and 

these systems are confined to specific application domains (e.g. timetable enquiries) 

 NL processing technology is now good enough to make these interfaces effective for 

casual users but experienced users find that they require too much typing 

Multiple user interfaces 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 28 

 

 

Information presentation 

 Static information 

o Initialised at the beginning of a session. It does not change  

during the session 

o May be either numeric or textual 

 Dynamic  information 

o Changes during a session and the changes must be  

communicated to the system user 

o May be either numeric or textual 

Information display factors 

 Is the user interested in precise information or data relationships? 

 How quickly do information values change? Must the change be indicated immediately? 

 Must the user take some action in response to a change? 

 Is there a direct manipulation interface?  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 29 

 

 Is the information textual or numeric? Are relative values important? 

Analogue vs. digital presentation 

 Digital presentation 

o Compact - takes up little screen space 

o Precise values can be communicated 

 Analogue presentation 

o Easier to get an 'at a glance' impression of a value 

o Possible to show relative values 

o Easier to see exceptional data values 

 

 

 

 

 

 

Help and message system 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 30 

 

Message
presentation

system

Error message
texts

Help
frames

Error message
system

Help
interface

Application

 

Error messages 

 Error message design is critically important. Poor error messages can mean that a user 

rejects rather than accepts a system 

 Messages should be polite, concise, consistent and constructive 

 The background and experience of users should be the determining factor in message 

design 

Help system design 

 Help? means ‘help I want information” 

 Help! means “HELP. I'm in trouble” 

 Both of these requirements have to be taken into account in help system design 

 Different facilities in the help system may be required 

Help information 

 Should not simply be an on-line manual 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 31 

 

 Screens or windows don't map well onto paper pages. 

 The dynamic characteristics of the display can improve information presentation. 

 People are not so good at reading screen as they are text. 

Help system use 

 Multiple entry points should be provided so that the user can get into the help system 

from different places. 

 Some indication of where the user is positioned in the help system is valuable. 

 Facilities should be provided to allow the user to navigate and traverse the help system. 

 

User documentation 

 As well as on-line information, paper documentation should be supplied with a system 

 Documentation should be designed for a range of users from inexperienced to 

experienced 

 As well as manuals, other easy-to-use documentation such as a quick reference card may 

be provided 

User interface evaluation 

 Some evaluation of a user interface design should be carried out to assess its suitability 

 Full scale evaluation is very expensive and impractical for most systems 

 Ideally, an interface should be evaluated against a usability specification. However, it is 

rare for such specifications to be produced 

 

 

 

 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 32 

 

 

 

 

 

THE SYSTEM DESIGN PROCESS 

 

System design problems 

 Requirements partitioning to hardware, software and human components may involve a 

lot of negotiation  

 Difficult design problems are often assumed to be readily solved using software 

 Hardware platforms may be inappropriate for  software requirements so software must 

compensate for this 

Sub-system development 

 Typically parallel projects developing the hardware, software and communications 

 May involve some COTS  (Commercial Off-the-Shelf) systems procurement 

 Lack of communication across implementation teams 

 Bureaucratic and slow mechanism for proposing system changes means that the 

development schedule may be extended because of the need for rework 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 33 

 

System integration 

 The process of putting hardware, software and people together to make a system 

 Should be tackled incrementally so that sub-systems are integrated one at a time 

 Interface problems between sub-systems are usually found at this stage 

 May be problems with uncoordinated deliveries of system components 

 

 

3.8 REAL-TIME EXECUTIVES 

 Real-time executives are specialised operating systems which manage the processes in 

the RTS 

 Responsible for process management and resource (processor and memory) allocation 

 May be based on a standard RTE kernel which  is used unchanged or modified for a 

particular application 

 Does not include facilities such as file management 

Executive components 

 Real-time clock 

o Provides information for process scheduling. 

 Interrupt handler 

o Manages aperiodic requests for service. 

 Scheduler 

o Chooses the next process to be run. 

 Resource manager 

o Allocates memory and processor resources. 

 Despatcher  



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 34 

 

o Starts process execution. 

 

 

 

 

 

 

 

Real-time executive components 

 

 

3.9 DATA ACQUISITION SYSTEMS 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 35 

 

 Collect data from sensors for subsequent processing and analysis. 

 Data collection processes and processing processes may have different periods and  

deadlines.  

 Data collection may be faster than processing e.g. collecting information about an 

explosion.  

 Circular or ring buffers are a mechanism for smoothing speed differences. 

 

Reactor data collection 

 A system collects data from a set of sensors monitoring the neutron flux from a nuclear 

reactor. 

 Flux data is placed in a ring buffer for later processing. 

 The ring buffer is itself implemented as a concurrent process so that the collection and 

processing processes may be synchronized 

 

Reactor flux monitoring 

 

A ring buffer 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 36 

 

 

Mutual exclusion 

 Producer processes collect data and add it to the buffer. Consumer processes take data 

from the buffer and make elements available 

 Producer and consumer processes must be mutually excluded from accessing the same 

element. 

DATA DESIGN 

3.10 DATA FLOW DIAGRAMS (DFD) 

DFD are directed graphs in which the nodes specify processing activities and the arcs specify 

data items transmitted between processing nodes. 

     Data flow diagram (DFD) serves two purposes 

           To provide an indication of how data are transformed as the move through the system and  

           To depict the functions that transforms that data flow. 

      Data flow diagram (DFD) –provides an indication of how data are transformed as they move 

through the system; also depicts functions that transform the data flow (a function is represented 

in a DFD using a process specification or PSPEC). 

Functional Modeling and Information Flow (DFD): 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 37 

 

 Shows the relationship of external entities process or transforms data items and data 

stores 

 DFD’s cannot show procedural detail (e.g. conditionals or loops) only the flow of data 

through the software. 

 Refinement from one DFD level to the next should follow approximately a 1:5 ratio (this 

ratio will reduce as the refinement proceeds) 

 To model real-time systems, structured analysis notation must be available for time 

continuous data and event processing (e.g. Ward and Mellore or Hately and Pirbhai) 

 

Creating Data Flow Diagram: 

 

 Level 0 data flow diagram should depict the system as a single bubble. 

 Primary input and output should be carefully noted. 

 Refinement should begin by consolidating candidate processes, data objects, and stored 

to be represented at the next level. 

 Label all arrows with meaningful names 

 Information flow must be maintained from one level to level 

 Refine one bubble at a time 

 Write a PSPEC (a “mini-spec” written using English or another natural language or a 

program design language) for each bubble in the final DFD. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 1 

 

UNIT IV  

TESTING 

4.1TAXONOMY OF SOFTWARE TESTING: 

 

  Software testing is a critical element of software quality assurance and 

represents the ultimate review of specification design and code generation. 

 

Testing involves exercising the program using data like the real data 

processed by unexpected system outputs. 

 

 Testing may be carried out during the implementation phase to verify that   

the software behaves as intended by its designer and after the implementation is 

complete. This later phase checks conformance with requirements is complete.  

 

  Different kinds of testing use different types of data: 

 

 statistical testing may be used to test the programs performance and reliability  

 defect testing is intended to find the areas where the program does not 
conform to its specification 
 

 Testing Vs Debugging: 

 

      Defect testing a debugging are sometimes considered to be part of the same 

process. Infact they are quite different. Testing establishes the existence of defects. 

Debugging usually follows testing but they differs as to goals, methods and psychology 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 2 

 

1. Testing starts with unknown conditions, uses predefined procedures, and has 
predictable outcomes only whether or not the program passes the test id 
unpredictable. 
 

2. Testing can and should be planned designed and scheduled the procedures for 
and duration of debugging cannot be so constrained. 

 

 

3. Testing is a demonstration of error or apparent correctness 
 

4. Testing proves a programmers failure. Debugging is the programmer’s 
vindication. 

 

 

5. Testing as executed hold strives to predictable, dull, constrained, rigid and 
inhuman. 
6. Much of the testing can be done without design knowledge. 
 

7. Testing can often be done by an outsider. Debugging must be done by an 
insider. 

 

 

8. Much of test execution and design can be automated. Automated debugging is 
still a dream. 
 

Testing Objectives: 

 

1. Testing is a process of executing a program with the intend of finding on error. 

 

2. A good test case is one that high probability of finding an as yet undiscovered error. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 3 

 

 

3. A successful test is one that uncovers an as yet undiscovered error. 

 

Testing Principles: 

 

The various testing principle a listed below: 

1. All tests should be traceable to customer requirements. The most serve defects 
are those that cause the program fail to meet its requirements. 
 

2. Test should be planned long before testing begins. All tests can be planned and 
designed before any code has been generated. 

 

 

3. Testing should begin “in the small” and progress towards testing “in the large”. 
The first tests planned and executed generally focus on the individual components. As 
testing progresses, focus shifts in an attempt to find errors in integrated clusters of 
components and ultimately in the entire system. 
 

4. Exhaustive testing is not possible. 
 

 

5. To be more effective testing should be conducted by a third party. 
 

 Attributes of a good testing: 

 

1. A good testing has a high probability of finding an error. 

 

2. A good test is not redundant. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 4 

 

3. In a group of tests that have a similar intent, time and resource, the test that has 

the highest likelihood of uncovering a whole class of errors should be used. 

 

4. A good test should be neither too simple nor too complex. Each test should be 

executed separately. 

 

 

 The Testing Process 

 

Systems should be tested as a single, monolithic unit only for small 

programs. Large systems are built out of sub-systems which are build out of modules 

which are compose of producers and functions. The testing process should therefore 

proceed in stages where testing is carried out incrementally in connection with system 

implementation. 

 

The most widely used testing process consists of five stages  

 

 

 

 

 

 

 

 

 

 

Unit testing 

Module 

testing 

Sub-system 

testing 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 5 

 

 

 

 

 

 

 

 

Component testing  Integration testing  Unit testing 

 

 

4.2 TYPES OF SOFTWARE TESTING 

1. unit testing 
2. module testing  
3. sub-system testing 
4. system testing  
5. acceptance testing 
 

1.) Unit Testing: 
 

   Here individual components are tested to ensure that they operate correctly. Each 

component is tested separately. 

 

2.) Module Testing: 
 

A module is collection of dependent components such as an object class, an 

abstract data type or some looser collection of procedures and functions. A module 

encapsulates related components so can be tested without other system modules. 

 

System 

testing 

Acceptance 

testing 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 6 

 

 

3.)     Sub-System Testing: 

 

Here his phase involves testing collection of modules which have been 

integrated into sub-systems. Sub-systems be independently designed and 

implemented. The most common problems which arise in large s/w systems are sub-

systems interface mismatches. 

 

4.) System Testing: 

 

The sub-systems are integrated to the entire system. The testing process is 

concerned with finding errors which results from anticipated interactions between 

sub-systems and system components. It is also concerned with validating that the 

system meets its functional and non-functional requirements. 

 

5.) Acceptance testing: 

 

This is the final stage in the testing process before the system is accepted 

for operational use. The system is tested with data supplied by the system producer 

rather than stimulated test data. Acceptance testing may reveal errors and omissions 

in the system requirements definition because the real data exercise the system in 

different ways from the test data. Acceptance testing may also reveal requirements 

problems where the systems facilities do not really meet the user’s needs or the 

system performance is unacceptable. 

 

     (i) Alpha testing: 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 7 

 

Acceptance testing is sometimes called alpha testing. The alpha testing 

process continues until the system developer and the client agree with the deliver 

system is an acceptable implementation of the system requirements. 

 

(ii) Beta testing:  

 

When a system is to be marketed as a software product, a testing process 

called beta testing is often used. Beta testing involves delivering a system to a number 

of potential customers to agree to use that system. They report problems to the 

system developers. This exposes the product to real use and detects errors which may 

not have been anticipated by the system builders. After this feedback, the system is 

modified and either released or further beta testing or for general sale. 

 

 

 

4.3 INTEGRATION TESTING 

 

TOP - DOWN TESTING: 

 Top – down testing test the high level s of a system before testing its 

detailed components. The program is represented as a single abstract component 

with sub-components represented by stubs. Stubs have the same interface as the 

component but very limited functionality. 

                           After the top level components have been tested, its sub-components 

are implemented and tested in the same way. This process continues recursively until 

the bottom level components are implemented. The whole system may then be 

completely tested. 

Advantages of top down testing: 

1. Unnoticed design errors may be detected at a early stage in the testing process. 
As these  errors are  mainly structural errors ,early detection means that can be  
corrected without undue costs 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 8 

 

 

2. A limited working system is available at an early stage in the development. It 
demonstrates the feasibility of the system to management. 

 

 

Disadvantage of top-down testing:      

 

1. Program stubs simulating lower levels of system should be produced. If the 
component is a complex one, it may be impractical to produce a program stub 
which simulates it accurately. 

 

2. Test output may be difficult to observe. In many systems, the higher levels of that 
system do not generate output but, to test these levels, they must be do so. The 
tester must create an artificial environment to generate the test results. 

 

 

II. BOTTOM-UP TESTING 

 

            Bottom-up testing is the converses of the top-down testing. It involves testing 

the modules at the lower levels in the hierarchy, and then working up the hierarchy of 

modules until the final module is tested. 

 

               When using bottom-up testing, test drivers must be written to exercise the 

lower-level components. These test drivers must be written to exercise the lower-

level components. These test drivers simulate the components environment and are 

valuable components in their own right. 

 

If the components being tested are reusable components, The test drivers 

and test data should be distributed with the component. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 9 

 

Potential re-users can then run these tests to satisfy themselves that the 

component behaves as expected in their environment. 

 

The advantages of bottom-up testing are the disadvantage of top-down 

testing and vice-versa. 

 

  Bottom-up testing is appropriate for object-oriented systems in that 

individual objects may be tested using their own drivers. 

 

 

 

4.4Unit testing 

  It begins at the vortex of the spiral and concentrates on each unit of the s/w as 

implemented in source code. 

 

Testing progresses by moving outward along the spiral to integration 

testing. Here the focus is on design and the construction of the software 

architecture. 

 

Taking another turn outward on the spiral validation testing is encountered. 

Here requirements established as part of s/w requirements analysis are 

validated against the software that has been constructed. 

 

Finally system testing is conducted. In this the software and other system 

elements are tested as a whole. 

 

1. Unit Testing: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 10 

 

  Unit testing focuses verification effort of the smallest unit of software 

design the software component or module. 

 

Unit Testing considerations: 

 

 The module interfaces is tested to ensure that information properly flows into 
and out of the program until under test. 

 The local data structures is examined to ensure that data stored temporarily 
maintains its integrity during all steps in an algorithm’s execution. 

 Boundary conditions are tested to ensure that the module operates properly at 
boundaries established to limit or restrict processing. 

 All independent paths through the control structure are exercised to ensure 
that all statements in a module have been executed at least once. 

 Finally, all error handling paths are tested. 
 

 

4.5 Regression testing: 

 

 This testing is the re execution of some subset of tests that have already 

been conducted to ensure that changes have not propagated unintended side 

effects. 

 

 Regression testing is the activity that helps to ensure that changes do not 

introduce unintended behavior or additional errors. 

The regression test suite contains three different classes of test cases: 

 A representation sample of tests that will exercise all software functions. 

 Additional test that focus on software functions that are likely to be affected by 
the change. 

 Tests that focus on the s/w components that have been changed. 
 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 11 

 

 

4.6Validation testing: 

At the end of integration testing, s/w is completely assembled as a package, 

interfacing errors have been uncovered and corrected, and a final series of 

software tests. 

 

 Validation succeeds when s/w functions in a manner that can be reasonably 

expected by the customer. 

 

 After each validation has been conducted, one of the two possible 

conditions exist: 

 

1. The information or performance characteristic conform to specification and are 
accepted. 

2. A derivation from specifications is uncovered and a deficiency list is created. 
 

It is often necessary to negotiate with the customer to establish a method for 

resolving deficiencies. 

 

Configuration review:  

 

 This is an important element of the validation process. The intent of the 

review is to ensure that all elements of the s/w configuration have been properly 

developed. 

 

Alpha and Beta testing:   

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 12 

 

 When custom software is built for one customer, a series of acceptance 

tests are conducted to enable the customer to validate all requirements. 

 

  The alpha and beta tests have been discussed previously. 

 

4.7SYSTEM TESTING AND DEBUGGING:  

 

S/w is incorporated with other system elements like hardware, people, 

information and a series of system integration and validation tests are conducted. 

These tests fall outside the scope of the software process and are not conducted 

solely by s/w engineers. 

 

 System testing is actually a series of different tests whose primary purpose 

is to fully exercise the computer based system. Although each test has a different 

purpose, all work to verify that system elements have been properly integrated and 

perform allocated functions. 

 

Types of system testing: 

1. Recovery testing 
2. Security testing 
3. Stress testing 
4. Performance testing 
 

Recovery testing: 

 

Many computer based systems must recover from faults and resume 

processing within a prespecified time. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 13 

 

Recovery testing is a system test that forces the s/w to fail in a variety of 

ways and verifies that recovery is properly performed. 

 

If recovery requires human intervention the mean time to repair is 

evaluated to determine whether it is within acceptable limits. 

 

Security testing: 

 

 Security testing attempts to verify that protection mechanism built into a 

system will, in fact, protect it from improper penetration. 

 

 During security testing, the tester plays the role of the individual who 

desires to penetrate the system. 

 

 

 

Stress testing: 

 

  This executes a system in a manner that demands resources in 

abnormal quantity, frequency or volume. 

 

Essentially, the tester attempts to break the program. 

 

A variation of stress testing is a techniques called sensitivity testing. In some 

situations, a very small range of data contained within the bounds of valid data for 

a program may cause extreme and even erroneous processing or profound 

performance degradation. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 14 

 

 

Sensitivity testing attempts to uncover data combinations within valid input 

classes that may be cause instability or improper processing. 

 

 

 

 

 

 

Performance testing 

 

 For real time and embedded systems, software that provides required function but does not 

conform to performance requirements is unacceptable. Performance testing is designed to test the run-

time performance of s/w within the context of an integrated system. 

 

 Performance testing occurs throughout all steps in the testing process. Even at the unit level, 

the performance of an individual module may be assessed. 

 

 Performance tests are often couple with stress testing and usually require both hardware and 

s/w instrumentation. 

TESTING AND DEBUGGING 

 Defect testing and debugging are distinct processes 

 Verification and validation is concerned with establishing the existence of defects in a 

program 

 Debugging is concerned with locating and repairing these errors 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 15 

 

 Debugging involves formulating a hypothesis about program behaviour then testing these  

hypotheses to find the system error 

THE DEBUGGING PROCESS 

 

 

 

 

4.8 TEST COVERAGE BASED ON DATA FLOW MECHANISM: 

 

White box testing is called as glass box testing. It is a test case design method that uses the 

control structure of the procedural design to the derive test cases. 

 

Benefits of white box testing: 

 

 Focused testing:  The programmer can test the program in pieces. It’s much easier to give an 
individual suspect module a through workout in glass box testing than in black box testing. 

 

 Testing coverage:  The programmer can also find out which parts of the program are exercised 
by any test. It is possible to find out which lines of code, which branches, or which paths haven’t 
yet been tested. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 16 

 

 Control flow:  The programmer knows what the program is supported to do next, as a function 
of its current state. 

 

 Data integrity:  The programmer knows which parts of the program modify any item of data. By 
tracking a data item through the system. 

 

 Internal boundaries:  The programmer can see internal boundaries in the code that are 
completely invisible to the outside tester. 

 

 Algorithmic specific:  The programmer can apply standard numerical analysis techniques to 
predict the results. 

 

Various white box testing techniques: 

 

1. BASIS PATH TESTING: 
 

  The basis path method enables the test case designer to derive a logical complexity measure of 

a procedural design and use this measure as a guide for defining and use this measure as a guide for 

defining a basis set of execution paths.  

 

Flow graph notation: 

 

Flow graph is a simple notation for the representation of control flow. Each structured construct 

has a corresponding flow graph symbol. 

 

Flow graph node:  Represents one or more procedural statements. 

 

Edges or links:  Represent flow control. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 17 

 

Regions:  These are areas bounded by edges and nodes. 

 

Each node that contains a condition is called a predicate node and is characterized by two or 

more edges emanating from it. 

 

 

 

Cyclomatic complexity: 

 

Cyclomatic complexity is a software metric that provide a quantitative measure of the logical 

complexity of a program. 

 

The value computed for cyclomatic defines the number of independent paths in the basis set of 

a program and provides us with an upper bound for the number of tests that must be conducted to 

ensure that all statements have been executed at least once. 

 

Thee ways of computing cyclomatic complexity: 

 

1. The number of regions of the flow graph corresponds to the cyclomatic complexity. 
 

2. Cyclomatic complexity ,V(G) for a flow graph G, is defined as  
V (G) = E-N+2 

E is the number of the flow graph edges; N is the number of flow graph nodes. 

 

      3. Cyclomatic complexity V (G) for a flow graph G is also called as 

    V (G) = P+1 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 18 

 

 

             P is the number of predicate nodes contained in the flow graph G. 

 

Deriving test cases: 

 

 The basis path testing method can be applied to procedural design or to source code. 

 

Steps to derive the basis test: 

 

1. Using the design or code as a foundation draw a corresponding flow graph. A flow graph is 
created using the symbols and construction rules. 

 

2. Determine the cyclomatic complexity of the resultant flow graph. V (G) is determined by 
applying the above algorithms. 

 

3. Determine a basis set of linearly independent paths. The value of V (G) provides the number of 
linearly independent paths through the program control structure. 

 

II. CONDITION TESTING 

 

Condition testing is a test case design method that exercises the logical conditions contained in 

a program module. 

 

The condition testing method focuses on testing each condition in the program. 

 

 

Advantage of condition testing: 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 19 

 

 

1. Measurement of the test coverage of a conditional is simple. 

 

2. The test coverage of conditions in a program provides guidance for the generation of additional 

tests for the program. 

 

 Branch testing:  This is the simplest condition testing strategy. For a compound condition C, 
the true and false branches of C and every simple condition in C need to be executed at 
least once. 

 

 Domain testing:  This requires three or four tests to be derived for a relational for a 
relational expression. 

 

 BRO (branch and relational operator) testing:  This technique guarantees the detection of 
branch and relational operator errors in a condition provided that all Boolean variable and 
relational operators in condition occur only once. 

 

 

 

III. DATA FLOW TESTING: 

 

The data flow testing method selects test paths of a program according to the locations of 

definitions and uses of variable in the program. 

 

For a statement with S as its statement number, 

 

DEF(S) ={X} statement S contains a definition of {X} 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 20 

 

USE(S) ={X} statement S contains a use of {X} 

 

If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the 

condition of statement S. 

 

A definition use (DU) chain of variable X is of the form {X, S, S’] where S and S’ are statement 

numbers, X is in DEF(S) and USE(S’) and the definition of X in statements S is live at statement S’. 

 

One simple data flow testing strategy is to require that every DU chain be covered at least once. 

 

Data flow testing strategies are useful for selecting test paths for a program containing nested if 

and loop statements. 

 

Since the statements in a program are related to each other according to the definitions and 

uses of variable the data flow testing approach is effective for error detection. 

 

Problem: 

 

  Measuring test coverage and selecting test paths for data flow testing are more difficult. 

 

IV. LOOP TESTING: 

 

Loop testing is a white box testing technique that focuses exclusively on the validity of loop 

constructs. 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 21 

 

Different classes of loops: 

 

1. Simple loops 
2. Nested loops 
3. Concatenated loops 
4. unstructured loops 
 

Simple loops: 

 

1. Skip the loop entirely. 
2. Only one pass through the loop. 
3. two passes through the loop. 
4. m passes through the loop where m<n 
5. n-1, n, n+1 passes through the loop. 
 

Nested loops:  The number of possible tests would grow geometrically as the level of nesting 

increases. 

 

Methods to reduce the number of tests: 

 

1. Start at the innermost loop. 
 

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their 
minimum iteration parameter values. 

 

 

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at minimum 
value and other nested loops to typical values. 

 

 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 22 

 

 

Concatenated loops: 

 

Concatenated loops can be tested using the approach defined for simple loops, if each of the 

loops is independent of the other. However, if two loops are concatenated and the loop counter for loop 

1 is used as the initial value for loop2. 

 

 

Unstructured loops: 

 

Whenever possible, this class of loops would be redesigned to reflect the use of the structured 

programming constructs. 

 

 4.9BLACK BOX TESTING: 
 

Black box testing is also called as behavioral testing. This focuses on the functional requirements 

of the s/w. Black box testing enables the s/w engineer to derive sets of input conditions that will 

fully exercise all functional requirements for a program.  

 

Errors found by black box testing: 

 

1. incorrect or missing functions 
 

2. interface errors 
 

3. errors in data structures or external data base access. 
 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 23 

 

4. behavior or performance errors. 
 

 

5. initialization and termination errors. 
 

 

 

 

Various black box testing method: 

 

1. Equivalent partitioning 
 

2. boundary value analysis 
 

3. comparison testing 
 

4. orthogonal array testing 
 

1. EQUIVALENCE PARTITIONING: 
 

It is a black box testing method that divides the inputs domain of a program into classes of data 

from which test cases can be derived. 

 

Test case design for equivalence partitioning is based on an evaluation of equivalence classes for 

an input condition. 

 

The input data to a program usually fall into number of different classes. These classes have 

common characteristics, for example positive numbers, negative numbers strings without blanks 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 24 

 

and so on. Programs normally behave in a comparable way for all members of a class. Because of 

this equivalent behavior, these classes are sometimes called equivalent partitions or domains. 

 

A systematic approach to defect testing is based on identifying a set of equivalence partitions 

which must be handled by a program. 

 

Guidelines for defining equivalence classes: 

 

1. If an input condition specifies a range, one valid and two invalid equivalence classes are defined. 
 

2. If an input condition requires a specific value, one valid and two invalid equivalence classes are 
defined. 

 

3. If an input condition specifies a member of a set one valid and one invalid equivalence class are 
defined. 

 

4. If an input condition is Boolean, one valid and one invalid class are defined. 
 

Test cases for each input domain data item can be developed and executed by applying the 

guidelines for the derivation of equivalence classes. 

III. COMPARISON TESTING: 

 

When reliability of software is absolutely critical, redundant hardware and s/w are often used to 

minimize the possibility of error. In such situations, each version can be tested with the same test data 

to ensure that all provide identical output. Those independent versions from the basis of a black box 

testing technique called comparison testing. 

 

If the output from the each version is the same, it is assumed that all implementations are 

correct. If the output is different, each of the applications is investigated to determine if a defect in one 

or more versions is responsible for the difference. 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 25 

 

 

Problem in comparison testing: 

 

1. Comparison testing is not foolproof. If the specification from which all versions have been 
developed is in error, all versions will likely reflect the error. 

 

2. If each of the independent versions produces identical but incorrect results, condition testing 
will fail to detect the error. 

 

IV. ORTHOGONAL ARRAY TESTING: 

 

Orthogonal testing can be applied to problems in which the input domain is relatively small but 

too large to accommodate exhaustive testing. The orthogonal array testing method is particularly 

useful in finding errors associated with regions faults an error category associated with faulty logic 

within a software component. 

 

When orthogonal array testing occurs, an L9 orthogonal array of test cases is created. The L9 

orthogonal array has a balancing property. That is test cases are dispersed uniformly throughout the 

test domain. 

 

The orthogonal array testing approach enables us to provide good test coverage with fewer test 

case than the exhaustive strategy. 

 

 

 

4.10 BOUNDARY VALUE ANALYSIS: 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 26 

 

A great number of errors tend to occur at the boundaries of the input domain rather than in the 

center. So boundary value analysis (BVA) derives test cases from the output domain as well. 

 

 

 

 

Guidelines for boundary value analysis: 

 

1. If an input condition specifies a range bounded by values a and b, test cases should be designed 
with values a and b and just above and just below a and b. 

 

2. If an input condition specifies a number of values, test cases should be developed that exercise 
the minimum and maximum numbers. 

 

3. Apply guidelines 1 and 2 to output conditions. 
 

4. If internal program data structures have prescribed boundaries, be certain to design a test case 
to exercise the data structure at its boundary. 

 

 

 

 

 

4.11 STRUCTURAL TESTING 

 Sometime called white-box testing 

 Derivation of test cases according to program  

structure. Knowledge of the program is used to identify additional test cases 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 27 

 

 Objective is to exercise all program statements  

(not all path combinations) 

 

 

Component
code

Test
outputs

Test data

DerivesTests

 

 
4.12 SOFTWARE IMPLEMENTATION TECHNIQUES 

 Testing tool categories: 
 

S/w quality engineering defines the following testing categories: 

 

 Data acquisition- tools that acquire data to be used during testing. 
 

 Static measurement- tools that analyze source code without executing test cases. 
 

 

 Dynamic measurement- tools that analyze source code during execution. 
 

 Simulation – tools that simulate function of hardware or other externals. 
 

 



www.vidyarthiplus.com 

 

www.vidyarthiplus.com Page 28 

 

 Test management – tools that assist in the planning, development, and control of testing. 
 

 Cross functional tools – tools that cross the bounds of the preceding categories. 
 

 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 1 
 

UNIT V 

SOFTWARE PROJECT MANAGEMENT 

5.1 SOFTWARE COST ESTIMATION: 

Predicting the resources required for a software development process. 

SOFTWARE COST COMPONENTS: 

*Hardware and software costs 

*Travel and training costs 

*Efforts costs 

*Salaries of engineers involved in the project 

*Social and insurance costs 

*Effort costs must take overheads into account 

*Costs of shared facilities 

COSTING AND PRICING: 

*Estimates are made to discover the cost, to the developer of producing a software system. 

*There is not a simple relationship between the development ost and the price charged to the 

customer. 

PROGRAMMER PRODUCTIVITY: 

*A measure of the rate at which individual engineers involved in software development produce 

software and associated documentation. 

* Not quality oriented although quality assurance is a factor in productivity assessment 

PRODUCTIVITY MEASURES: 

*Size related measures based on some output from the software process. This may be lines of 

delivered source code, object code instructions etc., 

* Function related measures based on an estimate of the functionality of the delivered software. 

MEASUREMENT PROBLEM: 

*Estimating the size of the measure. 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 2 
 

*Estimating the total number of programmer months which have elapsed. 

LINES OF CODE: 

*What’s a line of code? 

  The measures was first proposed when programs were typed on cards with one line per card. 

 Analysis Design Coding  Testing Documentation  

Assembly 

code High – 

level 

Language 

3 weeks 

3 weeks 

5 weeks 

5 weeks 

8 weeks 

8 weeks 

10 weeks 

6 weeks 

2 weeks 

2 weeks 

 

 Size Effort Productivity   

Assembly 

High – level 

language  

5000 lines 

1500 lines 

28 weeks 

20 weeks 

714 lines / months 

300 lines / months 

*How does this correspond to statements as in java which can span several lines or where there 

can be several statements. 

*What programs should be counted as part of the system? 

PRODUCTIVITY COMPARISONS: 

*The lower level the language, the more productive the programmer. 

*The same functionality takes more code to implement in a lower level language than in a high 

level language. 

*The more verbose the programmer, the higher the productivity. 

 

5.2 FUNCTION POINTS: 

FUNCTION POINTS: 

*Based on a combination of program characteristics 

*External inputs and outputs 

*User interactions 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 3 
 

*External interfaces 

*Files used by the system 

*Function point count modified by the complexity of the project 

*FP’s can be used to estimate LOC depending on the average number of LOC per FP for a given 

language. 

*LOC = AVC * number of function points 

*Automatic function point counting is impossible. 

5.3 The COCOMO model: 

 An empirical model based on project experience 

 Well documented independent model which is not tied to a specific software 

vendor. 

Boehm introduces a  hierarchy of software estimation models bearing the generic name 

COCOMO for constructive cost model. 

*The basic COCOMO model is static single valued model that computes software development 

effort as a function of program size expressed in estimated lines of code. 

*The intermediate COCOMO model computes software development efforts as a function of 

program size and a set of cost drivers that includes subjective assessments of the product, 

hardware, personnel and project attributes. 

COCOMO 2 LEVELS: 

*COCOMO 2 model is a 3 level model that allows increasingly detailed estimates to be prepared 

as development progresses. 

*Early prototyping level. 

*Estimates based on object points and a simple formula is used for effort estimation. 

*Early design level. 

MODEL 3: 

The advanced COCOMO model incorporates all characteristics of the intermediate version with 

an assessment of the driver’s impact on each step of the software engineering process. 

The COCOMO models are defined for the three classes of software projects: Using Boehm’s 

terminology these are: 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 4 
 

 

1. Organic mode: Relatively small, simple software projects in which  small team with good 

application experience work to set of less than rigid requirements. 

2. Semi- detached mode: An intermediate s/w projects in which teams with mixed experience 

levels must meet a blend of rigid and less than rigid requirements 

3. Embedded mode: a s/w projects must be developed within a set of tight h/w, s/w. 

(i) product attributes 

 * required s/w reliability 

 * size of application data 

 * complexity of  product. 

 (ii) Hardware attributes: 

 Run-time performance constraints. 

 Memory constraints 

 Required turn around time 

 (iii) personal attributes 

 analyst capability 

 software engineer capability 

 application experience 

 virtual machine experience 

(iv)project attributes: 

 use of software tools 

 application of software engineering methods  

 required developed schedule 

   Each of the fifteen attributes is rated on a six point scale that ranges from very low to extra 

high. Based on this rating an effort multiplier is determined from the tables. 

Early prototyping level: 

 supports prototyping projects and projects where there is extensive reuse 

 based on standard estimates of developer productivity  

 takes case tool use into account 

Object point productivity: 

   Early design level: 

 estimates can be made a after the requirements have been agreed 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 5 
 

 based on standard formula for algorithmic models 

 PM=A?Size B ? M + PMm where  

M=PERS ? RCPX ? RUSE ? PDIF ? PREX ? FCIL ? SCED 

  Multipliers: 

          Multipliers reflect the capability of the developers, he non-functional             

requirements, the familiar with the development platform, etc. 

 RCPF – producer reliability and complexity 

 RUSE – the reuse required 

  PDIF – platform difficulty 

 PREX – personnel experience 

 PERS – personnel capability 

 SCED – required schedule 

 FCIL – the team support facilities 

  PM reflects the amount of automatically generated code 

 

Post-architectural level: 

 Uses same facilities as early design estimates 

 Estimates of size is adjusted to take into account 

 Requirements volatility. rework required to support change 

 Extend of possible reuse. Reuse is non-linear and has associated costs so this is 

not a simple reduction in LOC 

 ESLOC = ASLOC ? (AA + SU +0.4DM + 0.3CM + 0.31M)/100 

 ESLOC is equivalent number of lines of new code ASLOC is the number of 

lines of reusable code which must be modified, DM is the % of design modified 

, CM is the % of the code that is modified. 

 

The Exponent Term: 

 This depends on five scale factors. Their sum/100 is added to 1.01 

 Example  

 Precedent ness – new project four 

 Development flexibility – no client involvement – very high one 

 Architecture / risk resolution – no risk analysis 

 Team cohesion – new team nominal three 

 Process maturity – some control – nominal three 

 

 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 6 
 

Multipliers: 

 product attributes concerned with required characteristics of the software 

products being developed. 

 Computer attributes constraints imposed on the software by the hardware 

platform. 

 Project attributes concerned with the particular characteristics of the software 

development projects. 

 

Projects Planning: 

 Algorithmic cost models provide a basis for projects planning as they allow 

alternative strategies to be compared. 

 Embedded space craft system  

    must be reliable 

    must minimize weight 

    multipliers on reliability and computer constraints. 

 Cost components 

 Target hardware 

 Development platform 

 Effort required 

 

Project duration and staffing: 

 As well as effort estimation, managers must estimate the calendar time required 

to complete a project and when staff will be required 

 Calendar time can be estimated using COCOMO-2 formula 

 PM is effort computation and B is the exponent computed as discussed above. 

 The time required is independent of the number of people working o the project. 

 

Staffing requirements: 

 Staff required cannot be computed by dividing the development time by 

required schedule  

 The number of people working on a project varies depending on the phase of 

the project 

 The more people who work on project more total effort is usually required 

 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 7 
 

Key Points: 

 Factors affecting productivity include individual aptitude domain experience the 

development project, the project size, tool support 

 Software may be priced to gain a contract and functionality 

 Algorithmic cost estimation is difficult because of the need to estimate attributes 

 The time to complete a project is not proportional to the number of people 

working on the project 

Required level of reliability: 

 Software reliability can be defined as the probability that a program will 

perform a required function. 

 

Level of technology: 

 The better level of technology and higher productivity so lower cost because the 

time taken to complete the project would be less and the lesser number of 

resources will be used. 

 

5.4 Delphi cost estimation: 

 This technique was developed at Rand Corp. in 1948 to gain expert consensus 

without introducing the adverse side affects of group meetings. 

 The Delphi technique can be adopted to software cost estimation in the 

following manner: 

1. A coordinator provides each estimator with the system definition 

document and a form for recording their estimate. 

2. The estimator study and complete their estimation anonymously. They 

ask questions to the coordinator but do not discuss with one another. 

3. The coordinator makes  summary and includes any unused rationales 

notes by the estimators. 

4. Estimators complete another estimation, again anonymously, using the 

results of the previous estimates. The estimators whose estimates differ 

sharply from the group may be asked justify their answer, anonymously. 

5. The process is iterated for as many rounds as required. No group 

discussion is allowed during the entire process. 

 It is possible that after several rounds of estimates will not lead to a 

consensus estimate. In this case, the coordinator must discuss the issues 

involved with each estimator to determine the reasons for the 

differences. 

 The coordinator may have to gather additional information and present it 

to the estimators in order to resolve the differences in viewpoint. 

 

      



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 8 
 

 

  Work Breakdown Structures: 

 This is a bottom-up estimation tool. A work breakdown 

structure is a hierarchical chart that accounts for the 

individual parts of a system. A WBS chart can indicate 

either product hierarchy or process hierarchy. 

 This product hierarchy helps in identifying the manner in 

which the components are interconnected. 

                                        The advantages of WBS technique are in identifying and accounting for 

various process and product factors, in making explicit exactly which cost are included in the 

estimate. 

5.5 SOFTWARE PROJECT SCHEDULING: 

 

       Project scheduling and tracking: 

 The scheduling is the process of building and monitoring schedules for software 

development systems, many engineering tasks need to occur in parallel with one 

another to complete the project on time. The output from one task often 

determines when another may begin. It is difficult to ensure that a team is 

working on the most appropriate tasks without building a detailed schedule and 

sticking to it. 

     Software Project scheduling Principle: 

 Compartmentalization: 

 Interdependency 

 Time allocation 

 Effort validation 

 Define responsibilities 

 Defined outcomes 

 Defined milestones 

 

Relationship between people and effort: 

  *adding people to the project after it is behind schedule often causes the schedule 

to slip further. 

  * Relationship between number of peoples on a project and overall productivity is 

not linear. 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 9 
 

  * The main reason for using more than one person on a project are to get the job 

done more rapidly and to improve s/w quality. 

 

Project effort distribution: 

  Generally accepted guidelines are  

1. 2-3 % planning. 

2. 10-25% requirement analysis 

3. 22- 25% designing 

4. 15 – 25% coding 

5. 30-40% Testing and debugging. 

 

Software project types: 

*Concept development- to explore new business concept  

*New application development- New product requested by the customer 

*Application enhancement:  Modifications to function, performance are interfaces 

*Application maintenance: Correcting adopting, or extending existing s/w. 

*Re-engineering:  Rebuilding all of a legacy system. 

 

 

Software process degree of Rigor: 

*Casual:  All framework activities applied, only minimum task set required. 

*Structured: All framework and umbrella activities applied.(SQA,SCM) 

*Strict:  Full process and umbrella activities. 

*Quick reaction:  Emergency situation process frame work required. 

 

Rigor adaptation criteria: 

 Size of project 

 Number of potential uses 

 Mission criticality 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 10 
 

 Application longevity 

 Requirements stability 

 Customer/developer communication 

 Maturity of applicable technology 

 Performance constraints 

 Project staffing 

 Reengineering factors 

 

Concept development task: 

 Concept scooping- determine overall project scope. 

 Preliminary concept planning- establishes development team’s ability to 

undertake the proposed work. 

 Technology risk assessment- Evaluate the risk assessed with the technology 

 Proof of concept  :  Demonstrate the feasibility of the technology 

 Concept implementation : Concept represented in the form that can be sell to a 

customer. 

 Customer reaction to the concept:  Solicits feedback on new technology from 

customer. 

 

Scheduling: 

*Scheduling tools should be used to schedule any non trivial project. 

* PERT and CPM – quantitative techniques that allow s/w planners to identify the chain of 

dependent task in the project work breakdown structure that determines the project duration. 

* Time line or GANTT chart : enables s/w planners to determine what task will be needed to 

conducted at a given point in the given time. 

*Time boxing:  Practice of deciding a prior, the fixed amount of time that can be spend on each 

task. 

 

5.6 Error tracking: 

 Allows comparison of current works to the past projects and provides a 

quantitative indication on the works so far completed. 

 The more quantitative approach to project tracking and control, the more likely 

problems can be anticipated and dealt. 

 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 11 
 

 

5.7 MEASURES AND MEASUREMENTS 

Productivity measures 

 Size related measures based on some output from the software process. This may be lines 

of delivered source code, object code instructions, etc. 

 Function-related measures based on an estimate of the functionality of the delivered 

software. Function-points are the best known of this type of measure 

Measurement problems 

 Estimating the size of the measure 

 Estimating the total number of programmer months which have elapsed 

 Estimating contractor productivity (e.g. documentation team) and incorporating this  

estimate in overall estimate 

Lines of code  

 What's  a line of code? 

o The measure was first proposed when programs were typed on cards with one line 

per card 

o How does this correspond to statements as in Java which can span several lines or 

where there can be several statements on one line 

 What programs should be counted as part of the system? 

 Assumes linear relationship between system size and volume of documentation 

Function points 

 Based on a combination of program characteristics 

o external inputs and outputs 

o user interactions 

o external interfaces 

o files used by the system 

 A weight is associated with each of these 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 12 
 

 The function point count is computed by multiplying each raw count by the weight and 

summing all values 

Object points 

 Object points are an alternative function-related measure to function points when 4Gls or 

similar languages are used for development 

 Object points are NOT the same as object classes 

  The number of object points in a program is a weighted estimate of 

o The number of separate screens that are displayed 

o The number of reports that are produced by the system 

o The number of 3GL modules that must be developed to supplement the 4GL code 

Productivity estimates 

 Real-time embedded systems, 40-160 LOC/P-month 

 Systems programs , 150-400 LOC/P-month 

 Commercial applications, 200-800 LOC/P-month 

 In object points, productivity has been measured between 4 and 50 object points/month 

depending on tool support and developer capability 

5.8 ZIPF’s LAW 

Zipf's law, an empirical law formulated using mathematical statistics, refers to the fact 

that many types of data studied in the physical and social sciences can be approximated with a 

Zipfian distribution. 

Zipf's law is most easily observed by plotting the data on a log-log graph, with the axes 

being log(rank order) and log(frequency). For example, the word "the" (as described above) 

would appear at x = log(1), y = log(69971). The data conform to Zipf's law to the extent that the 

plot is linear. 

Formally, let: 

 N be the number of elements; 

 k be their rank; 

 s be the value of the exponent characterizing the distribution. 

http://en.wikipedia.org/wiki/Empirical_law
http://en.wikipedia.org/wiki/Mathematical_statistics
http://en.wikipedia.org/wiki/Physical_science
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Log-log
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Linear_equation


www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 13 
 

Zipf's law then predicts that out of a population of N elements, the frequency of elements of 

rank k, f(k;s,N), is: 

 

Zipf's law holds if the number of occurrences of each element are independent and 

identically distributed random variables with power law distribution p(f) = αf 
− 1 − 1 / s

.  

In the example of the frequency of words in the English language, N is the number of words 

in the English language and, if we use the classic version of Zipf's law, the exponent s is  

1. f(k; s,N) will then be the fraction of the time the kth most common word occurs. 

The law may also be written: 

 

where HN,s is the Nth generalized harmonic number. 

The simplest case of Zipf's law is a "
1
⁄f function". Given a set of Zipfian distributed 

frequencies, sorted from most common to least common, the second most common frequency 

will occur ½ as often as the first. The third most common frequency will occur ⅓ as often as the 

first. The n
th

 most common frequency will occur 
1
⁄n as often as the first. However, this cannot 

hold exactly, because items must occur an integer number of times; there cannot be 2.5 

occurrences of a word. Nevertheless, over fairly wide ranges, and to a fairly good approximation, 

many natural phenomena obey Zipf's law. 

Mathematically, it is impossible for the classic version of Zipf's law to hold exactly if 

there are infinitely many words in a language, since the sum of all relative frequencies in the 

denominator above is equal to the harmonic series and therefore: 

 

In English, the word frequencies have a very heavy-tailed distribution and can therefore 

be modeled reasonably well by a Zipf distribution with an s close to 1. 

As long as the exponent s exceeds 1, it is possible for such a law to hold with infinitely 

many words, since if s > 1 then 

 

http://en.wikipedia.org/wiki/Harmonic_number
http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)


www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 14 
 

where ζ is Riemann's zeta function 

 

5.9 EARNED VALUE ANALYSIS 

 “Earned Value Analysis” is: 

o an industry standard way to: 

 measure a project’s progress, 

 forecast its completion date and final cost, and 

 provide schedule and budget variances along the way. 

 By integrating three measurements, it provides consistent, numerical indicators with 

which you can evaluate and compare projects.  

What’s more Important 

 Knowing where you are on schedule? 

 Knowing where you are on budget? 

 Knowing where you are on work accomplished? 

EVA Integrates All Three 

 It compares the PLANNED amount of work with what has actually been COMPLETED, 

to determine if COST , SCHEDULE, and WORK ACCOMPLISHED are progressing as 

planned. 

 Work is “Earned” or credited as it is completed.  

 

Earned Value needed because 

 Different measures of progress for different types of tasks 

 Need to “roll up” progress of many tasks into an overall project status 

 Need for a uniform unit of measure (dollars or work-hours). 

 Provides an “Early Warning” signal for prompt corrective action. 

o Bad news does not age well. 

o Still time to recover  

http://en.wikipedia.org/wiki/Riemann_zeta_function


www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 15 
 

 Timely request for additional funds 

Earned Value Definitions 

 BCWS: “Budgeted Cost of Work Scheduled” 

 Planned cost of the total amount of work scheduled to be performed by the milestone 

date. 

 ACWP:  “Actual Cost of Work Performed” 

 Cost incurred to accomplish the work that has been done to date. 

 BCWP: Budgeted Cost of Work Performed 

o The planned (not actual) cost to complete the work that has been done. 

Some Derived Metrics 

 SV:  Schedule Variance (BCWP-BCWS) 

o A comparison of amount of work performed during a given period of time to what 

was scheduled to be performed. 

o A negative variance means the project is behind schedule 

 CV:  Cost Variance (BCWP-ACWP) 

o A comparison of the budgeted cost of work performed with actual cost. 

o A negative variance means the project is over budget. 

Schedule Variance & Cost Variance 

Schedule Variance = BCWP-BCWS 

Cost Variance        = BCWP-ACWP 

Some More Derived Metrics 

 SPI: Schedule Performance Index  SPI=BCWP/BCWS    

 SPI<1 means project is behind schedule 

 CPI: Cost Performance Index   CPI= BCWP/ACWP    

 CPI<1 means project is over budget 

 CSI: Cost Schedule Index  (CSI=CPI x SPI) 

The further CSI is from 1.0, the less likely project recovery becomes. 

Performance Metrics 

SPI: BCWP/BCWS 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 16 
 

CPI: BCWP/ACWP 

CSI: SPI x CPI 

Value of Earned Value 

 Schedule Status Reporting 

 Cost Status Reporting 

 Forecasting 

Requirements of Earned Value 

 Proper WBS Design 

 Baseline Budget Control Accounts  

 Baseline Schedule 

 Work measurement by Control Account 

o work-hours, dollars, units, etc. 

 Good Project Management Practices 

Shortcomings of Earned Value  

 Quantifying/measuring work progress can be difficult. 

 Time required for data measurement, input, and manipulation can be considerable. 

5.10 CONFIGURATION MANAGEMENT 

 New versions of software systems are created as they change 

o For different machines/OS 

o Offering different functionality 

o Tailored for particular user requirements 

 Configuration management is concerned with managing evolving software systems 

o System change is a team activity 

o CM aims to control the costs and effort involved in making changes to a system 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 17 
 

 Involves the development and application of procedures and standards to manage an 

evolving software product 

 May be seen as part of a more general quality management process 

 When released to CM, software systems are sometimes called baselines as they are a 

starting point for further development 

 

CM standards 

 CM should always be based on a set of standards which are applied within an 

organisation 

 Standards should define how items are identified, how changes are controlled and how 

new versions are managed 

 Standards may be based on external CM standards (e.g. IEEE standard for CM) 

 Existing standards are based on a waterfall process model - new standards are needed for 

evolutionary development 

Configuration management planning 

 All products of the software process may have to be managed 

o Specifications 

o Designs 

o Programs 

o Test data 

o User manuals 

 Thousands of separate documents are generated for a large software system 

CM planning 

 Starts during the early phases of the project 

 Must define the documents or document classes which are to be managed (Formal  

documents) 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 18 
 

 Documents which might be required for future system maintenance should be identified 

and specified as managed documents 

The CM plan 

 Defines the types of documents to be managed and a document naming scheme 

 Defines who takes responsibility for the CM procedures and creation of baselines 

 Defines policies for change control and version management 

 Defines the CM records which must be maintained 

 

 Describes the tools which should be used to assist the CM process and any limitations on 

their use 

 Defines the process of tool use 

 Defines the CM database used to record configuration information 

 May include information such as the CM of external software, process auditing, etc. 

 

Configuration item identification 

 Large projects typically produce thousands of documents which must be uniquely 

identified 

 Some of these documents must be maintained for the lifetime of the software 

 Document naming scheme should be defined so that related documents have related 

names. 

 A hierarchical scheme with multi-level names is probably the most flexible approach 

The configuration database 

 All CM information should be maintained in a configuration database 

 This should allow queries about configurations to be  

answered 

o Who has a particular system version? 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 19 
 

o What platform is required for a particular version? 

o What versions are affected by a change to component X? 

o How many reported faults in version T? 

 The CM database should preferably be linked to the software being managed 

Change management 

 Software systems are subject to continual change requests 

o From users 

o From developers 

o From market forces 

 Change management  is concerned with keeping managing of these changes and ensuring 

that they are implemented in the most cost-effective way 

Change request form 

 Definition of change request form is part of the CM planning process 

 Records change required, suggestor of change, reason why change was suggested and  

urgency of change(from requestor of the change) 

 Records change evaluation, impact analysis, change cost and recommendations (System  

maintenance staff) 

Change Request Form 
 

Project: Proteus/PCL-Tools Number: 23/94 

Change requester: I. Sommerville Date: 1/12/98 

Requested change: When a component is selected from the 

structure, display the name of the file where it is stored. 

 

Change analyser: G. Dean Analysis date: 10/12/98 

Components affected: Display-Icon.Select, Display-Icon.Display 

 

Associated components: FileTable 

 

Change assessment: Relatively simple to implement as a file name 

table is available. Requires the design and implementation of a 

display field. No changes to associated components are required. 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 20 
 

Change priority: Low  

Change implementation:  

Estimated effort: 0.5 days  

Date to CCB: 15/12/98 CCB decision date: 1/2/99 

CCB decision: Accept change. Change to be implemented in 

Release 2.1. 

Change implementor: Date of change: 

Date submitted to QA: QA decision: 

Date submitted to CM:  

Comments 

 

 

 

Change tracking tools 

 A major problem in change management is tracking change status 

 Change tracking tools keep track the status of each change request and automatically 

ensure  

that change requests are sent to the right people at the right time. 

 Integrated with E-mail systems allowing electronic change request distribution 

Change control board 

 Changes should be reviewed by an external group who decide whether or not they are 

cost-effective from a strategic and organizational viewpoint rather than a technical 

viewpoint  

 Should be independent of project responsible for system. The group is sometimes called a 

change control board 

 May include representatives from client and contractor staff 

Version and release management 

 Invent identification scheme for system versions 

 Plan when new system version is to be produced 

 Ensure that version management procedures and tools are properly applied 

 Plan and distribute  new system releases 

Versions/variants/releases 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 21 
 

 Version  An instance of a system which is functionally distinct in some way from other  

system instances 

 Variant  An instance of a system which is functionally identical but non-functionally  

distinct from other instances of a system 

 Release  An instance of a system which is distributed to users outside of the development  

team 

Version identification 

 Procedures for version identification should define an unambiguous way of identifying 

component versions 

 Three basic techniques for component identification 

o Version numbering 

o Attribute-based identification 

o Change-oriented identification 

Version numbering 

 Simple naming scheme uses a linear derivation e.g. V1, V1.1, V1.2, V2.1, V2.2 etc. 

 Actual derivation structure is a tree or a network rather than a sequence 

 Names are not meaningful.  

 Hierarchical naming scheme may be better 

Release management 

 Releases must incorporate changes forced on the system by errors discovered by users 

and by hardware changes 

 They must also incorporate new system functionality 

 Release planning is concerned with when to issue a system version as a release 

System releases 

 Not just a set of executable programs 

 May also include 

o Configuration files defining how the release is configured for a particular 

installation 

o Data files needed for system operation 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 22 
 

o An installation program or shell script to install the system on target hardware 

o Electronic and paper documentation 

o Packaging and associated publicity 

 Systems are now normally released on CD-ROM or as downloadable installation files 

from the web 

Release problems 

 Customer may not want a new release of the system 

o They may be happy with their current system as the new version may provide 

unwanted functionality   

 Release management must not assume that all previous releases have been accepted. All 

files required for a release should be re-created when a new release is installed 

Release decision making 

 Preparing and distributing a system release is an expensive process 

 Factors such as the technical quality of the system, competition, marketing requirements 

and customer change requests should all influence the decision of when to issue a new 

system release 

System building 

 The process of compiling and linking software components into an executable system 

 Different systems are built from different combinations of components 

 Invariably supported by automated tools that are driven by ‘build scripts 

System building 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 23 
 

System representation 

 Systems are normally represented for building by specifying the file name to be 

processed by building tools. Dependencies between these are described to the building 

tools 

 Mistakes can be made as users lose track of which objects are stored in which files 

A system modelling language addresses this problem by using a logical rather than a physical  

system representation. 

5.11 PROGRAM EVOLUTION DYNAMICS 

 Program evolution dynamics is the study of the processes of system change 

 After major empirical study, Lehman and Belady proposed that there were a number of 

‘laws’ which applied to all systems as they evolved 

 There are sensible observations rather than laws. They are applicable to large systems 

developed by large organisations. Perhaps less applicable in other cases 

 

Lehman’s laws 

Prof. Meir M. Lehman, who worked at Imperial College London from 1972 to 2002, and his 

colleagues have identified a set of behaviours in the evolution of proprietary software. These 

behaviours (or observations) are known as Lehman's Laws, and there are eight of them: 

1. Continuing Change 

2. Increasing Complexity 

3. Large Program Evolution 

4. Invariant Work-Rate 

5. Conservation of Familiarity 

6. Continuing Growth 

7. Declining Quality 

8. Feedback System 

The laws predict that change is inevitable and not a consequence of bad programming and 

that there are limits to what a software evolution team can achieve in terms of safely 

implementing changes and new functionality. 

http://en.wikipedia.org/wiki/Meir_M._Lehman
http://en.wikipedia.org/wiki/Imperial_College_London
http://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution


www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 24 
 

Maturity Models specific to software evolution have been developed to help improve 

processes to ensure continuous rejuvenation of the software evolves iteratively. 

The "global process" that is made by the many stakeholders (e.g. developers, users, their 

managers) has many feedback loops. The evolution speed is a function of the feedback loop 

structure and other characteristics of the global system. Process simulation techniques, such 

as system dynamics can be useful in understanding and managing such global process. 

Software evolution is not likely to be Darwinian, Lamarckian or Baldwinian, but an 

important phenomenon on its own. Giving the increasing dependence on software at all levels of 

society and economy, the successful evolution of software is becoming increasingly critical. This 

is an important topic of research that hasn't received much attention. 

The evolution of software, because of its rapid path in comparison to other man-made 

entities, was seen by Lehman as the "fruit fly" of the study of the evolution of artificial systems. 

 

 

Applicability of Lehman’s laws 

 This has not yet been established 

 They are generally applicable to large, tailored systems developed by large organisations 

 It is not clear how they should be modified for 

o Shrink-wrapped software products 

o Systems that incorporate a significant number of COTS components 

o Small organisations 

o Medium sized systems 

5.12 SOFTWARE MAINTENANCE 

 Modifying a program after it has been put into use 

 Maintenance does not normally involve major changes to the system’s architecture 

 Changes are implemented by modifying existing components and adding new 

components to the system 

Maintenance is inevitable 

http://en.wikipedia.org/wiki/System_dynamics
http://en.wikipedia.org/wiki/Darwinian_evolution
http://en.wikipedia.org/wiki/Lamarckian_evolution
http://en.wikipedia.org/wiki/Baldwinian_evolution


www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 25 
 

 The system requirements are likely to change while the system is being developed 

because  

the environment is changing. Therefore a delivered system won't meet its requirements! 

 Systems are tightly coupled with their environment. When a system is installed in an  

environment it changes that environment and therefore changes the system requirements. 

 Systems MUST be maintained therefore if they are to remain useful in an environment 

Types of maintenance 

 Maintenance to repair software faults 

o Changing a system to correct deficiencies in the way meets  

its requirements 

 Maintenance to adapt software to a different operating environment 

o Changing a system so that it operates in a different environment (computer, OS, 

etc.) from its initial implementation 

 Maintenance to add to or modify the system’s functionality 

o Modifying the system to satisfy new requirements 

Spiral maintenance model 

 

Maintenance costs 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 26 
 

 Usually greater than development costs (2* to 100* depending on the application) 

 Affected by both technical and non-technical factors 

 Increases as software is maintained. Maintenance corrupts the software structure so  

makes further maintenance more difficult. 

 Ageing software can have high support costs (e.g. old languages, compilers etc.) 

Maintenance cost factors 

 Team stability 

o Maintenance costs are reduced if the same staff are involved with them for some 

time 

 Contractual responsibility 

o The developers of a system may have no contractual responsibility for 

maintenance so there is no incentive to design for future change 

 Staff skills 

o Maintenance staff are often inexperienced and have limited domain knowledge 

 Program age and structure 

o As programs age, their structure is degraded and they become harder to 

understand and change 

The maintenance process 

 

 

SOFTWARE PROJECT MANAGEMENT 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 27 
 

Concerned with activities involved in ensuring that software is delivered on time and on  

schedule and in accordance with the requirements of the organisations developing  

and procuring the software 

Project management is needed because software development is always subject to budget and 

schedule constraints that are set by the organisation developing the software 

Management activities 

 Proposal writing 

 Project planning and scheduling 

 Project costing 

 Project monitoring and reviews 

 Personnel selection and evaluation 

 Report writing and presentations 

5.13 PROJECT PLANNING 

 Probably the most time-consuming  project management activity 

 Continuous activity from initial concept through  

to system delivery. Plans must be regularly revised as new information becomes available 

 Various different types of plan may be developed to support the main software project 

plan that is concerned with schedule and budget  

Project Planning Process 

Establish the project constraints 

Make initial assessments of the project parameters 

Define project milestones and deliverables 

while project has not been completed or cancelled loop 

Draw up project schedule 

Initiate activities according to schedule 

Wait ( for a while ) 

Review project progress 

Revise estimates of project parameters 

Update the project schedule 

Re-negotiate project constraints and deliverables 

if ( problems arise ) then 

Initiate technical review and possible revision 

end if 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 28 
 

end loop 

 

Project plan structure 

 Introduction 

 Project organisation 

 Risk analysis 

 Hardware and software resource requirements 

 Work breakdown 

 Project schedule 

 Monitoring and reporting mechanisms 

Activity organization 

 Activities in a project should be organised to produce tangible outputs for management to 

judge progress 

 Milestones are the end-point of a process activity 

 Deliverables are project results delivered to customers 

 The waterfall process allows for the straightforward definition of progress milestones 

5.14 PROJECT SCHEDULING 

 Split project into tasks and estimate time and resources required to complete each task 

 Organize tasks concurrently to make optimal  

use of workforce 

 Minimize task dependencies to avoid delays  

caused by one task waiting for another to complete 

 Dependent on project managers intuition and experience 

The project scheduling process 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 29 
 

Scheduling problems 

 Estimating the difficulty of problems and hence the cost of developing a solution is hard 

 Productivity is not proportional to the number of people working on a task 

 Adding people to a late project makes it later because of communication overheads 

 The unexpected always happens. Always allow contingency in planning 

 

5.15 Risk management: 

 

Risks are potential problems that affect successful completion of project which involves 

uncertainty and potential lose . Risk analysis and management helps the s/w team to overcome 

the problems caused by the risks. 

The work product is called a Risk Mitigation, Monitoring and Management Plan(RMMMP). 

 

 

(a)  risk strategies:  

* reactive strategies: also known as fire fighting, project team sets resources aside to deal with 

the problem and does nothing until the risks became a problem. 

*  Pro active strategies: risk management begins long before technical works starts , risks are 

identified and prioritized by importance, the team lead builds a plan to avoid such risks. 

 

(b) S/W risks: 

*  Project risk:   

*  Technical risk:  threaten product quality and time line 

*  business risk:  threaten the validity of the s/w.  

*  Known risk:  predictable from careful evaluation of current  project plan and those 

extrapolated from past project experience. 

*  Unknown risk:  some problems simply occur without warning. 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 30 
 

 

(c) Risk identification: 

* Product – specific  risk:  the project plan and s/w statement of scope are examined to identify 

any specific characteristics. 

* Generic risk:  Potential threads to any s/w products. 

 

(d) Risk impact:  

* Risk components: performance, cost, support, schedule 

* Risk impact: negligible, marginal , critical, catastrophic. 

The risk drivers affecting each risk component are classified according to their impact category 

and potential consequence  of each undetected s/w fault. 

 

(e) Risk projection:   

* Establish a scale that reflects the perceived likelihood of each risks. 

Delineate the consequence of the risk. 

Estimate the impact of the risk on project and product. 

 

 

(f) risk table construction: 

* List all risks in the first column of the table 

* Classify each risk and enter the category label in column 2 

* Determine a probability for each risk and enter to third column. 

* Enter the severity of the risk in column 4. 

* Sort the table by probability and impact value. 

* First priority concerns must be managing(RMMM in fifth column). 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 31 
 

(g) assessing risk impact: 

* Factors affecting risk consequences: nature, scope, and timing of the risk. 

* If costs are associated with each risk table entry Halstead’s risk exposure can be adopted and 

added to risk table. 

RE= probability * cost  

 

(h) risk assessment: 

* Defines referent levels for each project risk that can cause project termination. 

* Attempt to develop a relationship between each risk triple. 

* Predict the set of referent point that define a region of termination, bounded by a curve or areas 

of uncertainties. 

 

(i) risk refinement: 

* process of restating the risks as set of more detailed risk that will be easier to migrate, migrate, 

and manage. 

* CTC format may be a good representation for the detailed risk( condition – transition – 

consequence) 

 

(J) RISK MITIGATION, MONITORING AND MANAGEMENT:   

* Risk mitigation:  proactive planning for risk avoidance  

* risk monitoring: accessing whether predicted risks occur or not, collect information for further 

risk analysis. 

* Risk management and contingency planning : actions to be taken in the event that mitigation 

step have failed and the risk become a life problem. 

 

(k) safety risks and hazards: 

 Risks also associated with s/w failures that occur in the field after the 

development project has ended. 

 Computers control may listen critical application in modern science. 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 32 
 

 Software safety and hazard analysis and quality assurance activity 

 

(l) risk information sheets: 

 alternative to RMMM in which each risk is documented separately. 

 RIS are maintain using a database system 

(m) Examples: 

 Pilot study 

 Market research – study of business impact risks 

 Training 

(n) outline of risk management: 

 identification-define risks for the project 

 projection attempt to indicate quantitative likelihood that a risk will occur. 

 Assessment – evaluate the accuracy of projection and prioritize risks. 

 Management and monitoring: move to avert those risks that are of concern and 

monitor all circumstance that may leave to risks. 

 

1. risk identification: 

 A systematic attempt to specify thread to the project plan. 

 Both generic and product specific risks  

 Risk identification : check list 

(i) people / staff  

(ii) customer / user 

(iii) business/business impact 

(iv) application, product size, technology 

(v) process maturity 

 

2. risk projection: 

 establish a scale that reflects the perceived likelihood of the risks. 

 Define the consequence of the risks. 

 Estimate the impact of the risk on the project and or the product 

 

3. risk assessment: 

 recording risks:  

 building the risk table 

(i) estimate the probability of the occurrence 

(ii) estimate the impact on the project 

(iii) add RMMM plan 

(iv) sort the table by probability and impact   

 

4. risk mitigation, monitoring and management: 

 mitigation:  how to avoid risk 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 33 
 

 monitoring: what factors can be track that will enable us to determine the causes 

of risks. 

 Management:  what contingency plans do we have if the risks become a real. 

 

 

5.16 Taxonomy of CASE tools: 

What is CASE? 

 The computer aided software engineering (CASE) is an automated support for the 

software engineering process. 

The workshop for software engineering has been called an integrated project support 

environment and the tools that fill the workshop are collectively called CASE. 

CASE provides the software engineer with the ability to automate manual activities and to 

improve engineering insight.  CASE tools help to ensure that quality is designed in before the 

produce is built. 

Different levels of CASE technology: 

1. Production process support technology. 

This includes support for process activities such as specification, design, 

implementation, testing, and so on.  These were the earliest and consequently are the 

most nature CASE products. 

2. Process management technology. 

This includes tools to support process modeling and process management.  These 

tools will call on production process support tools to support specific process 

activities. 

3. Meta CASE technology. 

Meta CASE tools are generators which are used to create production process and 

Process management support tools. 

5.17  

 

 It is necessary to create taxonomy of CASE tools to better understand the breadth of 

CASE and to better appreciate where such tools can be applied in the software engineering 

process. 

 

Different classification dimensions of CASE: 

CASE tools can be classified 

 By function. 

 By their roles as instruments for managers or technical people. 

 By their use in the various steps of the software engineering process. 

 By environment architecture that supports them. 

 By their origin or cost. 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 34 
 

 

 

 

 

 

Various CASE tools based on functions: 

 

1. Business process engineering tools. 

The primary objective of these tools is to represent business data objects, their 

relationships and how these data objects flow between different business areas within 

a company. 

  

 

2. Process modeling and management tools. 

These tools provide links to other tools that provide support to defined process 

activities. 

 

3. Project planning tools. 

Tools in this category focus on software project effort & cost estimation and project 

scheduling. 

 

4. Risk analysis tools. 
These tools enable a project manager to build a risk table by providing detailed 

guidance in the identification and analysis of risks. 

 

 5.     Project management tools. 
         Tools in this category are often extensions to project planning tools. 

  

 6.     Requirements tracing tools. 
The objective of these tools is to provide a systematic approach to the isolation of 

requirements. 

  

1. Documentation tools. 
These tools provide an important opportunity to improve productivity. 

  

 8.    System software tools. 
CASE is a workstation technology.  Therefore, the CASE environment must 

accommodate high quality network system software. 

 

 9.    Quality assurance tools. 
Most of these tools are actually metrics tools that audit source code to determine 

compliance with language standards.  

 

 

 10.   Database management tools. 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 35 
 

These tools for CASE are evolving from relational database management system to 

object oriented database management system.   

  

 11.    Software Configuration Management tools. 
 These tools assist in all major SCM tasks namely identification, version control, 

change control, auditing and status accounting.  

 

 12.    Analysis and design tools. 
These tools enable a software engineer to create models of the system to be                          

built. 

  

13. PRO/SIM tools. 
These tools provide the software engineer with the ability to predict the behavior of 

a real time system prior to the time that it is built. 

 

14. Interface design and development tools. 
These tools are actually a tool kit of software components such as menus, buttons, 

window structures, icons, scrolling mechanisms, and device drivers. 

  

 15.     Prototyping tools. 
A variety of such tools are used.  Some of these tools enable the creation of a data 

design, coupled with both screen and report layouts. 

  

 16.     Programming tools. 
These tools encompass the compilers, editors, and debuggers that are available to 

support most conventional programming languages. 

 

17. Web development tools. 
These tools assist in the generation of text, graphics, font, scripts, applets, and other 

elements of a web page. 

 

18. Integration and testing tools. 
These tools involve data acquisition, static measurement, dynamic measurement, 

simulation, and test management. 

 

19. Static analysis tools. 
These tools assist the software engineer in deriving test cases. 

 

20. Dynamic analysis tools. 
These tools interact with an executing program, checking path coverage, and testing 

assertions about the value of specific variables. 

 

21. Test management tools. 
These tools are used to control and coordinate software testing for each of the major 

testing steps. 

 



www.vidyarthiplus.com 
 

www.vidyarthiplus.com Page 36 
 

22. Client/server testing tools. 
These tools exercise the graphical user interface and the network communications 

requirements for client and server. 

  

23. Reengineering tools. 
Some of these tools are Reverse engineering to specification tools, Code capturing 

and analysis tools, and On-line system reengineering tools. 

 

 


